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Abstract We describe the asymptotic behaviour in Sobolev spaces of sequences of
solutions of Paneitz-type equations [Eq. (Eα) below] on a compact Riemannian manifold
(M, g)which are invariant by a subgroup of the group of isometries of (M, g). We also prove
pointwise estimates.

Mathematical Subject Classification (2000) 35B40 · 35J20 · 35B33

1 Introduction

Fourth-order equations of critical Sobolev growth have been an intensive target of
investigations in the last years, particularly because of the applications of the fourth-order
Paneitz operator to conformal geometry (see, e.g. [2] or [3] for a survey), and also because
of the parallel that exists between fourth-order equations of critical growth and their second-
order analogues. Independently, we know from the work of Hebey–Vaugon [12] that symme-
try allows us to get better Sobolev embeddings, i.e. the critical Sobolev exponent increases
when considering functions having some symmetry. This fact has already been used in [18]
to prove the existence of an infinity of non-equivalent solutions to a fourth-order critical
equations in R

n . These two facts leads naturally to the study of the asymptotic behavior of
symmetric solutions to such equations.

We now describe precisely the problem we are interested in. Let (M, g) be a smooth com-
pact Riemannian n-manifold and G a closed subgroup of the group of isometries Isomg(M)
of (M, g) such n − k ≥ 5, where k = minx∈M dim Gx , and Gx denotes the orbit of a
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386 N. Saintier

point x ∈ M under the action of G. We say that a function f : M → R is G-invariant if
f (gx) = f (x) for any x ∈ M and g ∈ G. Note that if f is invariant under the action of
an arbitrary subgroup G ′ of Isomg(M) then it is also G ′-invariant, so that the closedness
assumption on G is not restrictive. We consider equations like

�2
gu + kα�gu + hαu = f u2�−1, u > 0, u G-invariant, (Eα)

where�2
gu = �g(�gu) is the Bilaplacian of u for g,�gu = −divg(∇u) being the Laplacian

of u, 2� = 2(n−k)
n−k−4 is the critical exponent for the embedding of the Sobolev space H2

2,G(M),

consisting of the G-invariant functions u ∈ L2(M) such that ∇u,∇2u ∈ L2(M), into the
Lebesgue spaces Lq(M) (in particular, the space H2

2,G(M) is continuously embedded in

L2� (M): this assertion is a consequence of Hebey–Vaugon [12]), f is a C1 G-invariant
function, (kα) is a sequence of real numbers converging to some k∞, and (hα) is a sequence
of continuous G-invariant functions uniformly converging to some h∞. We assume that the
operator �2

g + k∞�g + h∞ is coercive in the sense that there exists some λ > 0 such that
for any u ∈ H2

2,G(M),∫

M

(
(�gu)2 + k∞|∇u|2g + h∞|u|2

)
dvg ≥ λ‖u‖2

H2
2
. (1)

When kα and hα are constant independent ofα, we refer to Hebey–Robert [11] for a necessary
and sufficient condition for (1) to hold. It is easily seen that a necessary condition for (Eα)
to admit a positive solution u is maxM f > 0. Indeed, multiplying (Eα) by u, integrating by
parts and using the coercivity assumption (1) yields∫

M

f u p∗
dvg ≥ λ‖u‖2

H2
2

+ o(1).

We then deduce that f must be positive somewhere, and then maxM f > 0. From now on, we
assume that maxM f > 0. We also consider the limit equation obtained by letting formally
α → +∞ in (Eα), namely

�2
gu + k∞�gu + h∞u = f u2�−1. (E∞)

For eachα, let uα be a G-invariant weak positive solution of (Eα) and assume that the sequence
(uα) is bounded in H2

2 (M). The purpose of this note is to describe the asymptotic behavior
in H2

2 of the uα’s. In the case where gα and hα are constant independent of α, f = 1 and G
is reduced to identity, Hebey–Robert [11] solved the problem by showing that the uα can be
written as the sum of a solution of the limit equation (E∞) plus a finite sum of bubbles plus a
rest strongly converging to 0 in H2

2 . A bubble is a sequence of functions obtained by rescaling
a positive solution of the Euclidean critical equation �2

ξu = uq−1 in R
n , q = 2n/(n − 4),

where ξ is the Euclidean metric. We prove here (cf. theorem below) that this decomposition
still holds in the context of G-invariant functions under some assumptions on the orbits
of G [assumption (H) below] and with an extended notion of bubble. The same technique
can be used to deal with critical equations involving only the Laplacian, generalizing thus
Clapp’result [4] who considered such equations in a smooth bounded open subset of R

n , with
the standard Euclidean metric, invariant under the action of some subgroup of O(n).

We now recall some known facts and fix some notations. We refer to Bredon [1] for more
details (see also [7,12]). Let G ′ be a closed subgroup of Isomg(M). Then G ′ is a Lie group.
For each x ∈ M , we let x̄ = �(x), where � : M → M/G ′ is the canonical surjection,
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Asymptotic in Sobolev spaces for symmetric Paneitz-type equations 387

and denote by G ′x = {gx, g ∈ G ′} (resp. Sx = {g ∈ G ′, gx = x}) the orbit (resp. the
stabilizator) of x under the action of G ′. Then G ′x is a compact submanifold of M naturally
isomorphic to the quotient group G ′/Sx . An orbit G ′x is said principal if its stabilizator is
minimal up to conjugacy, i.e. for all y ∈ M , Sy contains a subgroup conjugate to Sx . In
particular, the principal orbits are of maximal dimension (but the converse is false). If we
denote by � the union of all the principal orbits, then � is a dense open subset of M and
�/G ′ is a smooth connected manifold which can be equipped with a Riemaniann metric ḡ
in such a way that the canonical surjection from � to �/G ′ is a Riemannian submersion.
We then consider the metric g̃ belonging to the conformal class of ḡ defined by

g̃ = v̄
2

n−k−4 ḡ, (2)

where v̄(x̄) = V ol(�−1(x̄)) = V ol(G ′x) denotes the volume of G ′x computed with respect
to the induced metric. We will denote by B ḡ

x (r) and B g̃
x (r) the geodesic balls centered at x

of radius r for the metric ḡ and g̃, respectively. We let H2
1 (M) [resp. H2

2 (M)] be the usual
Sobolev spaces of the functions u ∈ L2(M) such that ∇u ∈ L2(M) [resp. and ∇2u ∈ L2(M)]
with the norm ‖u‖2

H2
1

= ‖u‖2
2 + ‖∇u‖2

2 (resp. ‖u‖2
H2

2
= ‖u‖2

H2
1

+ ‖∇2u‖2
2). It follows from

the Bochner–Lichnerowicz–Weitzenböck formula that H2
2 (M) can also be equipped with the

equivalent norm ‖u‖2
H2

2
= ‖�gu‖2

2 + ‖u‖2
H2

1
(see [5]). We will always use this last norm in

the sequel. We also consider the closure of C∞(M) for the norm ‖.‖H2
2

that we denote by
◦

H2
2 (M). We let H2

l,G ′(M), l = 0, 1, 2, and
◦

H2
2,G ′ (M) be the space of G ′-invariant functions

in H2
l (M) and

◦
H2

2 (M), respectively:

H2
l,G ′(M) = {

u ∈ H2
l (M)s.t.∀ g ∈ G ′, u(gx) = u(x) a.e. in M

}
,

◦
H2

2,G ′ (M) =
{

u ∈
◦

H2
2 (M) s.t. ∀ g ∈ G ′, u(gx) = u(x) a.e. in M

}
.

We let k := minx∈M dim Gx , and make the following assumption on the G-orbits of minimal
dimension k:
(H) for each G - orbit Gx0 of minimal dimension k, there exist δ > 0 and a closed normal
subgroup G ′ of G such that

G ′x0 = Gx0 (H1)

and, for all x ∈ BGx0(δ) := {y ∈ M, dg(y,Gx0) < δ},
G ′x is principal and G ′x ⊂ Gx . (H2)

We will also need the assumption (H3) defined later. We refer to Faget [7] for examples of
groups satisfying (H). In particular, dim G ′x = dim Gx0 = k for all x ∈ BGx0(δ) and we
can consider the Riemannian quotient (n − k)-manifold N := BGx0(δ)/G ′. We fix a smooth
cut-off function η ∈ C∞

c (R
n−k) with support in B0(2) such that 0 ≤ η ≤ 1 and η ≡ 1 in

B0(1). Given x̄1 ∈ N and δ′ ∈ (0, ig̃(x̄1)/2), we let

ηx̄1,δ′(x̄) = η

(
dg̃(x̄1, x̄)

δ′

)

for x̄ ∈ N . Here, ig̃(x̄1) denotes the injectivity radius of N at x̄1.
We define a bubble in this context. Let (xα) be a sequence of points in M converging to

some point x0 ∈ M such that Gx0 is of dimension k and f (x0) > 0. Then assumption (H)
provides us with a subgroup G ′ of G and a δ > 0 such that (H1) and (H2) hold. Let 2δ′ > 0 be
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388 N. Saintier

inferior to the injectivity radius of the quotient (n−k)-manifold N := BGx0(δ)/G ′. Consider
also a sequence (Rα) ⊂ [0,+∞) such that Rα → +∞. Given a (non-trivial non-necessarily)
positive solution u ∈ D2

2(R
n−k) [where D2

2(R
n−k) is the closure of C∞

c (R
n−k) for the norm

‖u‖ = ‖�u‖2] of the Euclidean equation

�2
ξu = f (x0)V ol(Gx0)

− 4
n−k−4 |u|2�−2u, (3)

we can define classically a bubble B̄ = (B̄α) by

B̄α(x̄) = ηx̄α,δ′(x̄)R
n−k−4

2
α u

(
Rαexp−1

x̄α
(x̄)

)
, x̄ ∈ N , (4)

where exp is the exponential map of (N , g̃). Since G ′ is a normal subgroup of G, the quotient
group Ḡ := G/G ′ acts on N by ḡx̄ := gx . This way Ḡ ⊂ Isomḡ(N ) (see [8]). Note that
Ḡ x̄0 = x̄0 in view of (H1). We will assume that

either (i) dimḠx̄ ≥ 1 or (ii) Ḡ x̄ is discrete for any x̄ ∈ N\{x̄0}. (H3)

In case (ii), the orbit Ḡ x̄α is discrete and we will prove later that its cardinal is bounded
uniformly in α, so that, up to a subsequence, we can suppose it constant equal to k(B). For
notational convenience we also let k(B) = 1 in case (i). We let m̄ be the Haar measure
of Ḡ normalized by m̄(Ḡ) = 1, and consider, in both cases (i) and (ii), the symmetrized
B̄Ḡ = (B̄Ḡ,α) of B̄ under Ḡ, namely

B̄Ḡ,α :=
∫

Ḡ

B̄α ◦ σ̄ dm̄(σ̄ ) (5)

Notice that B̄Ḡ,α is Ḡ-invariant. See (39) for the explicit expression of B̄Ḡ,α in case (ii).
A (generalized) bubble B = (Bα) of center (Gxα) and weights (Rα) is then defined by the
relation

Bα = B̄Ḡ,α ◦�, (6)

where � : BGx0(δ) → N := BGx0(δ)/G ′ is the canonical surjection. Note that Bα is
G-invariant.

This definition clearly extends the usual definition of a bubble to the case of G-invariant
functions. We define the energy E(B̄) of B̄ by

E(B̄) = 1

2

∫

Rn−k

(�ξu)2dx − f (x0)V ol(Gx0)
− 4

n−k−4

2�

∫

Rn−k

|u|2�dx, (7)

and then the energy of the generalized bubble B by

E(B) = k(B)E(B̄) (8)

Arguing as in Hebey–Robert [11], we can prove the following minoration of the energy:

E(B̄) ≥ f (x0)
− n−k−4

4 V ol(Gx0)β
�,

where β� = 2
n−k K0(n − k)− n−k

4 , K0(n − k) being the best Sobolev constant for the injection

D2
2(R

n−k) ↪→ L2� (Rn−k) (see [10] or [5]), namely

1

K0(n − k)
= inf

u∈C∞
c (Rn−k )\{0}

∫
Rn−k (�ξu)2 dx(∫

Rn−k |u|2� dx
)2/2�

> 0. (9)
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Asymptotic in Sobolev spaces for symmetric Paneitz-type equations 389

The value of K0(n) is explicitly known (see [6,13,15]). If we denote by A the minimum
volume of G-orbit of dimension k, we then have the minoration

E(B) ≥ k(B)

(
max

M
f

)− n−k−4
4

Aβ� (10)

which holds for any generalized bubble. Moreover, since a nonnegative nontrivial solution
of (3) is of the form (see [11,14])

u(x) = f (x0)
− n−k−4

8 V ol(Gx0)
1
2 αn−k

(
λ

1 + λ2|x − y|2
) n−k−4

2

,

where λ > 0, y ∈ R
n−k , αn = (

n(n − 4)(n2 − 4)
)(n−4)/8

, the energy of a bubble is exactly

E(B) = k(B) f (x0)
− n−k−4

4 V ol(Gx0)β
� (11)

Our result is the following:

Theorem Let (M, g) be a Riemaniann manifold, G a closed subgroup of I somg(M) satis-
fying (H1)–(H3) and (uα) be a sequence of nonnegative G-invariant solutions of (Eα) boun-
ded in H2

2 (M). There exist a nonnegative solution u0 ∈ H2
2,G(M) of (E∞) and l bubbles

Bi = (
Bi
α

)
α

, i = 1 . . . l, such that, up to a subsequence,

uα = u0 +
l∑

i=1

Bi
α + Sα, (12)

where the sequence (Sα) ⊂ H2
2 (M) converges strongly to 0 in H2

2 , and

Jαg (uα) = J∞
g (u0)+

l∑
i=1

E(Bi )+ o(1), (13)

where Jαg and J∞
g are the functional defined on H2

2 (M) by (16) and (18), respectively,

xi = lim xi
α , the (xi

α) being the centers of the bubble Bi , and E(Bi ) is the energy of Bi

defined by (11).
Moreover, if we assume that f ≥ 0, k∞> 0 and the hα’s are real numbers with

0< h∞ ≤ k2∞/4, then either u0> 0 or u0 = 0, and there exists a constant C > 0 independent
of α and x ∈ M such that for any α and any x ∈ M,

Rα(x)
n−k−4

2
∣∣uα(x)− u0(x)

∣∣ ≤ C, and (14)

lim
R→∞ lim

α→+∞ sup
x∈M\�α(R)

Rα(x)
n−k−4

2
∣∣uα(x)− u0(x)

∣∣ = 0, (15)

where the (µi
α)α are the inverse of the weights of the bubble Bi , Rα(x) = mini=1 ... l dg(Gxi

α,

Gx) and, for R > 0,�α(R) = ∪k
i=1 BGxi

α
(Rµi

α); when there is no symmetry assumption we
refer to Struwe [20,21].

Moreover, we have ∇ f (xi ) = 0 for any i in the particular case where u0 = 0.
The paper is organized as follow. The first section is devoted to the proof of the

H2
2 -decomposition, i.e. the relations (12) and (13) for a Palais–Smale sequence for the func-

tional Jαg defined by (16), whereas the second one deals with the proof of the pointwise
estimates (14) and (15).
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390 N. Saintier

2 Proof of the H 2
2 -decomposition for Palais–Smale sequences

Let Jαg be the functional defined on H2
2 (M) by

Jαg (u) = 1

2

∫

M

(�gu)2dvg + 1

2

∫

M

kα|∇u|2gdvg + 1

2

∫

M

hα|u|2dvg

− 1

2�

∫

M

f |u|2�dvg, (16)

and (uα) ⊂ H2
2,G(M) be a Palais–Smale (P–S) sequence for Jαg , i.e. the sequence (Jαg (uα))

is bounded and D Jαg (uα) → 0 strongly in H2
2 (M)

′.
It follows from Hebey–Robert ([11], Step 1) that, up to a subsequence, the sequence (uα)

weakly converges in H2
2 (M) and also a.e. to some u0 ∈ H2

2,G(M)which is a weak solution of

(E∞). Let vα = uα−u0. Since vα → 0 strongly in H2
1 (M), we can prove as in Hebey–Robert

([11], Step 2) that (vα) is a (P-S) sequence for the functional Jg defined on H2
2 (M) by

Jg(u) = 1

2

∫

M

(�gu)2dvg − 1

2�

∫

M

f |u|2�dvg. (17)

Moreover

Jg(vα) = Jαg (uα)− J∞
g (u0)+ o(1),

where J∞
g is the functional defined on H2

2 (M) by

J∞
g (u) = 1

2

∫

M

(�gu)2dvg + 1

2

∫

M

k∞|∇u|2gdvg + 1

2

∫

M

h∞|u|2dvg

− 1

2�

∫

M

f |u|2�dvg. (18)

According to Hebey [6], there exists C > 0 such that for any u ∈ H2
2 (M),

⎛
⎝

∫

M

|u| 2n
n−4 dvg

⎞
⎠

n−4
n

≤ K0(n)
∫

M

(�gu)2 dvg + C‖u‖2
H2

1 (M)
,

where K0(n) is defined in (9). The constant K0(n) is optimal. Its value is explicitely known
and depends only on n. As for Sobolev spaces of first order, one can improve the order of
integrability when we have invariance under isometries. More precisely, the space H2

2,G(M)

is continuously embedded in L2� (M) and there exist constants K̃ ,C > 0 such that for any
u ∈ H2

2,G(M),

⎛
⎝

∫

M

|u|2� dvg

⎞
⎠

2
2�

≤ K̃
∫

M

(�gu)2 dvg + C‖u‖2
H2

1
. (19)

This result can be proved as in Hebey–Vaugon [12] (see [19]). We define K̃0 to be the smallest
possible constant K̃ in (19). In other words, for any ε > 0 there exists Cε > 0 such that for
any u ∈ H2

2,G(M),
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⎛
⎝

∫

M

|u|2�dvg
⎞
⎠

2
2�

≤
(

K̃0 + ε
) ∫

M

(�gu)2dvg + Cε‖u‖2
H2

1
, (20)

and K̃0 is the least constant such that such an inequality holds for any ε and u. The value of
K̃0 is studied in Saintier [19]. We can now adapt the argument in Hebey–Robert ([11], Step 3)
to prove that if (wα) is a (P–S) sequence for Jg such that

wα → 0 weakly in H2
2 and lim Jg(wα) < ‖ f ‖− n−k−4

4∞ β�,

where β� = 2
n−k K̃

− n−k
4

0 , then

wα → 0 strongly inH2
2 .

Using this remark and the minoration (10) of the energy of a generalized bubble, we can
prove the theorem by induction by repeated use of the following lemma:

Lemma Let (vα) be a (P–S) sequence for Jg converging to 0 in H2
2 weakly but not strongly.

Then there exists a generalized bubble B = (Bα) such thatwα := vα−Bα is a (P-S) sequence
for Jg weakly converging to 0 in H2

2 . Moreover

Jg(wα) = Jg(vα)− E(B)+ o(1).

The remainder of this section is devoted to the proof of this lemma. According to the
density of the set of smooth G-invariant functions on M in H2

2,G(M) (see [12]), we can
assume that the vα’s are smooth. Independently, since the vα’s don’t converge strongly to 0,
the definition of a (P–S) sequence implies that there exists β > 0 such that∫

M

(�gvα)
2dvg = n − k

2
β + o(1) (21)

and ∫

M

f |vα|2�dvg = n − k

2
β + o(1)

with β ≥ ‖ f ‖− n−k−4
4∞ β� > 0. Since M is compact we deduce the existence of a point x0 ∈ M

such that for any δ > 0 small,

lim sup
α→+∞

∫

BGx0 (δ)

f |vα|2�dvg > 0. (22)

Such an orbit is called orbit of concentration. We first give some basic properties of such
orbits:

Step 1.1 (1) There are a finite number of orbits of concentration. If Gx0 is one of
them, then dim Gx0 = k and f (x0) > 0. In the particular case where u0 = 0 and
D Jαg (uα) = 0, we have also ∇ f (x0) = 0. Moreover Gx0 is an orbit of concentration
if and only if for any δ > 0,

lim sup
α→+∞

∫

BGx0 (δ)

(�gvα)
2dvg > 0. (23)
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(2) Let Gx0 be an orbit of concentration for (vα). According to 1) and in view of
assumption (H), there exist δ0 > 0 and a subgroup G ′ of I somg(M) such that we can
consider the Riemannian quotient (n − k)-manifold (N := BGx0(δ0)/G ′, ḡ). Then x̄0

is a point of concentration for (v̄α) in the sense that for any δ > 0 small,

lim sup
α→+∞

∫

B g̃
x̄0
(δ)

(�g̃ v̄α)
2dvg̃ > 0 (24)

where g̃ is defined by (2), and v̄α(x̄) = vα(x).

Proof We first prove (1). Assume that Gx0 is an orbit of concentration of dimension k′ > k.
Then there exists δ > 0 such that dim Gx ≥ k′ > k for any x ∈ BGx0(δ) (see [8, lemma

2]). Since 2� = 2(n−k)
n−k−4 <

2(n−k′)
n−k′−4 , it thus follows from Hebey–Vaugon [12] that the injection

◦
H2

2,G

(
BGx0(δ

′)
)
↪→ L2�

(
BGx0(δ

′)
)

is compact for all δ′ ∈ (0, δ). In fact, the results proved
in Hebey–Vaugon [12] only concern Sobolev spaces of first order but can easily be extended
to the second order (see also [19]). Since vα → 0 weakly in H2

2 (M), we get a contradiction
with (22). Hence Gx0 is of minimal dimension k.

Since the sequence (vα) is bounded in H2
2,G(M), there exist two positive G-invariant

measures µ and ν such that |vα|2�dvg ⇀ ν and (�gvα)
2dvg ⇀ µ weakly in the sense of

measures. Let ε > 0 and Cε > 0 be such that (20) holds. We thus have for any G-invariant
function φ ∈ C2(M) that

⎛
⎝

∫

M

|φvα|2�dvg
⎞
⎠

2
2�

≤ (K̃0 + ε)

∫

M

(�g(φvα))
2dvg + Cε‖φvα‖2

H2
1
.

Since vα → 0 strongly in H2
1 (M), we get by passing to the limit α → +∞ and then ε → 0

in this inequality that

⎛
⎝

∫

M

|φ|2�dν
⎞
⎠

2
2�

≤ K̃0

∫

M

φ2dµ

for any G-invariant function φ ∈ C2(M). By density, this inequality also holds for any
G-invariant function φ ∈ C(M). Lemma 1.1 in Lions [15] then gives the existence of I ⊂ N,
a sequence of points (xi )i∈I ⊂ M and two sequences of positive reals (µi )i∈I and (νi )i∈I

such that

|vα|2�dvg ⇀ ν =
∑
i∈I

νiδGxi ,

(�gvα)
2dvg ⇀ µ ≥

∑
i∈I

µiδGxi , and

ν
2

2�

i ≤ K̃0µi ∀ i ∈ I. (25)

where δGxi is defined by δGxi (φ) = ∫
G φ(σ xi )dm(σ ) for φ ∈ C(M), m being the Haar

measure of G such that m(G) = 1 [in particular, if φ is G-invariant, then δGxi (φ) = φ(xi )].
Let φ ∈ C(M). We can write that
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o(1) = D Jg(vα).(vαφ)

=
∫

M

�gvα�g(vαφ)dvg −
∫

M

f |vα|2�φdvg

=
∫

M

φ(�gvα)
2dvg +

∫

M

vα�gvα�gφdvg

−2
∫

M

�gvα(∇vα,∇φ)gdvg −
∫

M

f |vα|2�φdvg,

Using Hölder inequality and the strong convergence vα → 0 in H2
1 (M), we get by passing

to the limit in this relation that
∫

M φdµ = ∫
M f φdν for any φ ∈ C(M). Hence µ = f ν. In

particular

µi ≤ f (xi )νi for any i ∈ I.

Hence f (xi ) > 0 for any i ∈ I and, using (25),

µi ≥ (K̃0)
−(n−k)/4(max

M
f )−(n−k−4)/4

for any i ∈ I . We thus get with (21) that

n − k

2
β =

∫

M

(�gvα)
2dvg + o(1) = µ(M) ≥

∑
µi

≥ (card I )(K̃0)
−(n−k)/4(max

M
f )−(n−k−4)/4

which implies that I is finite, i.e. (vα) has a finite number of orbit of concentration, namely
the Gxi , i ∈ I . Eventually,

µ = f ν =
∑
i∈I

νi f (xi )δGxi (26)

which implies the equivalent definition (23) of an orbit of concentration.
Assume now that u0 = 0 and D Jαg (uα) = 0 for allα, and consider an orbit of concentration

Gxi . We are going to prove that ∇ f (xi ) = 0. Let G ′ be the group given by (H) at the point
xi . Let φ be a smooth G-invariant function with compact support in some neighbourhood
BGxi (δ) of Gxi not intersecting other concentration orbit, satisfying ∇φ(xi ) = ∇ f (xi ) and
∇2φ(xi ) = 0. Then the function (∇uα,∇φ)g is smooth and we can write that

1

2�
νi |∇ f |2g(xi )+ o(1)

= 1

2�

∫

M

(∇ f,∇φ)g|uα|2�dvg

= 1

2�

∫

M

(∇( f |uα|2� ),∇φ)gdvg −
∫

M

f |uα|2�−2uα(∇uα,∇φ)gdvg

= 1

2�

∫

M

f (�gφ)|uα|2�dvg −
∫

M

�guα�g(∇uα,∇φ)gdvg

−
∫

M

kα(∇uα,∇(∇uα,∇φ)g)gdvg −
∫

M

hαuα(∇uα,∇φ)gdvg.
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Since �gφ(xi ) = 0, the first integral tends to 0. The same is also true for the last one by
Hölder inequality. We can write the third integral as

∫

M

kα(∇uα,∇(∇uα,∇φ)g)gdvg

=
∫

M

(∇uα,∇(kα(∇uα,∇φ)g))gdvg + O(‖∇uα‖2
2)

=
∫

M

kα(∇uα,∇φ)g�guαdvg + o(1)

with, by Hölder inequality,

∣∣∣∣∣∣
∫

M

kα(∇uα,∇φ)g�guαdvg

∣∣∣∣∣∣ ≤ C‖∇uα‖2‖�guα‖2 = o(1)O(1) = o(1).

Hence

1

2�
νi |∇ f |2g(xi ) = −

∫

M

�guα�g(∇uα,∇φ)gdvg + o(1)

= −
∫

N

�ḡ ūα�ḡ(∇ūα,∇φ̄)ḡ v̄dvḡ + o(1)

where N = BGxi (δ)/G ′, uα = ūα ◦�, φ = φ̄ ◦�, � : BGxi (δ) → N being the canonical
surjection. Following Robert [16], we write, using the Cartan expansion of ḡ in the exponential
chart, that

�ḡ(∇ūα,∇φ̄)ḡ = (∇(�ḡ ūα),∇φ̄)ḡ + O(|∇ūα|ḡ)+ O(|x ||∇2ūα|ḡ)
+O(|∇2ūα|ḡ|∇2φ̄|ḡ).

By Hölder inequality (25) and since the sequence (ūα) is bounded in H2
2 (N ) and converges

strongly to 0 in H2
1 , we have:

∫

N

|�ḡ ūα||∇ūα|ḡ v̄dvḡ ≤ C‖�ḡ ūα‖2‖∇ūα‖2 = O(1)o(1) = o(1),

∫

N

|�ḡ ūα||x ||∇2ūα|ḡ|∇φ̄|ḡ v̄dvḡ ≤ Cδ‖∇2ūα‖2‖�ḡ ūα‖2 = δO(1) and

∫

N

|�ḡ ūα||∇2ūα|ḡ|∇2φ̄|ḡ v̄dvḡ ≤ C‖∇2ūα‖2

⎛
⎝

∫

M

|∇2φ|2g(�guα)
2dvg

⎞
⎠

1
2

≤ C

(√
|∇2φ|g(xi )+ o(1)

)
= o(1),
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where o(1) → 0 and O(1) are independent of δ. Hence

1

2�
νi |∇ f |2g(xi ) = −

∫

N

�ḡ ūα(∇(�ḡ ūα),∇φ̄)ḡ v̄dvḡ + o(1)+ δO(1)

= −
∫

M

�guα(∇(�guα),∇φ)gdvg + o(1)+ δO(1)

= −1

2

∫

M

(∇(�guα)
2,∇φ)gdvg + o(1)+ δO(1)

= −1

2

∫

M

(�guα)
2�gφdvg + o(1)+ δO(1)

= o(1)+ δO(1),

Letting α → +∞ and then δ → 0 gives ∇ f (xi ) = 0.

We now prove (2). The metric g̃ being defined by (2), we have dvḡ = v̄− n−k
n−k−4 dvg̃ and

(see [9]),

�ḡ v̄α = v̄
2

n−k−4�g̃ v̄α + n − k − 2

n − k − 4
v̄− n−k−6

n−k−4 (∇v̄α,∇v̄)g̃. (27)

Then for δ > 0 small,

∫

BGx0 (δ)

(�gvα)
2dvg =

∫

B ḡ
x̄0
(δ)

(�ḡ v̄α)
2v̄dvḡ

=
∫

B ḡ
x̄0
(δ)

(�g̃ v̄α)
2dvg̃ + I1 + I2

where I1 and I2 satisfy estimates of the form

|I1| ≤ C
∫

B ḡ
x̄0
(δ)

|∇v̄α|2g̃ v̄dvg̃ ≤ C
∫

B ḡ
x̄0
(δ)

|∇v̄α|2ḡ v̄dvḡ

= C
∫

BGx0 (δ)

|∇vα|2dvg,

and

|I2| ≤ C
∫

B ḡ
x̄0
(δ)

|�g̃ v̄α| · |∇v̄α|g̃ dvg̃

≤ C‖�g̃ v̄α‖L2(B ḡ
x̄0
(δ))

‖∇v̄α‖L2(B ḡ
x̄0
(δ))

≤ C‖�g̃ v̄α‖L2(B ḡ
x̄0
(δ))

‖∇vα‖L2(BGx0 (δ))
.
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Since vα → 0 strongly in H2
1 (M), we deduce that

∫

BGx0 (δ)

(�gvα)
2dvg =

∫

B ḡ
x̄0
(δ)

(�g̃ v̄α)
2dvg̃ + o(1).

Letting

m = inf
B ḡ

x̄0
(δ)

v̄1/(n−k−4),

we get that B ḡ
x̄0
(δ) ⊂ B g̃

x̄0
(δ/m), and thus

∫

BGx0 (δ)

(�gvα)
2dvg ≤

∫

B g̃
x̄0
(δ/m)

(�g̃ v̄α)
2dvg̃ + o(1)

which, together with (23), proves (24). ��
The next step shows that the notion of (P–S) sequences passes to the quotient.

Step 1.2 Let Gx0 be an orbit such that there exist δ0 > 0 and a subgroup G ′ ⊂ I somg(M)
satisfying (H1) and (H2). Then (v̄α) is a (P–S) sequence for the functional J̄g̃ defined on
◦

H2
2 (N ) by

J̄g̃(ū) = 1

2

∫

N

(�g̃ ū)2dvg̃ − 1

2�

∫

N

f̄ |ū|2� v̄− 4
n−k−4 dvg̃

where N = BGx0(δ0)/G ′, f̄ ◦� = f and � : BGx0(δ0) → N is the canonical surjection.

Proof Let φ̄ ∈ C∞
c (N ) and φ ∈ C∞

c

(
BGx0(δ0)

)
such that φ̄ ◦� = φ. Then

o(1)‖φ‖H2
2

= D Jg(vα)φ

=
∫

BGx0 (δ0)

�gvα�gφdvg −
∫

BGx0 (δ0)

f |vα|2�−2vαφdvg

=
∫

B ḡ
x̄0
(δ)

(�ḡ v̄α)(�ḡφ̄)v̄dvḡ −
∫

B ḡ
x̄0
(δ)

f̄ |v̄α|2�−2v̄αφ̄v̄dvḡ. (28)

Using the metric g̃ defined by (2), we have
∫

B ḡ
x̄0
(δ)

f̄ |v̄α|2�−2v̄αφ̄v̄dvḡ =
∫

B ḡ
x̄0
(δ)

f̄ |v̄α|2�−2v̄αφ̄v̄
− 4

n−k−4 dvg̃.

In view of (27), we see that
∫

B ḡ
x̄0
(δ)

(�ḡ v̄α)(�ḡφ̄)v̄dvḡ =
∫

B ḡ
x̄0
(δ)

(�g̃ v̄α)(�g̃φ̄)dvg̃ + I1 + I2
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where I1 and I2 are terms satisfying, by Hölder inequality, estimates of the form

|I1| ≤ C

√√√√√
∫

B ḡ
x̄0
(δ)

|∇v̄α|2g̃dvg̃
(‖�ḡφ̄‖2

2 + ‖∇φ̄‖2
2

)

= o(1)‖φ̄‖H2
2 (N )

,

and

I2 = n − k − 2

n − k − 4

∫

N

v̄−1 (∇φ̄,∇v̄)
g̃
�g̃ v̄α dvg̃

= n − k − 2

n − k − 4

∫

N

(
∇v̄α,∇

(
v̄−1 (∇φ̄,∇v̄)

g̃

))
g̃

dvg̃

= O(1)‖∇v̄α‖L2(B ḡ
x̄0
(δ))

‖φ̄‖H2
2 (N )

= o(1)‖φ̄‖H2
2 (N )

Hence (28) becomes

D J̄g̃(v̄α)φ̄ = o(1)‖φ̄‖H2
2 (N )

.

��

As explained above, there exists an orbit of concentration Gx0. According to Step 1.1,
dim Gx0 = k. Assumption (H) then gives δ0 > 0 and a subgroup G ′ ⊂ I somg(M) satisfying
(H1) and (H2) on BGx0(2δ0). We let N = BGx0(δ0)/G ′ and consider, for t > 0,

Qα(t) := sup
x̄∈N

∫

B g̃
x̄ (t)

(�g̃ v̄α)
2dvg̃.

In view of Step 1.1, there exist λ0 such that, up to a subsequence, for any α

Qα(δ0) ≥
∫

B g̃
x̄0
(δ0)

(�g̃ v̄α)
2dvg̃ ≥ λ0.

Since Qα is continuous, we then get for any λ ∈ (0, λ0) the existence of tα ∈ (0, δ0) and
x̄α ∈ N , x̄α → x̄0, such that for any α

Qα(tα) =
∫

B g̃
x̄α
(tα)

(�g̃ v̄α)
2dvg̃ = λ.

In view of Step 1.2, (v̄α) is a (P–S) sequence for J̄g̃ on
◦

H2
2 (N ). According to

Hebey–Robert [11], there exist a sequence Rα → +∞ and v ∈ D2
2

(
R

n−k
)

(where D2
2(R

n−k)

is the completion of C∞
c (R

n−k) for the norm u �→ ‖�ξu‖2) such that

ṽα → v in H2
2,loc

(
R

n−k
)

(29)
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and v �≡ 0, where, if ig̃(x̄0) denotes the injectivity radius of (N , g̃) at x̄0,

ṽα(x) = R
− n−k−4

2
α v̄α

(
expx̄α (R

−1
α x)

)
, x ∈ B0

(
Rαig̃(x̄0)

)
. (30)

We now prove that

Step 1.3 v is a solution of the Euclidean equation

�2
ξ v = f̄ (x̄0)v̄(x̄0)

− 4
n−k−4 |v|2�−2v

= f (x0)V ol(Gx0)
− 4

n−k−4 |v|2�−2v. (31)

Proof Let φ ∈ C∞
c

(
R

n−k
)

and R > 0 such that supp φ ⊂ B0(R). For α large enough, we
define φα ∈ C∞

c (N ) by

φα(x̄) = R
n−k−4

2
α φ

(
Rαexpx̄α (x̄)

)
.

Then (φα) is bounded in
◦

H2
2 (N ). Thus

o(1) = D J̄g̃(v̄α)φα

=
∫

B0(R)

�g̃α ṽα�g̃αφdvg̃α

−
∫

B0(R)

|ṽα|2�−2ṽαφv̄
(
expx̄α (R

−1
α x)

)− 4
n−k−4 f̄

(
expx̄α (R

−1
α x)

)
dvg̃α

where g̃α is the metric defined in the Euclidean ball B0(ig̃ Rα) ⊂ R
n−k by

g̃α(x) = (
exp∗̄

xα g̃
)
(R−1

α x).

Since Rα → +∞, the g̃α’s converge locally uniformly to the Euclidean metric ξ . Passing to
the limit, we then get with (29) that∫

Rn−k

�ξv�ξφ dx − f̄ (x̄0)v̄(x̄0)
− 4

n−k−4

∫

Rn−k

|v|2�−2vφ dx = 0

for any φ ∈ C∞
c

(
R

n−k
)
, which proves (31). ��

For δ > 0 small, we let

B̄α(x̄) = ηx̄α,δ(x̄)R
n−k−4

2
α v

(
Rαexp−1

x̄α
(x̄)

)

and w̄α = v̄α − B̄α . Then, according to Hebey–Robert ([11], Step 3),

B̄α → 0 weakly in H2
2 (N ), (32)

D J̄g̃(B̄α) → 0 and D J̄g̃(w̄α) → 0 strongly in H2
2 (N ), (33)

J̄g̃(w̄α) = J̄g̃(v̄α)− E(v)+ o(1) (34)

where

E(v) = 1

2

∫

Rn−k

(�ξv)
2dx − v̄(x̄0)

− 4
n−k−4 f (x0)

2�

∫

Rn−k

|v|2�dx .
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We now prove that these relations still hold when considering B̄Ḡ,α as defined in (5) and
w̄Ḡ,α := v̄α − B̄Ḡ,α .

Step 1.4

B̄Ḡ,α → 0 weakly in H2
2 (N ), (35)

D J̄g̃(B̄Ḡ,α) → 0 and D J̄g̃(w̄Ḡ,α) → 0 strongly in H2
2 (N ),

J̄g̃(w̄Ḡ,α) = J̄g̃(v̄α)− E(B)+ o(1), (36)

where E(B) is defined in (8).

Proof If (i) dim Ḡx̄α ≥ 1 up to a subsequence, we claim that

‖B̄α − B̄Ḡ,α‖2
H2

2
= ‖�ḡ(B̄α − B̄Ḡ,α)‖2

2 + ‖∇(B̄α − B̄Ḡ,α)‖2
2 + ‖B̄α − B̄Ḡ,α‖2

2 → 0.

In view of (32)–(34), this will prove Step 1.4 in that case. We prove that ‖B̄α − B̄Ḡ,α‖2
2 → 0.

The convergence of the gradient and laplacian term can be proved in the same way. Since by
Jensen’s theorem

‖B̄α − B̄Ḡ,α‖2
2 =

∫

N

⎛
⎜⎝

∫

Ḡ

(
B̄α(x̄)− B̄α(σ̄ (x̄))

)
dm̄(σ̄ )

⎞
⎟⎠

2

dvḡ(x̄)

≤
∫

N

∫

G

(
B̄α(x̄)− B̄α(σ̄ (x̄))

)2
dm̄(σ̄ )dvḡ(x̄),

it suffices to prove that

‖B̄α − B̄α ◦ σ̄‖H2
2

→ 0

uniformly in σ̄ ∈ Ḡ. To do this we write, given a σ̄ ∈ Ḡ, that for any R > 0

‖B̄α − B̄α ◦ σ̄‖H2
2 (N )

≤ ‖B̄α − v̄α‖H2
2 (BḠx̄α

(Rµα))
+ ‖v̄α − v̄α ◦ σ̄‖H2

2 (BḠx̄α
(Rµα))

+‖v̄α ◦ σ̄ − B̄α ◦ σ̄‖H2
2 (BḠx̄α

(Rµα))
+ 2‖B̄α‖H2

2 (N\BḠx̄α
(Rµα))

≤ 2‖B̄α − v̄α‖H2
2 (BḠx̄α

(Rµα))
+ 2‖B̄α‖H2

2 (N\BḠx̄α
(Rµα))

since v̄α is Ḡ-invariant, where µα := R−1
α . Assume for the moment that

sup
σ̄∈Ḡ

dḡ(σ̄ x̄α, x̄0) ≤ Cµα (37)

for some constant C > 0 independent of α and σ̄ . Then BḠx̄α (Rµα) ⊂ Bx̄α (R
′µα) for some

R′ > R. It follows that

‖B̄α − B̄α ◦ σ̄‖H2
2 (N )

≤ 2‖B̄α − v̄α‖H2
2 (Bx̄α (R

′µα)) + 2‖B̄α‖H2
2 (N\Bx̄α (Rµα))

which proves the claim in view of (29) and the definition of B̄α .
It remains to prove (37). Since Ḡ x̄0 = x̄0, we have to prove that

dḡ(x̄α, x̄0) ≤ Cµα.
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We do this using ideas from Faget [8]. For any σ̄ ∈ Ḡ, σ̄ (x̄0) = x̄0 [because Gx0 = G ′x0

according to (H1)], so that dσ̄ (x̄0) : Tx̄0 N → Tx̄0 N . Moreover dσ̄ (x̄0) = exp−1
x̄0

◦ σ̄ ◦
expx̄0 ∈ I som ḡ(x̄0)(Tx̄0 N ). In the exponential chart at x̄0 that we consider, ḡ(x̄0) = ξ the
Euclidean metric. We let S′ = {dσ̄ (x̄0), σ̄ ∈ Ḡ} ⊂ I somξ (Tx̄0 N ). There hold exp−1

x̄0
(Ḡ x̄) =

S′(exp−1
x̄0
(x̄)) for any x̄ ∈ N sufficiently close to x̄0, in particular for x̄ = x̄α . Considering

the exponential chart at x̄0 and identifying (Tx̄0 N , ξ) with (Rn, ξ) via an orthogonal map, it
follows that we only have to prove that

dξ (x̄α, 0) ≤ Cµα.

Since x̄0 is the unique finite orbit under Ḡ, dξ (x̄α, 0) ≤ diam(S′
I x̄α), where S′

I denotes the
connected component of the identity in S′, and diam the diameter (see [8, lemma 9]). If we
assume by contradiction that diam(S′

I x̄α) ≥ µαN 2
α for some sequence Nα → +∞, then we

can find Nα distinct isometric balls centered at points of S′
I x̄α and whose radius rα satisfies

2Nαrα > diam(S′
I x̄α)

(see [8, lemma 8]). Since these balls are isometric,

O(1) =
∫

N

|v̄α|2� dvḡ ≥ Nα

∫

B ḡ
x̄α
(rα)

|v̄α|2� dvḡ,

so that ∫

B ḡ
x̄α
(rα)

|v̄α|2� dvḡ → 0.

On the other hand, ∫

B ḡ
x̄α
(rα)

|v̄α|2� dvḡ =
∫

B0(Rαrα)

|ṽα|2� dv
(exp∗̄

xα
ḡ)(R−1

α x),

where ṽα is defined by (30). From 2Nαrα > diam(S′
I x̄α) ≥ µαN 2

α , we get that Rαrα → +∞.
Moreover (exp∗̄

xα
ḡ)(R−1

α x) → ξ locally uniformly. Hence, for any R > 0, we obtain by
passing to the limit using (29) that

∫

B0(R)

|v|2� dx = 0.

This contradicts the fact that v �≡ 0.
If we are in case (ii) of hypothesis (H3), then each orbit Ḡ x̄α is discrete. Since Ḡ acts

continuously on N , the orbit of x̄α under the action of any connected component of Ḡ is a
point. Hence the cardinal of Ḡ x̄α is less or equal to the number of connected components
of Ḡ which is finite since Ḡ is compact. Hence, up to a subsequence, we can write that
Ḡ x̄α = {x̄α = x̄1

α, . . . , x̄ k
α} for some k independent of α. Notice that v̄α has the same

asymptotic behaviour along each sequence (x̄ i
α) since we pass from one to another by an

isometry. Applying the method described in lemma 2.2 in Hebey–Robert [11] successively
to the sequences (x̄1

α), . . . , (x̄
k
α), and (32)–(34) each time, we get (35) and (36) but with the

function

123



Asymptotic in Sobolev spaces for symmetric Paneitz-type equations 401

k∑
i=1

ησ̄ i
α(x̄α),δ

′(x̄)R
n−k−4

2
α u

(
Rαexp−1

σ̄ i
α(x̄α)

(x̄)
)

=
k∑

i=1

B̄α ◦ (σ̄ i
α)

−1

in place of B̄Ḡ,α , where the σ̄ i
α’s are such that x̄ i

α = σ̄ i
α(x̄α), i = 2, . . . , k, σ̄ 1

α = I d . Notice
that the function defined by this sum is invariant under the action of Ḡ/S̄α , where S̄α denotes
the stabilizator of x̄α .

To get the full result, it suffices to prove that each term of this sum can be replaced
up to o(1) term by a S̄α-invariant function. We will prove this for B̄α , which is the term
corresponding to (x̄1

α).
Let B̄S̄α,α := ∫

S̄α
B̄α ◦ σ̄ dm̄α(σ̄ ) be the symmetrized of B̄α under S̄α , where m̄α denotes

the Haar measure of S̄α . We are going to prove that

‖B̄α − B̄S̄α,α‖H2
2

→ 0.

As above it suffices to prove that for any ε there exists α0 such that for any α ≥ α0 and any
σ̄α ∈ S̄α ,

‖B̄α − B̄α ◦ σ̄α‖H2
2

≤ ε. (38)

Given some σ̄α ∈ S̄α and R > 0, we write as previously that

‖B̄α − B̄α ◦ σ̄α‖H2
2 (N )

≤ ‖B̄α − v̄α‖H2
2 (Bx̄α (Rµα))

+ ‖v̄α − v̄α ◦ σ̄α‖H2
2 (Bx̄α (Rµα))

+‖v̄α ◦ σ̄α − B̄α ◦ σ̄α‖H2
2 (Bx̄α (Rµα))

+ 2‖B̄α‖H2
2 (N\Bx̄α (Rµα))

≤ 2‖B̄α − v̄α‖H2
2 (Bx̄α (Rµα))

+ 2‖B̄α‖H2
2 (N\Bx̄α (Rµα))

,

since Bx̄α (Rµα) is invariant by S̄α according to the definition of S̄α . This proves (38) and as
explained above proves (35) and (36) in case (ii). Notice that

B̄Ḡ,α =
k∑

i=1

B̄S̄α,α ◦ σ̄−1
i . (39)

��

We now define a bubble (Bα) by the relation

Bα = B̄Ḡ,α ◦�
[see (6)] and wα = vα − Bα = w̄Ḡ,α ◦�. We claim that the following holds:

Step 1.5

wα → 0 weakly in H2
2 (M), (40)

D Jg(Bα) → 0 and D Jg(wα) → 0,

Jg(wα) = Jg(vα)− E(B)+ o(1) (41)

Proof We first prove that Bα → 0 weakly in H2
2 (M) [which implies (40) since vα → 0

weakly in H2
2 (M)]. Since (Bα) ⊂ H2

2,G ′(M) is bounded in H2
2 (M), it suffices to prove that
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Bα → 0 weakly in L2
G ′(M). Let ψ ∈ L2

G ′(M) and ψ̄ ∈ L2(N ) be such that ψ = ψ̄ ◦� in
BGx0(2δ). Then, using (35),

∫

M

Bαψdvg =
∫

N

B̄Ḡ,αψ̄ v̄
− 4

n−k−4 dvg̃ → 0.

We prove in the same way that D Jg(Bα) → 0. We now prove that

D Jg(wα) → 0. (42)

Let φ ∈ H2
2,G(M), δ ∈ (0, δ0/6) and η0 ≡ ηx̄0,3δ ∈ C∞

c (BGx0(6δ)). For α large enough

so that dḡ(x̄α, x̄0) < δ [in particular supp B̄α ⊂ Bx̄α (2δ) ⊂ Bx̄0(3δ)], straightforward
computations yield

D Jg(wα)φ = D Jg(wα)(η0φ)+ D Jg(wα)((1 − η0)φ)

= D J̄g̃(w̄Ḡ,α)(η0φ)+ D Jg(vα)((1 − η0)φ)

= o
(
‖η0φ‖H2

2 (N )

)
+ o

(
‖(1 − η0)φ‖H2

2 (M)

)

= o
(
‖φ‖H2

2 (M)

)
(43)

Now consider φ ∈ H2
2 (M) et φG ∈ H2

2,G(M) defined by

φG(x) =
∫

G

φ(σ x)dm(σ ),

where m is the Haar mesure of G such that m(G) = 1. Then, according to what we just did,
we have

D Jg(wα)φG = o(1)‖φG‖H2
2
,

with

D Jg(wα)φG =
∫

G

⎛
⎝

∫

M

�gwα�g(φ ◦ σ) dvg

⎞
⎠ dm(σ )

−
∫

G

⎛
⎝

∫

M

f |wα|2�−2wα(φ ◦ σ)dvg
⎞
⎠ dm(σ )

= D Jg(wα)φ

and, using Hölder inequality,

‖φG‖2
H2

2

=
∫

M

⎛
⎝

∫

G

�g(φ ◦ σ)dm(σ )

⎞
⎠

2

dvg +
∫

M

∣∣∣∣∣∣
∫

G

∇(φ ◦ σ)dm(σ )

∣∣∣∣∣∣
2

dvg

+
∫

M

⎛
⎝

∫

G

(φ ◦ σ)dm(σ )

⎞
⎠

2

dvg
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≤
∫

G

∫

M

(�g(φ ◦ σ))2dvgdm(σ )+
∫

G

∫

M

|∇(φ ◦ σ)|2gdvgdm(σ )

+
∫

G

∫

M

|φ ◦ σ |2dvgdm(σ )

= ‖φ‖2
H2

2
.

Hence

D Jg(wα)φ = o(1)‖φ‖H2
2

for any φ ∈ H2
2 (M), which proves (42).

It remains to prove (41). We write that

Jg(wα) = 1

2

∫

M\BGx0 (2δ)

(�gvα)
2dvg − 1

2�

∫

M\BGx0 (2δ)

f |vα|2�dvg + J̄g̃(w̄Ḡ,α).

We then get using (36) and the arguments of the Proof of Step 1.2 that

Jg(wα) = 1

2

∫

M\BGx0 (2δ)

(�gvα)
2dvg − 1

2�

∫

M\BGx0 (2δ)

f |vα|2�dvg + J̄g̃(v̄α)

−E(B)+ o(1)

= Jg(vα)− E(B)+ o(1)

which proves (41). Note that v �≡ 0. ��

This ends the proof of the Lemma and thus of the H2
2 -decomposition for a (P–S) sequences

(uα) for Jαg of arbitrary sign. If we assume that uα > 0 for any α, then u0 ≥ 0 a.e. since
uα → u0 weakly in H2

2 and thus also almost everywhere (up to a subsequence). Moreover,
according to Hebey–Robert [11], the B̄i are bubbles and hence so are the Bi , 1 ≤ i ≤ k.

To conclude this section, let us remark that if f ≥ 0, k∞ > 0 and the hα’s are real numbers
with 0 < h∞ ≤ k2∞/4, then u0 is smooth and either u0 ≡ 0 or u0 > 0. Indeed, since u0 is a
solution of (E∞), we have

(
�g + k∞

2

)2

u0 = bu0, b = f u2�−2 + k2∞
4

− h∞.

Since b ∈ Ln/4(M), lemma 2.1 in [5] gives that u0 ∈ Ls(M) for all s ≥ 1. Hence, according
to the standard regularity theory, u0 ∈ Hs

4 (M) for all s ≥ 1. In particular u0 ∈ C4(M). From
the maximum principle and noting that

(
�g + k∞

2

)2

u0 ≥ 0,

we then get that either u0 ≡ 0 or u0 > 0. In both cases, we deduce that u0 ∈ C∞(M).

123



404 N. Saintier

3 Proof of the C0-estimates (14) and (15)

We assume that f ≥ 0, k∞ > 0 and the hα’s are real numbers with 0 < h∞ ≤ k2∞/4.
Let (uα) be a bounded sequence of positive solutions of (Eα). We prove in this section the
pointwise estimates of the Theorem following Hebey–Robert [11] and Robert [16].

We first prove (14). According to the remark concluding the previous section, we know
that u0 ∈ C(M), where u0 is the weak limit in H2

2 of the uα’s. It thus suffices to prove that
there exists C > 0 such that for every α and every x ∈ M ,

Rα(x)
n−k−4

2 uα(x) ≤ C. (44)

Actually, we are going to prove the following stronger result: there exists C > 0 such that

vα(x) := R′
α(x)

n−k−4
2 uα(x) ≤ C (45)

for all x ∈ M and all α > 0, where

R′
α(x) = min

i=1,...,l
dg(G

′
i x,G ′

i x i
α)

and for all i ∈ {1, . . . , l}, the group G ′
i is given by hypothesis (H) at the orbit of concentration

Gxi∞, where limα→+∞ xi
α = xi∞.

We assume by contradiction that there exists yα ∈ M such that

vα(yα) = max
x∈M

vα(x) → +∞ (46)

when α → +∞ and we let µα := uα(yα)−2/(n−k−4) → 0 when α → +∞. We let
limα→+∞ yα = y0, up to extraction.

We claim that the orbit Gy0 has minimal dimension k. Indeed, we argue by contradiction
and assume that dim Gy0 > k. As in Step 1.1, we then get that there exists δ > 0 such that
limα→+∞ uα = u0 in L2� (BGy0(δ)). It then follows from (Eα) and standard regularity theory
that limα→+∞ uα = u0 in C0(BGy0(δ

′)) for all δ′ < δ. A contradiction with the assumption
(46). This proves the claim.

We then let G ′ be the group given by hypothesis (H) at the point y0. We let
I0 = {

i ∈ {1, . . . , l}/xi∞ ∈ Gy0
}

(note that I0 may be empty). Then, for all i ∈ I0, we
have that G ′ = G ′

i . We consider the quotient manifold N := BG ′ y0(δ)/G ′, where δ > 0 is
small and given by (H). Here again, we consider the function ūα(x̄) = uα(x) for x̄ ∈ N .
We fix R0 ∈ (0, iḡ(ȳ0)) and we consider the function wα defined on the Euclidean ball
B0(R0µ

−1
α ) by

wα(x) := µ
n−k−4

2
α ūα(expȳα (µαx)).

In this expression, the exponential map is taken with respect to the metric ḡ. For ρ > 0 and
x ∈ B0(ρ) ⊂ R

n−k , we let zα ∈ M be such that G ′zα = z̄α = expȳα (µαx). Given i ∈ I0,
we get that

dg(G
′zα,G ′xi

α) ≥ dg(G
′xi
α,G ′yα)− dg(G

′yα,G ′zα)
≥ R′

α(yα)− dḡ(ȳα, z̄α)

≥ R′
α(yα)− µα|x |

≥
(

1 − ρµα

R′
α(yα)

)
R′
α(yα).
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By definition of yα and µα , we have that µαR′
α(yα)

−1 → 0 when α → +∞, and hence the
right-hand-side of the above equation is positive. In case i �∈ I0, we get that

lim
α→+∞ dg(expȳα (µαx),G ′

i x i
α) = dg(G

′y0,G ′
i x i∞)

= dg(Gy0,Gxi∞) > 0 in C0
loc(R

n−k).

Since R′
α(yα) → 0 when α → +∞, we then get that

R′
α(expȳα (µαx)) ≥ 1

2

(
1 − ρµα

R′
α(yα)

)
R′
α(yα) > 0

for all x ∈ B0(ρ) and all α > 0. We can then write for x ∈ B0(ρ) that

wα(x) = µ
n−k−4

2
α vα(zα)

R′
α(expȳα (µαx))

n−k−4
2

≤ 2(n−k−4)/2
(

1 − ρµα

R′
α(yα)

)− n−k−4
2 uα(yα)−1vα(yα)

R′
α(yα)

n−k−4
2

≤ 2(n−k−4)/2
(

1 − ρµα

R′
α(yα)

)− n−k−4
2

uniformly for x ∈ B0(ρ) ⊂ R
n−k when α → +∞. Thus the sequence (wα) is uniformly

bounded on every compact subset of R
n−k . Let ḡα be the Riemannian metric on R

n−k defined
by

ḡα(x) = exp∗̄
yα ḡ(µαx).

Equation (Eα) becomes

�ḡα (ṽα�ḡαwα)− µ2
αkαdivḡα (ṽα∇wα)+ µ4

α h̃αṽαwα = f̃αṽαw
2�−1
α

where h̃α(x) = h̄α(expȳα (µαx)), f̃α(x) = f̄ (expȳα (µαx)), and ṽα(x) = v̄(expȳα (µαx)).
Since µα → 0 when α → +∞, the metric ḡα converges to the Euclidean metric ξ in
C2

loc(R
n−k)when α → +∞. It then follows that, up to extraction, there existsw ∈ C4(Rn−k)

such that

lim
α→+∞wα = w in C4

loc(R
n−k).

Since wα(0) = 1, we get that w(0) = 1 and then w �≡ 0. We let R > 0. Since
∫

B0(R)

w2�
α dvḡα =

∫

Bȳα (Rµα)

ū2�
α dvḡ =

∫

BG′ yα (Rµα)

Vol(G ′x)−1u2�
α (x) dvg(x),

we get that

lim
α→+∞

∫

BG′ yα (Rµα)

u2�
α dvg = Vol(Gy0)

∫

B0(R)

w2� dvξ > 0.
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With the H2
2 decomposition of Theorem, we then get that

1 ≤ C
∫

BG′ yα (Rµα)

(
u0 +

l∑
i=1

Bi
α + Sα

)2�

dvg

≤ C
l∑

i=1

∫

BG′ yα (Rµα)

(Bi
α)

2� dvg + o(1)

≤ C
∑
i∈I0

∫

BG′ yα (Rµα)

(Bi
α)

2� dvg + o(1)

≤ C
∑
i∈I0

∫

Bȳα (Rµα)

(B̄i
α)

2� dvḡ + o(1)

where, here again, we have taken the quotient w.r.t. the group G ′: this is licit since we work
at the points xi

α such that xi∞ = y0. We can then prove exactly as in Saintier [12] that the
right-hand side of this inequality goes to 0 as α → +∞. A contradiction, and then (45)
holds.

We claim that (44) holds. Indeed, the proof goes by contradiction and we consider a

sequence of points (yα) such that limα→+∞ Rα(x)
n−k−4

2 uα(yα) = +∞. With arguments
similar to the ones above, we get that limα→+∞ yα = y0 ∈ M is such that Gy0 is an orbit of
concentration of the uα’s. Hypothesis (H) yields a group G ′ that satisfies (H1) and (H2). With
(H2), we get that dg(Gyα,Gxi

α) ≤ dg(G ′yα,G ′xi
α) for the i’s such that limα→+∞ xi

α ∈ Gy0.
Studying separately the remaining i’s, we get that Rα(yα) ≤ cR′

α(yα) and we apply (45) to
get a contradiction with our initial assumption. This proves that (44) holds.

The proof of (15) goes the same way: if (15) is not satisfies, then we construct a sequence
(yα) which traducts it. We blow-up uα at yα and we get a contradiction as above.
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