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Received 12 May 2009 first constant for the critical embedding H2(M) < L% (M) for second-order Sobolev spaces

Accepted 6 July 2009 of functions invariant by some subgroup of the isometry group of (M, g). We also prove that
MSC: we can take € = 0 in the corresponding inequality under some geometric assumptions.
35840 As an application we give a sufficient condition for the existence of a smooth positive
35120 symmetric solution to a critical equation with a symmetric Paneitz-Branson-type operator.
35833 A sufficient condition for the existence of a nodal solution to such an equation is also
derived. We eventually prove a multiplicity result for such an equation.
Keywords: © 2009 Elsevier Ltd. All rights reserved.
BiLaplacian

Paneitz-type operator
Invariance under isometries
Best constant

Let (M, g) be a smooth compact Riemannian manifold of dimension n, and G a closed subgroup of the group of isometries
Isomg (M) of (M, g) such that k := minyem dim Gx and 1 := n — k > 5, where Gx denotes the orbit of a point x € M under
the action of G. We say that a function f : M — R is G-invariant if f (gx) = f(x) foranyx € M and g € G. Let H'(M) (resp.
H%(M)) be the Sobolev space of the functions u € L?(M) such that Vu € [*(M) (resp. and V?u € [*(M)), and H.(M) be
the subspace of H'(M) of G-invariant functions, [ = 1, 2. It follows from an argument similar to Hebey-Vaugon [1], who
dealt with H!(M), that H2(M) is continuously embedded into [’(M), p < 2° := 2a/(1 — 4), and that this embedding is
compact when p < 2°. Hence the exponent 2° is critical from the Sobolev viewpoint. Let Ky (1) be the best Sobolev constant
for the embedding of D% (R"), the completion of the space C°(R") of smooth functions with compact support for the norm

lull = || Aull5, into L% (R™), namely

2(Asu)2dx
ko' = inf (e :

ueC (RM)\{0} (f]R" |u|2jdx)2/2
where & denotes the Euclidean metric. The value of Ky (n) is explicitly known (see Edmunds-Fortunato-Janelli [2], Lieb [3],
Lions [4]). When G is reduced to the identity, Djadli-Hebey-Ledoux [5] (see also Hebey [6], Caraffa [7]) proved that Ky (n) is

the best first constant in the Sobolev inequality corresponding to the embedding of H2(M) into % (M) in the sense that for
any € > 0 there exists B, > 0 such that

0, (1)

( / uf? clvg>zu < (Ko(m) + ©) f (Ag)® dvg + B [ul?, @)
M M
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for any u € H*(M), where ||u||?, = [lull + || Vul5. Moreover Ky(n) is the lowest constant such that such an inequality

holds forany € > 0and u € H2(M). As a remark on this inequality, it follows from the Bochner-Lichnerowicz-Weitzenbéck
formula that H*(M) can be equipped with the norm ||u||i12 = || Aqull3 + ||u||,2{1 which is equivalent to the standard one
(see[5]). We will always use this last norm in what follows. Hebey [6] then proved that we can take ¢ = 0in(2) in the sense
that there exists B > 0 such that

2
Wi dv, ) < Ko 24 2
g < Ko(n) (Agu) Vg +B||u||H1 (3)
M M

for any u € H*(M).

The main purpose of this paper is to extend both results to the case of symmetric functions, first by giving the value
of the best first constant for the Sobolev inequality corresponding to the embedding of Hé (M) into 1% (M) for an arbitrary
subgroup of isometries G, and then by proving that the corresponding optimal inequality (3) for G-invariant functions holds
under some additional hypothesis on G.

Since a G-invariant function is also G-invariant, we will always assume in what follows without restriction that G is closed.

Concerning the value of the best first constant, we prove that

Theorem 0.1. Let (M, g) be a smooth compact Riemannian n-manifold and G a closed subgroup of Isom(M, g) such that
n:=n — k > 5 where k = min,¢y dim Gx. Then for any € > 0, there exists B > 0 such that for every u Hé (M),

2
2f Ky(n
(/ |u|2tdvg>2 5( o) +e)/mgu)2dvg+se||u||§, (4)
M An M

where A is the minimum volume of the k-dimensional orbits and Ky (1) is given by (1). Moreover Ky (ﬁ)A*% is the lowest constant
such that such an inequality holds for any € > 0 and any u € H(z; (M).

We now turn our attention to the problem of taking ¢ = 0 in (4). Before stating our assumption, we recall that, given a
closed subgroup G’ of Isomg (M), an orbit G'x is said principal if its stabilizer Sy := {g € G’, gx = x} is minimal up to conjugacy
ie forally € M, S, contains a subgroup conjugate to Sy. In particular, the principal orbits are of maximal dimension (but
the converse is false). The union denoted by £2 of all the principal orbits is then a dense open subset of M, and £2/G’ is a
smooth connected manifold which can be equipped with a Riemannian metric g in such a way that the canonical surjection
IT:x e 2 — x € /G is a Riemannian submersion. We define a metric g belonging to the conformal class of g by

2
g=vi1g, (5)
where v(x) = |[IT~'(X)| = |G'x| denotes the volume of G'x for the metric induced by g. We refer to Bredon [8] for more
details (see also Hebey-Vaugon [1] and Faget [9]).

Let A be the minimum volume of a k-dimensional orbit. We consider the two following sets of assumption (H) and (H')

on the G-orbits of dimension k and minimal volume A:

(H) for each G-orbit Gxg of minimal dimension k and minimal volume A, there exist § > 0 and a closed subgroup G’ of
Isomg (M) such that
(H1) G'xo = Gxo and, for all x € Bgy, (8) := {y € M, dy(y, Gxo) < 8},
(H2) G'xis principal and G'x C Gx,
(H3) Xo is a minimum of v : X € By, (8)/G — |G'x|.
(H') for each G-orbit Gxq of minimal dimension k and minimal volume A, there exist § > 0 and a closed normal subgroup G’ of
G such that (H1) and (H2) of (H) hold,
(H'3) dim Gx > dim Gxy = k, for any X # Xg,
and
(H'4) Xois a critical point of v.

In particular, under (H) or (H'), dimG'x = dim Gxo, = k for all x € B¢y, (6), and we can consider the Riemannian quotient
n-manifold N := Bg,,(6)/G’, where n = n — k. Examples of manifolds and isometries subgroups satisfying these hypotheses
are given in [10].

Our result is the following:

Theorem 0.2. Let (M, g) be a smooth compact Riemannian n-manifold and G a closed subgroup of Isom(M, g) satisfying the
assumption (H) or (H") and n > 5, where k = miny), dim Gx. Then there exists B > 0 such that

2
2 Ko(i)
(/ Iulztdvg) < 04 /(Agu)zdvg + Bllul?, (6)
M An M

forany u € HZ(M).
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As an application of Theorem 0.1, we provide a sufficient condition for the existence of a G-invariant solution for a critical
equation with a symmetric Paneitz-Branson-type operator P, like

Pyu := AZu — divg (b*du) + au = flu®1, (7)

where b is a smooth (2, 0)-tensor field, i.e. b = bijdxi ® dx in a chart, that we suppose symmetric in the sense that bi = b;;,
and G-invariant (i.e. *b = b forany ¢ € G), and a, f € C(M) are G-invariant. We assume that P, is coercive in the sense
that there exists a constant C > 0 such that fM (Psw)udvg > Cllu|ly2 forallu e H(z; (M). A necessary condition for (7) to
admit a solution is then maxy, f > 0, what we assume from now on. We refer to [5,11,12] and references therein for an
introduction to Paneitz-Branson-type operators.

Using Lions’ concentration-compactness principle as in [13] (see also [5] when G is reduced to the identity, or [9,14] for
equations involving the p-Laplacian in the presence of symmetry), and regularity results as developed in [5,12], we have
that if

Zinf 2/28
ueHg (M), uz0 (fo|u|2ﬁdvg)
then (7) has a non-trivial G-invariant solution of class C*”(M). Note that the large inequality always holds (see the proof of
Theorem 0.3). Moreover if b and a are positive real numbers (i.e. b has the form bg, b € (0, +00)) with 0 < a < b?/4 and
f > 0, then this solution can be chosen smooth and positive (see again [5,12] for such an assertion). We are such left with
the problem of finding conditions ensuring (8). Taking the constant function equal to 1 as test-function we obtain that if

iy adug B (Ko(ﬁ)>_]

# 4
(1 Sy, f dug)™” Ai
then (8) holds. We now look for a sufficient local condition for (8) to hold. Since b is G-invariant it defines on the quotient
N, when it exists, a smooth (2, 0)-tensor field b defined by bz (Xz, Yx) = bx(Xx, Yx) where x € H‘l(i)_and Xy, Yy are the
unique vectors at x normal to T,(/7~!(X)) (i.e. horizontal) and such that dI7 (x)Xy = Xz and dIT(x)Yx = Yz. The result is the
following:

fm(Pgu)u dvg - <Ko(ﬁ)>_l |If||;>2/2j, (8)

4
A

Theorem 0.3. Let (M, g) be a smooth compact Riemannian n-manifold, G a closed subgroup of Isom(M, g) such that n =

n —k > 6 where k = minyy dimGx, and b, a, f as above. If there exists a k-dimensional orbit Gxo of volume A with
f (xo) = maxf such that conditions (H1) and (H2) stated above hold and
Agf (% . A TR
(n—6)(—4)[7+2) |f1{||(XO) + 8(f1 — 1)Trzb(x) — 4(7* — 27t — 4)Sz(Xo) — 4(7* — 16) g:(x‘)) <0, (9)

then (8) holds.

For example if M is the product of a compact Riemannian m-manifold (M’, g’) with the standard sphere (S" " (r), h) C
R ™1 of radius r > 0, and G is the product of the identity on M’ with some finite group G C O(n — m + 1) acting
freely on S"~(r), then all the G-orbit are principal, and in particular have same dimension k = 0, and have same cardinal.
We can globally quotient M by G and the canonical submersion I7 : M — N = M/G = M’ x S"™(r)/G is a local
isometry. In particular the scalar curvature of N at a point Xy = (Vo, Zo) € M’ x S""(r)/G is equal to Sy (yo) + Sh(20) =

Se' (Vo) + ("_m)(r”—z_m_]) Hence (9) writes

Aqf (X n—mm-m-—1
nm—6)(n—4)(n+2) |‘|g;”( o) +8(n — DTrgb(xp) < 4(n® —2n — 4) (Sgr(yo) + ( )(r2 )> .
o0
As another example taking now r = 1and G = {Idyy} x O(ry) x O(r1) withr; +r, = n—m+ 1,1, > ry, we see that the
G-orbit of a point Xy = (y9, 0,29) € M’ x R x R™, |zg]| = 1, has minimal dimension k = r; — 1 and minimal volume.

Let G = {Idy} x {Idgr.} x O(ry). Then G’ satisfies H1 and H2,and v : X € N — Vol(G'x) has a maximum at X, so that
Azv(Xp) > 0. Moreover Dellinger [15, prop. 3.1] showed that Sz (Xo) > Sy (yo) + r2(r2 — 1). Hence if
Agf (X0)

If lloo

then (9) holds. Other examples can be found in [15].
We denote by By(g) the infimum of the B such that (6) holds for any u € Hé (M). Then under the assumptions of
Theorem 0.2,

2

# 2f Ko(n)

(f Juf? dvg> <= / (Agu)*dvg + Bo(®)l|ull?
M An M

foranyu e Hé (M). This inequality is optimal with respect to both constants. Using on one hand the constant function equal
to one, and on the other hand the u, used in the proof of Theorem 0.3, we obtain that

Bo(g) > max{Voly (M) ™7, Bo(2)excr -

(1 —6)(1 —4) (7 +2) + 8(71 — 1)Trgh(Xo) < 4(* — 20t — 4)(Sy (o) + 1212 — 1))
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with

Ko() n—4 n* —2n—
BO(g)extr = (—

4
oV 7% ma S¢(Fo) + (i + 4
ah a1 "\ TRog T

where the maximum is taken over all the points xy such that Gx, satisfies assumption or (H) or (H').

As another application we prove the following multiplicity result for the critical equation (7) whose proof follows the
line of [16]. Indeed the proof there deals with the case where (M, g) is the standard unit sphere and the coefficients of (7)
are constants.

Az v(Xo) )
A

Theorem 0.4. If the coefficients b, a, and f of Eq. (7) are G-invariant for some subgroup G C Isomg(M) such that k =
Mingey dimGx > 1, andif b > 0,a > 0, f > 0, then (7) has an infinite number of distinct solutions (u,,) such that

T |t 2 dvg — +o0.

We eventually turn to the problem of finding a nodal G-invariant solution for Eq. (7). Following Hebey and Vaugon [17],
who dealt with this question for critical equations involving the Laplacian, we suppose that there exists T € Isom, (M) such
that 72 = Id and Gt = tG. We say that a function u is T-antisymmetric if (tu)(x) := u(rx) = —u(x). We denote by (G, t)
the subgroup generated by T and G, and by H(z; (M) the subspace of Hé (M) of T-antisymmetric functions. We assume that
the coefficients b, a, f of (7) are (G, t)-invariant, and that the set {x € M, tx = x} divides M in two smooth G-invariant
submanifolds M, and M_ with M_ = t(M,). In particular the minimum volume of a k-dimensional (G, t)-orbit is 2A.

Theorem 0.5. If

-1
. Sy (Pewudu Ko () oy
. inf M < ol L (10)
ueH{; - (M\{0},u=0in My (fo|u|2thg) (2A) 7

then (7) has a t-antisymmetric G-invariant solution u € C*" (M) which is nonnegative in M. and nonpositive in M_. Moreover
if b, a are positive real numbers with0 < a < b?>/4andf > 0, thenu > 0in M, and u < 0in M_. In particular u is a nodal
solution of (7). Eventually, under the same hypothesis on G as in Theorem 0.3, we have that if (9) holds then (10) holds.

Except the last two, these results are analogous for the second-order Sobolev spaces of Faget’s results [9,10] which
concerns first-order Sobolev spaces. Our proof will follow the line of Faget’s proof combined with the result of [13] to deal
with the difficulties specific to the fourth order.

1. Proof of Theorem 0.1

We will first prove a local version of the inequality (4) following the lines of Faget [9] and then deduce (4) using a standard

gluing argument. The optimality of Ko(ﬁ)A*% will be proved in the last step.
We first prove that

Step 1.1. Let x € M such that m := dimGx < n. For any € > 0, there exists 5§ > 0 and C. > 0 such that (4) holds for every
G-invariant function u € C°(Bgx(8)), where By (8) = {y € M, dy(y, Gx) < &}, dg being the distance induced by g.

Proof. According to [9, lemma 2], there exists a normal chart (£2, ¥) around x such that ¥ (2) = U; x Uy C R™ x R"™™,
¥ (Gx N £2) C Uy, u o ¢! depends only on the U, variable and 1gij — &l Fl-}| < eforevery1 <1i,j,1 < n, where (g;) and
Fi]l. denote respectively the metric g and the associated Christoffel symbols read in the chart (£2, ¥). Then (¢ (2), Yy oo~ 1)
is a chart around o (x) that is isometric to (£2, ). Since Gx is compact, it can be covered by a finite number of such charts
(0k(£2), ¥ 00, "), 1 <k <L Welet 2, = oy(22) and Y, = ¥ o 0, . Let B € CX(Uy), B > 0, that we see as a function

defined on Uy x U, and ay = (Z]'.zl Boy) "B o 1 <k <IThen () is a partition of unity relative to the covering
{2k, 1 <k < I} such that o Y, ! only depends on the U;-variable. We will thus consider as well ¢ as a function defined

on U; only. We choose § > 0 such that B,(§) C £2. Then Bgy(8) C Uizl k.
Let v € C2°(Bgx(8)) be G-invariant. Then

] !
/ vdyg, = Z/ aiv dug =Z/(akoak)vdvg
M k=1 v 2k k=17 $2
]

= Z/ (a0 Y D(w o) /det(gy) dxdy
Uy xUy

k=1

1
= (1+o(e))2/ akowk‘]dx/ voy ldy.
k=1 /U1 U

On the other hand, if o, denotes the metric induced by g on Gx, we have
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! !
|Gx| = E / oy dvg, = E / ak o ok dvg,
k=1 v GxN$2k k=1 J GxN$2

1
= (1—{-0(6))2/ akowk_]dx.
Ui

k=1

Hence
/ vdvg = (1+ O(e))lGx|/ voy ldy.
M Uz

In particular, if u € CZ°(Bgx(8)) is G-invariant we get

f b
/ [ul* dvg = (14 0(€))[Gx| | |uz]* dy, (11)
M Uz

and
/ (Agw)* dvg = (1+0(€)|Gx| | (Aguz)* dy,
M Uz

where u; = uo ¢~ !and U, C R"™. Assume that m = k. Using (1) we obtain

(/ jul® dvg)zj =< (1+O(6))|GX|2%K0('_1) (Agup)® dy
M

Uy
2 _
= (14 0(€))|Gx|Z ~'Ko(70) f (Agu)? dug.
M
Since Agu = —g¥(d;u — I}jou) = Azu+ 0(e)(|Vulg + [VZulg), we have
/M(Agu)z dvg = (14 0(¢)) /M(Agu)2 dvg + 0(e) [|ul|%;.

Hence
2

( / ul” dvg)zu < (14 0(e)IGx|# Ko () f (Agu)? dvg + 0(e) [ull?,
M M

< (14 0(e)Ko(MA7 / (Agu)?* dvg + 0(€) ulZ: (12)
M

where A is the minimum volume of the k-dimensional orbits. Eventually, since the embedding of H?(M) into H! (M) is
compact, it is easily seen that for every § > 0, there exists Cs > 0 such that

IVull3 < SIAIS + Gsllull3 (13)
forany u € H?(M). We can now deduce the claim in the case m = k from this inequality and (12).
Now if m > k, then 2 = 20 < 201 and thus the embedding H(Up) < 1% (U,) is compact. Given i > 0, it easily

follows that there exists B, such that for every v € H 2(Uy),

2
# of
( v]? dy) <n [ (Azv)*dy+Byllvl?,.
Uy Uy

In particular, (11) becomes

2

f P 2 ,
(/ Jul? dvg) < (1+0(6))|GXI2”77/ (Ag2)* dy + B a7
M

Uz

and then as before
2

2t d 24 %*] 2d / 2
[ul” dvg ) = (1 +0()IGx[#* n | (Agu)”dvg + B, [lully:.
M M

We now take a n > 0 small enough and use (13) to deduce the claim. O

We now prove the global inequality by using a partition of unity:
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Step 1.2. For any € > O, there exists C. > 0 such that (4) holds for every u € Hé(M).

Proof. Since the space of smooth G-invariant functions CZ°(M) is dense in Hé (M), it suffices to prove the claim for a function
u € CZ°(M). Given € we choose § as in the previous step. As M is compact, we can extract from the covering {B¢,(8), x € M}
a finite covering {Bg, (§), 1 < i < I}. Let (n;) be a partition of unity relative to this covering. According to the previous step,

we can write

I I . 2/28
‘Zumu)z < ( | v dvg)
i=1 2)1/2 i=1 M

Ko (R 1 1
< o) +e)2 / (Ag(Vmw) dvg + B, > ll/miull3
i=1 /M i=1

Af

2
l[ull:

An

Ko(i) .
- ( o® | e> > [ au(amiau, +5jui
’ i=1 M
Using the inequality (x + y)? < (1 + €)x*> + C.y*> we have
I I
Z/ (Ag(miw))*dyg, = Z/ (VNiAgu + uldg /i — 2(Vu, V/0i)¢) dvg
i=1 /M i=1 JM

= (1+e) / (Agu)*dvg + Cellullf:.
M

We thus get

Ko (i)
Il 5( e +0<e>> /M (Agw)*dvg + Celullfs,

from which we deduce the claim using (13). O
It remains to prove that Ky (ﬁ)A_% is the optimal constant in the inequality (4):
Step 1.3. Ko(i)A™# is optimal,
Proof. Clearly, it suffices to prove that for any € > 0 and any C > 0,
inf fM(Agu)zdvg + Cllull3
ueH2 (M) (fM |u|2ndvg)2/2u

Let § > 0 be small as in the first step and n € C*°([0, 4+00), [0, 1]) with compact support in [0, 2§) be such thatn = 1in
[0, 8]. Then the functions u. € CZ°(R") defined by

ndlix1)
(2 + |x|2)%4

< AiKo(R)~! + e.

i, (x) = x € R

satisfy
_ Jan(Aglie)*dx + Clliic 13
h_% _ 2/28
‘ (fRﬁ ugudx)

We refer for example to Esposito-Robert [12] for this result.
Let Gxg be a k-dimensional orbit of minimum volume A (such an orbit exists according to Faget [10, lemma 4]) and
Uue € C5(Bgx(26)) be defined by

n(dg(x, Gxo))

= Ko(n)~". (14)

U (x) = —. (15)
(€% + dg(x, Gxg)?) ?
With similar computations (and the same notations) as in the first step, we can prove that
Agte)?dvg + Cllucl|? (Ag (ue o Y=1)? dx + Clluc o ¥ 'I3
Ju(Agte)?dve + Clucly _ 4 o (A (e ‘ : (6)

2/28 2/28
v dve) (foy lae 09117 )

where U, C R™. Since u, o ! = ii,, we deduce the claim by plugging (14) into (16). O
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2. Proof of Theorem 0.2

We proceed by contradiction and assume that (6) does not hold. In particular for any « > 0,

Aoy = inf

5 (17)
ueH2(M),uz0 (fM |u|21dvg) o

i (A5 +alVul? + 1) d (,(0@)1
< 2 .
An

Since (8) holds, A, is attained by some positive u, € CZ°(M) normalized by fM uit dv; = 1 which satisfies the equation

2% 2 o’ 281
(Ag + 5) Uy = Aglly + 0 Aglly + Zud =AU, . (Eq)

The proof of Theorem 0.2 will rely on the study of the asymptotic behaviour of the u,’s. We will show that they
concentrate around a k-dimensional orbit Gxy of minimum volume A. Passing to the quotient manifold B¢y, (8)/G’ using
assumption (H) or (H'), we will deduce a contradiction.

Multiplying (E,) by u, and integrating over M, we see that (u,) is bounded in H>(M) so that, up to a subsequence, u, — 0
weakly in H2(M) and strongly in H' (M). Using then the inequality (4) for some € > 0, we get

2
0[2 1 2f
/ (Agia)? dvg + Va2 + % a2 = 2 / e % g
M 4 M

Ky(n
< xa( o(@) +e> / (Aglta)2dvg + Cog 112, (18)
An M

Since 1, — 0 in H'(M), liminf,_, ;o f;,(Agtiy)* dv, > 0 (otherwise, using (4), we would get a contradiction with the
normalization condition) and e is arbitrary, we get liminf,_, ;o Ao > Ko(i1)~'A*™. Hence, with (17), we obtain

Ko@)\ '
lim Aa=< 0(4)) .
a—>—+00 A7

We then deduce from (18) that

2
. 2, @ 2
agTooaHVllaﬂz + Z||Ua||2 =0. (19)

In view of (17) and (19), we easily check that the same argument as the one used in [13] gives the existence of a k-
dimensional orbit Gx such that

2t
ua dvg — 6Gx0

i)\ ! (20)
(Agig)? dug — (KO @ ) Sexg
Aii
weakly in the sense of measure, where 8¢y, is the Dirac measure on Gx, defined by defined by 8¢y, (¢) = f ¢ $(oxo) dm(o) for
¢ € C(M), m being the Haar measure of G normalized by m(G) = 1. Let x, € M be such that u(xy) = ||uy||cc — +00.Then
the x, converge to some point of Gxg, say xo to simplify the notation. For future use, let us also note that a slight adaptation
of [13] yields the pointwise inequality

dg (Gxy, Gx)ﬁziua(x) <C (21)

which holds for any x € M and any «, the constant C being independent of «.

To prove that |Gxg| = A, we proceed by contradiction assuming that |Gxg| > A. Then, according to Faget [10, lemma 3],
|Gx| > B > Aforevery pointx € M inaneighborhood By, (26) of Gxo. We fix a smooth cut-off function 7 : [0, +00) — [0, 1]
with compact support in [0, 2] and such that 7 = 1in [0, 1), and let n = 7(dg(., X0)/3) € C 5 (Bay,(26)). Multiplying (E,)
by n?u, and integrating by parts, we get, using (19), that

/ Agliq Ag(n%11g) dvg + 0(1) = Aa/(nuafu;” dv,
M M

2 282
)\a ” Nugy ”2:1 ”uot ”21:

2
Aallnue 5, -

IA

IA
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Independently, by the Holder inequality and in view of (19), we have
/MAguaAg(nzua) dv, = ‘/1;1 {772(Agu0,)2 + U Agliy Ag(n®) — 244U, (Viy, Vr)z)g} dvg + o(1)
= /M n*(Agily)® dvg + 0(1)

= / (Ag(nug))? dug + 0(1).
M
Concerning the second equality just note that
f Agtiy (Vg Vi?)g dvg = / (Vig, V(Viy, V1?)g), dvg
M M
= / Ville V' Vit Vin? dug + / Vil Vitle V'VIn? duy,
M M
- — / Villy Vit Vi Vin? dug — / V;Vitly Viug Vn? dvg + O(l|ug|I1)
M M
so that [\, V2u, (Vu,, Vn?) dvy = O(||ug ”1211) and then
waAw%v%km@=mwA;»
M
Hence
/ (Ag(Mitg))? dvg + 0(1) < Aqllnitg |15
M
According to Theorem 0.1 and (17), we can write that, given € > 0, there exists C. > 0 such that for any «,

1<o(r‘z>)‘1 (KO(ﬁ)
Al B3

/ (Ag(nua))z dvg +o0(1) < ( + 6) / (Ag(nuot))zdvg + Ceo(1),
M M
ie.
(1 - (AB_l)g) / (Ag(ug))? dvg < 0(1) + 0(€) + Cco(1).
M

Since B > A and € > 0 is arbitrary, we deduce that

lim (Aguy)?dv, < lim / (Ag(nuy))? dvg = 0
+oo Juy

a—>—+00 Bexy (8) T a—>
which contradicts (20).
2.1. Proof under assumption (H)
Since Gxg is a k-dimensional orbit of minimum volume A, we can consider, according to assumption (H), the quotient

n-manifold N = Bgy,(38)/G’, where the positive number § > 0 and the closed subgroup G’ of Isom, (M) are given by (H).
Using (H3) and (3), recalling the definition (5) of the metric g, we have

2
2 2
( / ()% dvg) — ( / (i) > dvg>2
Boxg (36) N

2 2

f i
N N
Ko(n) . .
S Zﬂ /(Ag(nua))z dvg + C”nuc‘(”IZ.Il(N)v (22)
n N

where, as before, n = 7(dg (., X0)/8) € Cg%(BGXO (28)), and n € C°(Bg,(29)) is defined by the relation o IT = n, IT being
the canonical surjection from By, (38) into N. According to [11],
2 n—2__a-

2 6
Agll = V74 Agil + = 574 (ViL, Vi),

=1



for any 1 € C?(N). Hence
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/(Ag(flftm))2 dvg = /(Ag(ﬁfla))zf) dvg + 1L + 1
N N

= / (Ag(nua))z dUg +L+1
BGXo(B(S)

with

—2)\> _ e __
| = (1’174) /N(V(ﬁua),vU)g 0% dg =o(/N|V(nua)|g dvg>,

- __ . __ii=2
= 4/A§(nua)(v(77ua), Vv)gv n—4 dvg
N

-2 _ _ -
- 4/Ag(ﬁua)(V(nua),Vv)g dvg.
N

n—2
S L /(V(ﬁﬁa), V(V(ijuy), Vv)g)g dug
n—4 Jy

-2
. / V2 (i) (V (Riky), V) dvg + 0 < / IV(ﬁﬂa)|2dvg>.

/ V2 (it ) (V (7ily), VD) dvg = / V'V (i1l ) Vj(illy ) Viv dvg
N N

= _/ vf(ﬁao,)vivj(f;aa)wdvg-—/vf(ﬁaa)vj(ﬁau)viviadvg
N N

= _/ V2 (g ) (V (il ), V) dvg + O (/ IV (i) |2 dv§>.
N N

/ V2 (ijile)(V (i), VD) dvg = O ( f IV (i) 2 dvg—>,
N N

and
n—2
L = -2
= -2
n —
n
= -2
We have
Hence
and then

L=0 (/ IV G dvg> -
N

Inserting (23), (24), (25) into (22) we obtain

IA

5
2
#
/ uZ dg
Bgxg (8)

We have

/ (Ag(’?ucx))z dUg
BCXO (39)

2

1 ¥
/ (nug)? dug
Boxg (39)

Ko(n)
At by )
Ko(n)

4
Ai JBe, (o)

(Ag(ite))? dvg + ClITtle 151,

(Ag(ug))® dvg + 0 (lua i) -

2
= / (T]Agua + uaAgn - z(vuou vn)g) dvg
cho(35)

:/ nz(AgUa)z dvg+0(||ua||iﬂ)—|—/ nuaAguaAgndvg—Z/ NAgly (Vig, V)g dug
M M M

= / (Aguoz)z dUg +O(||u0t||il) +/ (Vug, V(nAgnuot))g dvg _/ Agua(vuou VUZ)g dvg'
M M M

697

(24)

(25)

(26)
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We easily see that the second integral is O (||uo, “1241>' Independently, in the same way as we treat I, above, we also get that

the last integral is O <||uo, ||z11). Hence

f (g (n1g))? dug < / (Agte)? dug + 0 (g 12:) -
Bax (36) M

Now, using (E,) and (17), we obtain

Ko (1) Ko (1)
7 (Ag(Mue))? dvg < 1 — —~allugllf + 0 (llualif) - (28)
A JBgy (39) An

Plugging (28) into (26) we get that for « large,

2
_ _ 2t 2f
Ko(R) _ 1 (fBGXO(S) Uy dvg)

Al o lua 2,

+ 0(1).

We claim that the quotient of the right-hand side is bounded, from which we get a contradiction. Since 2/2* < 1 and
2t " .
fBGxo @ Ua dvg < 1, we first write that

2

’ 2
1-— / uZ du,
Bexg (8)

IA

#
/ uZ du,
M\Bgx, (8)

< sup uinzf u? dv,. (29)
M\BGx, (8) M
We now prove that
U = 0 in G (M \ Bgx, (8)), (30)
which in particular implies our claim. Letting v, = (Ag + %) u, € C*>"(M), we can rewrite (E,) as (Ag + %) Vg =

Aaui**l > 0. Multiplying this inequality by v, := max{—v,, 0}, we get that v, > 0.Hence Agv, < Aaui**l. It follows from
(21) that the sequence (u, ) is bounded in C,%C (M \ Bgy, (8)). In particular the right-member of the last inequality is bounded
in some LY(M) with ¢ > 2* (in fact in any LY(M)). The convergence in (30) then follows from the De Giorgi-Nash-Moser
iteration scheme (see e.g. [18]) and the convergence of the u,’s to 0 in L?>(M) (see (19)). As said above, this proves the claim
and ends the proof of the theorem under assumption (H).

2.2. Proof under assumption (H')

According to (3),

2
__ ot 2 _ - __
( / (i)’ dvg) < Ko (i) / (Ag (7)) dvg + O (Wil 1) - (31)
N N
Since we assume that X, is a critical point of v, with v(xg) = A, we have |v(x) — A| = 0(d;z (%, X0)?), which can be written as
AT'9(R) — Cdz (X, X0)? < 1 < A"'0(%) + Cdz (X, X0)%.

2
Since fM(nuD,)zn dv; — 1> 0and 2/2% < 1,sothat (1 —x)2 > 1—xforall0 < x < 1, we have for § small enough that

2

, 2
b5 2
( / (la)* dvg->2 > (A‘ / () dvg — C / (ila)* dg (%, Xo)> dv;)
N Bxy (38) N
2 2
-5 2t # S IRV ) e
=A 2 / u;, dvg 1—C/(nuo,) dz (X, Xo)~ dvg
BGXo((S) N

2
N PE
> A% / udug ) — C/(ﬁﬂa)zndg(’?’ X0)? dvg. (32)
BGXO(a) N

)



N. Saintier / Nonlinear Analysis 72 (2010) 689-703 699

On the other hand, in view of (28) and doing as in (27),

Ko() /(Ag-(ﬁﬂa))2 dvg < Ko(ﬁ)Alf (Ag(Mita))? dug + C/(Ag(ﬁﬁa))zdg-(i, Xo)® dvg
N BGxy (36) N

2
<A F 4 (0(1) — Ko(MA ') |ug 1 —l—C/(Agﬁa)Zﬁng()_(, %0)? dug. (33)
N

Inserting (32) and (33) into (31) yields

o 2 1= <fBGX ) ug{ﬁ dvg)2
Ko(A e < 0(1) + A" 7 0

RIS

ot o _ _
CfN(mla)Z dz (%, X0)? dvg CfN(Ag’Ua)zdg(X, Xo)? dvg
It 1124 It 1124 llue 112,

In view of (29) and (30), the first integral in the right-member is bounded. Independently, writing dz (X, Xo)?> < 2dg(X, X,) +
2d; (Xo, X, )?, we obtain

. oo = =
Ke(RA-'er < O(T) + CfN n2uZ dg (%, Xy)? dug Sy 1?2 dg (Xo, Xo)* dug
B llue 112, llue 112,
c Sy (Agiie)* 7 dg (X, X, )* dvg c Sy (Agiia)* 77 dz (Xo, Xo)* dug (34)
llua 12, It 1174

To deal with the first integral, we write using (21) that

oot R N

n°u dg (%, X)* = (dg (%, X,)Ug *) (e (7dg (X, Xe)Ug *)ilg *
n 2

|

< C(7ily) (7dg (X, %o UG )il

and apply the Holder inequality with % + % + % = 1to get

1
Y __ - P 2
/ g, dg (%, X)* dvg < C||7jilg |2+ e |1 ) * ( / 72 dg (X, Xy)? dvg)
N N

oot 2
< 0<||ua||m)< / 71 dg (R, %) dvg) :
N

where 2* = 2(f1)/(n — 2), and we used the fact the embedding H'(N) «— e (N) is continuous. It follows that the first
integral in (34) is bounded. We treat the second one in a similar way using, instead of (21), the inequality

_ - -  n-4
||Ua||ood§(Xa,Xo) 2 SC

proved in [13] following Faget’s idea.
Concerning the third integral, we put u, nzdg (Gx,, Gx)? as a test-function in (E,) and pass to the quotient to get

i} o i o [, _ o
/(Agua)zﬁzdg(x, Xy)?0 dvg = )\a/ 127, 0 dvg — T / 27,0 dvg — a/(Vua, V(UiyTy))g0 dvg
N N N N
— / I:laAgl_laAgl_’al_) dUg + 2/ Agﬂa(Vﬁa, Vfa)gl_) dvg,
N N
where we let 7, (X) = r";zdg (X, X,)2. The first integral on the right-hand side is exactly the first one in (34) that we just
bounded by O(]|u, ||i1 ). Independently, integrating by parts in the fourth integral and then applying the Hélder inequality,
we get
/flaAgflaAgfaD dvg = / |Vﬁa|§Agl_‘al_) dvg —|—/ fla(Vl_la, V(Agfaﬁ))g dvg
N N N

= O(llual?y).
Eventually, integrating by parts in the last integral we get

/Ag-aa(vaa,wa)ga dv; = / V21U, (Vilg, Viy)g0 dvg+/(vaa,va)g-(vaa,wa)g dvz
N N N
—f—/VzFa(Vﬁa,Vﬁa)gﬁdvg
N

= / V2l (Vilg, Vig)z0 dvg + 0|t [171)-
N
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Integrating again by parts in the last integral we obtain
/ V2, (Vilg, Viy)z0 dvg = — f V2, (Vilg, V)0 dvg — / V27 (Vilg, Vilg)z0 dvg
N N N

- /(Vﬁa, V)g(Vily, Viy)g dvg
N

- / V2iiy (Vilg, Via)z0 dvg + O(|ugll?1).
N
so that
/N Aglly (Vily, V2)z0 dvg = O(l|ug|?+).
Hence
/N(Agaa)Zﬁng(x, %) 0 dvg < —a /N o (Vilg, V(77 dg (%, %2)*))g0 dvg + O(llug lI51)-
As d;z (X, X,) < 66 for any X € N and any «, we have

/ i (Vi V(72dg (%, %)) dvg = / e (Vilg, Vi)gd (R, %)’ dug
N N

+2 / dg (X, Xo ) U (Vg Vdg (x, )_‘a))gﬁzl_) dvg
N
= 80([lug21),
so that
/N (Agila) 27y (%, %) 2T dug < (@8 + 1DO([g I2,).

We deal in a similar way with the fourth integral.
Choosing é small enough we can thus rewrite (34) as o« < 0O(1) which is the desired contradiction.

3. Proof of Theorem 0.3

We take as test-functions to estimate the left-hand side in (8) the functions u, defined by (15). Since we assumed (H1)
and (H2) we can consider the quotient manifold N = Bg,,/G'. We also let

& ifn>9
0. = {|lne| ifa=38
1 ifi=6,7.

According to [12], we have that
/ au? dvg = / auZv dvg = 0(6,)
M N
whenn > 6,

/bj(dug,due)dvg :/Eﬁ(dﬂe,dﬁg)ﬁdvg
M N

A - DA - Do o
S G—6 O B (Ro) Trgh(%o)e® ™ if i > 7

- _ 4 2 - _
wﬁ(io)ﬁgb()}o)ﬂnd +0(1) iffi > 6,

and, forn > 5,

/ fuZ dvg = / ofu? dug
M N

_ —”(XO)fz,(ax")wﬁe*ﬁ - 'e(rl—fﬁz)z—ﬁ (Sz(Ro)D(R0)f (Ro) + 345 (3) (Ro))e> ™ + O(e* ™)

with
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Az (0f)(X0) = f (%) Az (Xo) + 1(Xo) (Xo) Azf (Xo)
= f(x0) Az (Xo) + AAgf (Xo)

since Agf (xo) = Ag—f (x0) — % = Ag-f (Xo) as it follows by integrating by parts and then passing to the quotient in

f w Agf ¢ dvg where ¢ is a smooth G-invariant function with compact support in a small neighborhood of Gxo.
It remains to estimate fM(Ague)2 dvg. Mimicking [12] we get

e nmn—4)m —dHoq 4 -
/(Ague)2 dv, = /(Agus)zv dv; = X L Aet"
M N
==2 | g% = = 2
6_n ( (A7 +4n — 20)(n — ) w; _ n—4°wn_1 . _ _ _
= AS;z (X — Az v(Xp) 0@.), n>17
e ( 6(7l — 6)27 T V)l J 400, n =
2(n — 4)20)ﬁ—1 - — -
[In €| —————(ASz(Xo) + Azv(Xp)) +o(|In€|), n =6,
where | = Ooo Wr(ll(j:—jzz)ff)z ds. Since
a+1 2B—a—1
/°° s¢ r (%) r ( > )
ds =
o (1+s2)F 2I°(B)
when 28 — > 1,and 2I'(7) = 2"7~"2I'(7/2)T" (%) (a particular case of the duplication formula), we have
A +4) o
2 —6) w1
Hence
Ai(i — 4)(2 — )on .,
M 2"
6-n (M —dwr (1_ — = 1 -2 == =
—— | =n(n 4n — 20)AS; (X -(n—4)n Az v(X 06.), n=>7
(i — 6)2" (6( + ) g(0)+2( ) (1 + 4) gU(O) + 0(6:) =
2( — 4)*wi—q

|IDG|T(AS§(}_<Q) + Az0(X)) + o(|Ine|), n=6.
We eventually obtain
JuPeuucdvy (Ko@) \ ™'
5 = Z Il
(S fuZ’ dug)?

An

e+ 0(62)> iftn > 7,
Az V(Xo)
A

<1 * 2n(n? — 4)(n — 6)
X 5 _
2"wi_1(n —4) - _

<l m (Trgb(xo) — ZSg(Xo) -2

where F is the left-hand side in (9). This proves the theorem.
As a final remark we note that if (8) holds then the infimum on the right-hand side of (8) is attained by some nonnegative
ue Hé (M) which is a solution of (7) in the sense that

+ o(l)) 62|lne|> , ifii=86,

/ (AguAge + b (du, dp)g + aug) dv, = f frZ 1 dug (35)
M M
for any ¢ € H2(M). Now if ¢ € H*(M), then the function ¢¢ defined by
¢c(x) = /¢(0(X)) dm(o),
G

where m is the Haar measure of G normalized by m(G) = 1, belongs to Hé (M). Writing (35) with ¢¢ as test-function, we get
that (35) holds with ¢. Indeed

/Aguqubdeg =// Agu(x) Agp (0 (x)) dvgdm(o)
M GJM

= // Agu(o ™ (%)) Agd (x) dugdm(o)
GJIM
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= m(G) / AguAg dug
M

= / AguAgp dug.
M
The other terms are treated similarly. We thus get that u is a solution of (7) in H*(M).

4. Proof of Theorem 0.4
The proof follows closely the line of [16]. We briefly sketch it for the reader’s convenience and refer to [16] for the
details. Sincea > 0,b > 0, [|u|* == [, (Psw)udyg = [,,(Agw)* 4 b|Vul; + au® dvg is a norm in H*(M). Moreover as f > 0,

||u||§§ = fo|u|zt dv, is a norm on 12 (M). We let ] be the functional associated to (7) given by
1 1 t
Jw = = ul® - —/f|U|2 dvg.
2 27 Jy €

As k = minyy dimGx > 1 by hypothesis, the embedding of H(Z; (M) into I (M) is compact, so that J restricted to
Hé (M) satisfies the Palais-Smale condition. We can then apply Theorem 2.13 of Ambrosetti and Rabinowitz [19] (the other
hypotheses of this theorem are easily seen to be satisfied by J) to get the existence of an increasing sequence (o), of critical

values for J restricted to Hé (M) given by a minimax formulation. Using once again the compactness of Hé (M) into 1% (M),
we can prove that lim,_, ;o o, = +00. Let u,, be a critical point of | restricted to H(z; (M) corresponding to «;,. Then the u,

are distinct, fM |um|2j dvg — 400, and the uy,’s are solutions of (7) in the sense that (35) holds for any ¢ € Hé(M). As in
the proof of Theorem 0.3, we get that (35) holds indeed for any ¢ € H2(M). This ends the proof of the theorem.

5. Proof of Theorem 0.5

The first part of the theorem can be proved using Lions’ concentration-compactness principle as before. Now to prove
that u is positive (resp. negative) in M. (resp. M_) we write, according to the hypothesis made on b, q, f, that

P = (Ag + B1)(Ag + Bo)u = flul* 2u inM

for some B1, B, > 0. We let v = (Ag + By)u. Letx € S; and x, € M, such that x, — x. Then, since T € Isom,(M) and
2
T =1d,

dg (TXn, X) = dg(xp, TX) = dg (X, X) — 0.
As a consequence u(x) = 0 for any x € S;. Moreover since u is T-antisymmetric,
(Agu) oT = Ag(UoT) = —Aqu,
so that
Agu(x) = HETOO(AgU)(TXn) =- HETOO Agu(xy) = —Agu(x),
and thus Agu = 0 on S;. We thus get that v = 0 on S;. Hence
(Ag + Bov =fluF2u=0 inM,,
v=0 onS; =dM,,
which implies that v > 0 in M. Then from

(Ag+Bu=v>0 inMg,
u=0 onS; =dM,,
we get that u > 0 in M. Arguing in the same way in M_, we obtain thatu < 0in M_.

Let Gxo be a k-dimensional orbit of minimum volume A. We can assume without loss of generality that x € M,. Then
Gxo C M,. Consider ue € C;(Bex(29)) be defined by (15) with 2§ less than the injectivity radius of M and less than

dy (Gxo, S;). We T-antisymmetrize u. by considering u, € Hé’t(M) defined by

n = e in My
7 |—u.ot inM_.

Then in view of the computations made before,
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fM(Pgue)ue dvg fM+ (Pgue)ue dvg + fM7 (Pg(ue 017))(Ue 0 T) dvg

2

2
(Jog f 1tz e dvg) (o Pl dug + fi,_flue o 7 dug) *
4 f (Pgue)ue dug

( fuZ dvg> 5

F 2 2 e
-1 (1 * 2n(2 — 4)(n — 6)6 +o(e )) ifn>7,
_ KO(FI) 72/21: M o .
\ewi Vil T i — 4 (TrgA(xw 25 (%o)

Azv(X
_ 2# n o(l)) €2|ln€|> . ifi =6,
where F is the left-hand side in (9). This proves the theorem.

References

[1] E.Hebey, M. Vaugon, Sobolev spaces in the presence of symmetries, ]. Math. Pures Appl. 76 (10) (1997) 859-881.
[2] D.E. Edmunds, F. Fortunato, E. Janelli, Critical exponents, critical dimensions, and the biharmonic operator, Arch. Rational. Mech. Anal. 112 (1990)
269-289.
[3] E.H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. 118 (2) (1983) 349-374.
[4] P.L. Lions, The concentration-compactness principle in the calculus of variations, the limit case, parts 1 and 2, Rev. Mat. Iberoamericana 1 (1985)
145-201. 45-121.
[5] Z. Dajdli, E. Hebey, M. Ledoux, Paneitz type operators and applications, Duke Math. J. 104 (2000) 129-169.
[6] E.Hebey, Sharp Sobolev inequalities of second order, ]. Geom. Anal. 13 (1) (2003) 145-162.
[7] D. Caraffa, Equations elliptiques du quatriéme ordre avec exposants critiques sur les variétés riemanniennes compactes, J. Math. Pure Appl. 80 (9)
(2001) 941-960.
[8] G.E.Bredon, Introduction to Compact Transformation Groups, in: Pure and Applied Mathematics, vol. 46, Academic Press, 1972.
[9] Z.Faget, Best constant in Sobolev inequalities on Riemannian manifolds in the presence of symmetries, Potential Anal. 17 (2) (2002) 105-124.
[10] Z.Faget, Optimal constants in critical Sobolev inequalities on Riemannian manifolds in the presence of symmetries, Ann. Global Anal. Geom. 24 (2003)
161-200.
[11] E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, in: Courant Lecture Notes in Mathematics, vol. 5, 1999.
[12] P. Esposito, F. Robert, Mountain pass critical points for Paneitz-Branson operators, Calc. Var. 15 (2002) 493-517.
[13] N. Saintier, Asymptotic in Sobolev spaces for symmetric Paneitz-type equations on Riemannian manifolds, Calc. Var. Partial Differential Equations 35
(3) (2009) 385-407.
[14] N. Saintier, Blow-up theory for symmetric critical equations involving the p-Laplacian, NoDEA 15 (1-2) (2008) 227-245.
[15] M. Dellinger, Multiplicity for critical and overcritical equations, Adv. Nonlinear Stud. 8 (2008) 303-326.
[16] N Saintier, Changing sign solutions of a conformally invariant fourth order equation in the Euclidean space, Commun. Anal. Geom. 14 (4) (2006)
613-624.
[17] E. Hebey, M. Vaugon, Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth, J. Funct. Anal. 119
(1994) 298-318.
[18] Q. Han, F. Lin, Elliptic Partial Differential Equations, Courant Institute of Mathematical sciences, 2nd ed., in: Lecture Notes in Mathematics, vol. 1,
published jointly by the American Mathematical Society and the Courant Institute of Mathematical Sciences, 2000.
[19] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, ]. Funct. Anal. 14 (1973) 349-381.



