[52] A multiple-strain pathogen model with diffusion on the space of Radon measures.
A.S. Ackleh, N. Saintier, A. Zhang.
submitted.
[51] Learning, Mean Field Approximations, and Phase Transitions in Auction Models.
N. Saintier, M. Kind, J.P. Pinasco.
submitted.
[50] Competition level as a key parameter in well-structured renewable energy auctions.
N. Saintier, J. Marenco, M. Kind, J.P. Pinasco.
submitted.
[49] Kinetic modelling and the social impact of public policy in controlling disease spreading.
C. Giambiagi Ferrari, N. Kontorovski, J.P. Pinasco, N. Saintier.
submitted.
[48] Finite Difference Schemes for a Size Structured Coagulation-Fragmentation Model in the Space of Radon Measures.
A.S. Ackleh, R. Lyons, N. Saintier.
submitted.
[47] Analytical formulation for multidimensional continuous opinion models.
L. Pedraza, J.P. Pinasco, N. Saintier, and P. Balenzuela.
Chaos, Solitons and Fractals, 152 (2021) 111368.
[46] Structured Coagulation-Fragmentation Equation in the Space of Radon Measures: Unifying Discrete and Continuous Models.
A.S. Ackleh, R. Lyons, N. Saintier,
ESAIM: Mathematical Modelling and Numerical Analysis (ESAIM: M2AN), 55 (2021) 2473-2501.
[45] A SIS model with propagation of conducts.
C. Giambiagi Ferrari, J.P. Pinasco, N. Saintier,
submitted,
[44] Opinion fitness and convergence to consensus in homogeneous and heterogeneous population.
M. Perez-Llanos, J.P. Pinasco, N. Saintier,
Networks and Heterogeneous Media, 2021, 16(2): 257-281. doi: 10.3934/nhm.2021006
[43] Interacting particles systems with delay and random delay differential equations.
J.P. Pinasco, M. Rodriguez-Cartabia, N. Saintier,
submitted,
[42] Evolutionary game theory in mixed strategies: from microscopic interactions to kinetic equations.
J.P. Pinasco, M. Rodriguez-Cartabia, N. Saintier,
Kinetic and Related Models, 2021, 14(1): 115-148. doi: 10.3934/krm.2020051
[41] Opinion attractiveness and its effect in opinion formation models,
M. Perez-Llanos, J.P. Pinasco, N. Saintier,
[40] A model for a phase transition between political mono-polarization and bi-polarization
N. Saintier, J.P. Pinasco, F. Vazquez,
Chaos, 30, 063146 (2020)
[39] Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures,
Azmy S. Ackleh, N. Saintier,
Discrete and Continuous Dynamical Systems Serie B, 30, 063146 (2020)
[38] Well-posedness for a system of transport and diffusion equations in measure spaces
Azmy S. Ackleh, N. Saintier,
Journal of Mathematical Analysis and Applications, 492 (1), (2020)
[37] Role of voting intention in public opinion polarization
J.P. Pinasco, N. Saintier, F. Vazquez,
Physical Review E, 101, 012101
[36] Nonlinear elliptic equations with measure valued absorption potential
N. Saintier, L. Veron,
to appear in Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. DOI:10.2422/2036-2145.201803_007
[35] Finite Difference Schemes for a Structured Population Model in the Space of Measures,
Azmy S. Ackleh, R. Lyons, N. Saintier,
Mathematical Biosciences and Engineering, 17 (1), 747-775, 2020.
[34] Measure-valued opinion dynamics,
L. Pedraza, J.P. Pinasco, N. Saintier,
M3AS: Mathematical Models and Methods in Applied Sciences, 01(30), 2020.
[33] Sensitivity equations for measure-valued solutions to transport Equations,
Azmy S. Ackleh, N. Saintier, J. Skrzeczkowski,
Mathematical Biosciences and Engineering, 17(2020), 514-537.
[32] Fractional problems in thin domains,
M. C. Pereira, J.D. Rossi, N. Saintier,
Journal of Nonlinear Analysis A, 193 (2020).
[31] The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis-Nirenberg problem,
J. Fernandez Bonder, N. Saintier, A. Silva
Nonlinear Differ. Equ. Appl., 25 (52), 2018.
[30] Opinion formation models with heterogeneous persuasion and zealotry,
M. Perez-Llanos, J.P. Pinasco, N. Saintier, A. Silva
SIAM Journal on Mathematical Analysis, 50(5), 4812-4837, 2018.
[29] A game theoretic model of wealth distribution,
J.P. Pinasco, M. Rodriguez Cartabia, N. Saintier
Dynamic Games and Applications, 8 (4), 2018, 874-890.
[28] Metastability for small random perturbations of a PDE with blow-up,
P. Groisman, S. Saglietti, N. Saintier
Stochastic Processes and Applications, 128 (5), 2018, 1558-1589.
[27] Characterizing Segregation in the Schelling-Voter Model,
I. Caridi, J.P. Pinasco, N. Saintier, P. Schiaffino
Physica A, 487, 2017, 125-142.
[26] Local existence conditions for an equations involving the $p(x)$-Laplacian with critical exponent in $\R^N$,
N. Saintier, A. Silva
Nonlinear Differ. Equ. Appl., 24, 19 (2017).
[25] A Gamma convergence approach to the critical Sobolev embedding in variable exponent spaces,
J. Fernandez Bonder, N. Saintier, A. Silva
Journal of mathematical analysis and applications, 442 (1), 2016, 189-205.
[24] Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces,
I. Drelichman, P. De Napoli, N. Saintier
Studia Mathematica, 233, 2016, 47-65.
[23] The limit as $p\to +\infty$ in the eigenvalue problem for a system of $p$-Laplacians,
D. Bonheure, J.D. Rossi, N. Saintier
Annali di Matematica Pura ed Applicata, 195, 2016,1771-1785.
[22] On the first nontrivial eigenvalue of the $\infty$-Laplacian with Neumann boundary conditions,
J.D. Rossi, N.Saintier
Houston Journal of Mathematics, 42 (2), 2016, 613-635.
[21] An optimal mass transport approach for limits of eigenvalue problems for the fractional p-Laplacian,
L. Del Pezzo, J.D. Rossi, N. Saintier, A. Salort
Advances in Nonlinear Analysis, 4 (3), 2015, 235-249.
[20] Optimal design for parameter estimation in EEG problems in 3D multilayered domain,
H.T. Banks, D. Rubio, N. Saintier, M. I. Troparevsky
Mathematical Biosciences and Engineering, 12 (4), 2015, 739-760.
[19] The limit as $p\to +\infty$ of the first eigenvalue for the $p$-Laplacian with mixed Dirichlet and Robin boundary conditions,
J.D. Rossi, N.Saintier
Nonlinear Analysis Series A: Theory, Methods and Applications, 119, 2015,167-178.
[18] Existence of solution to a critical trace equation with variable exponent,
J. Fernandez Bonder, N. Saintier, A. Silva
Asymptotic Analysis, 93 (1-2), 2015, 161-185.
[17] Shape derivative of the Cheeger constant,
E. Parini, N. Saintier
ESAIM:COCV, 21 (2), 2015, 348-358.
[16] On the Sobolev trace Theorem for variable exponent spaces in the critical range,
J. Fernandez Bonder, N. Saintier, A. Silva
Anali di Matematica Pura ed Aplicata, 193 (6), 2014, 1607-1628.
[15] The dependence of the 1st eigenvalue of the infinity-Laplacian with respect to the domain,
J.C. Navarro, J.D. Rossi, N.Saintier, A. San Antolin
Glasgow Mathematical Journal, 56 (2), 2014, 241-249.
[14] On the Sobolev embedding theorem for variable exponent spaces in the critical range,
J. Fernandez Bonder, N. Saintier, A. Silva
Journal of Differential Equations, 253 (5), 2012, 1604-1620.
[13] Existence of solution to a critical equation with variable exponent,
J. Fernandez Bonder, N. Saintier, A. Silva
Annales Academiae Scientiarum Fennicae, 37, 2012, 579-594.
[12] Sensitivity analysis for the EEG forward problem,
M. I. Troparevsky, D. Rubio, N. Saintier
Frontiers in computational neuroscience, 4, 2010, 1-6.
[11] Best constant in critical Sobolev inequalities of second-order in the presence of symmetries,
N.Saintier
Nonlinear Analysis TMA, 72 (2), 2010, 689-703.
[10] Asymptotic in Sobolev spaces for symmetric Paneitz-type equations on Riemannian manifolds,
N.Saintier
Calculus of Variations and PDE, 35 (3), 2009, 385-407.
[9] Asymptotic of best Sobolev constants on thin manifolds,
N.Saintier
Journal of Differential Equations, 246 (7), 2009, 2876-2890
[8] Estimates of the best Sobolev constant of the embedding of BV(Ω) into L1(∂Ω) and related shape optimization problems,
N.Saintier
Nonlinear Analysis TMA, 69 (2008) 2479-2491.
[7] Blow-up theory for symmetric critical equations involving the p-Laplacian,
N.Saintier
Nonlinear Differential Equations and Applications, 15 (1-2), 2008, 227-245.
[6] A general stochastic target problem with jump diffusion and an application to a hedging problem for large investors,
N.Saintier
Electronic Communications in Probability, 12, 2007, 106-119.
[5] Estimates for the Sobolev trace constant with critical exponent and applications,
J. Fernandez Bonder, N.Saintier
Annali di Matematica Pura ed Aplicata, 187 (4) (2008), 683-704.
[4] Schauder estimates for degenerate elliptic and parabolic equations in Rn with Lipschitz drift,
N.Saintier,
Differential and Integral Equations , 20 (4), (2007), 397-428.
[3] Stability and perturbations of the domain for the first eigenvalue of the 1-laplacian,
N.Saintier and E.Hebey,
Archiv der Mathematik, 86 (4), 2006, 340-351.
[2]Changing sign solutions of a conformally invariant fourth order equation in the Euclidean space,
N.Saintier,
Communications in Analysis and Geometry, 14 (4), (2006), 613-624.
[1] Asymptotic estimates and blow-up theory for critical equations involving the p-laplacian,
N.Saintier,
Calculus of Variations and PDE, 25 (3), (2006), 299-331.