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Abstract. In this work we study a kinetic model of active particles with de-

layed dynamics, and its limit when the number of particles goes to infinity.
This limit turns out to be related to delayed differential equations with ran-

dom initial conditions. We analyze two different dynamics, one based on the

full knowledge of the individual trajectories of each particle, and another one
based only on the trace of the particle cloud, loosing track of the individual

trajectories. Notice that in the first dynamic the state of a particles is its

path, whereas it is simply a point in Rd in the second case. We analyse in
both cases the corresponding mean-field dynamic obtaining an equation for

the time evolution of the distribution of the particles states. Well-posedness

of the equation is proved by a fixed-point argument. We conclude the paper
with some possible future research directions and modelling applications.

1. Introduction

The study of large systems of interacting particles attracted a great deal of
attention in the last years. Among many other topics, we can find a growing
literature on flocking, crowds, traffic, opinion dynamics, wealth distribution, and
many other natural and social phenomena studied using kinetic equations (see
e.g. [2], [21].). Here, we will consider delayed dynamics, where the agent reaction
depends on the recent history of other agents behavior, in some sense that will be
clarified later.

Let us observe that in many cases a delay makes a priori no sense, since nobody
try to convince us of some political position that she/he held on the past, or our
reactions in a middle of a flock (a crowd, a traffic jam) depend only on the present
state of the world. However, the presence of some communication delay, or of
a reaction time between the signal and the response, are reasonable assumption
which immediately lead to introducing a delay in the model (see for instance [8],
[20]). There are many other contexts in which the recent history is clearly relevant.
For instance suppose that many agents are randomly matched in a two player
game, each one is using a mixed strategy, and they update their strategies after
each pairwise encounter depending only on the last game played, see [24] for an
example. On the other hand, using no-regret algorithms [16], the players try to
improve their strategies by considering the full history of games played.
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So, let us suppose we have an interacting population of N agents labeled i =
1, . . . , N evolving in Rd. We assume that interactions among agents are the only
factor of movement. In absence of delay we can model the evolution of each agent
by the following coupled system:

(1.1)
d

dt
x(i)(t) =

1

N

N∑
j=1

K
(
x(i)(t), x(j)(t)

)
, i = 1, . . . , N,

where the function K : Rd × Rd → Rd models the interaction between any pair
of agents. This is a mean-field framework in the sense that each agent feels the
mean influence of the rest of the population and that interactions are only binary
and modelled by the same function K regardless of the particular agents involved
in the interaction. It is a classical setting relevant in various applications ranging
from physics to biology and sociology. In biology for instance we can think of x(i)

as the pair (position, velocity) characterizing animal i. The kernel K can model a
velocity- alignment mechanism as e.g. in the classical Cucker-Smale flocking model,
or synchronization of oscillators as in the Kuramoto model. In sociology, x(i) could
be the opinion of individual i, and K then models the variation of opinions due
to interactions among individuals (see e.g. [27] or [32] and the references therein).
We refer e.g. to the survey [13] for a detailed mathematical introduction to this
subject in the absence of delay.

The main purpose of this work is to extend this theory by incorporating a general
delay. To take delay into account in the interaction between any two agents, say

i and j, we suppose that agent i reacts to the history {x(j)t (s) := x(j)(t − s), s ∈
[−τ, 0]} of agent j in the time window [t − τ, t]. Notice that x

(j)
t ∈ C([−τ, 0],Rd).

In the mean-field framework this leads to replace (1.1) by

(1.2)
d

dt
x(i)(t) =

1

N

N∑
j=1

K
(
x(i)(t), x

(j)
t

)
, i = 1, . . . , N,

where K : Rd×C([−τ, 0],Rd)→ Rd. Notice that in the delayed setting the natural
variable to characterize the state of agent i is not the value x(i)(t) ∈ Rd at time t

but his history x
(i)
t in the time window [t − τ, t]. Thus the natural state space is

not Rd but E := C([−τ, 0],Rd). From a modelling point of view this means that

(a) each agents knows exactly the trajectories x
(j)
t , t ≥ 0, of any other agents

in the population.

It may happen however that some particular choice of kernel K leads to a loss of

information in the sense that agent i does not react to the precise trajectories x
(j)
t

of others agents j in the population but only to the global distribution of agents at
each time t+ s, s ∈ [−τ, 0] without caring for the individual trajectories. Consider
e.g. the kernel K given by

(1.3) K(x(i)(t), x
(j)
t ) :=

∫ 0

−τ
K̃
(
x(i)(t), x(j)(t+ s)

)
ρ(ds),
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Figure 1. In the first model, a player who receives the informa-
tion of the image at the left panel can not distinguish between
two players who crossed (central panel) or two who touched and
bounced (right panel).

where K̃ : Rd × Rd → Rd, and ρ(ds) is a given probability measure on [−τ, 0].
System (1.2) becomes

(1.4)
d

dt
x(i)(t) =

∫ 0

−τ

1

N

N∑
j=1

K̃
(
x(i)(t), x(j)(t+ s)

)
ρ(ds), i = 1, . . . , N.

Thus this particular kernel K leads to a situation where information of the indi-
vidual trajectories is lost so that

(b) each agent knows if one agent was located at position x at some time t+ s,
without knowing exactly which specific agent was there.

This means that agents have imperfect memory: they know the trace of the paths
followed by others agents, but they are not able to identify which agent travel
each path. A typical situation depicted in Figure 1 corresponds to considering the
path in the time window [t − τ, t] at time t of two agents x(1) and x(2) namely

x
(1)
t , x

(2)
t ∈ E. For ease of notation we let σ(i) := x

(i)
t , i = 1, 2. We suppose that

these paths intersect ar time t − h for some h ∈ [−τ, 0] i.e. σ(1)(h) = σ(2)(h), and
consider the paths

σ̃(1) = σ(1)
1[−τ,h] + σ(2)

1[h,0], σ̃(2) = σ(2)
1[−τ,h] + σ(1)

1[h,0].

Then it is easily seen that for any x ∈ Rd,∫ 0

−τ
K(x, σ(1)(s)) +K(x, σ(2)(s)) dρ(s) =

∫ 0

−τ
K(x, σ̃(1)(s)) +K(x, σ̃(2)(s)) dρ(s).

Thus an agent located at x cannot distinguish the precise individual trajectories
but only the trails they left without knowing who is where.

This setting is well known in other problems in partial differential equations.
We mention for instance materials with memory as studied by Dafermos [10]. As
observed in [11], these kind of problems does not have the property of minimality,
since different initial data generate different solutions.

One of the main concern in dealing with interacting particles system like (1.1)
or (1.2) is the determination of its limit as N → +∞. The treatment of this
question in absence of delay, namely for (1.1), is classic (see e.g. [13]) and relies
on rewriting system (1.1) as a single equation for the empirical measure µN (t) :=
1
N

∑N
i=1 δ{x(i)(t)}, where δ{x(i)(t)} is the Dirac mass at x(i)(t). Notice that µN (t)
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belongs to P(Rd), the set of probability measure on Rd. It is indeed easy to see
that µN (t) is the unique solution to

(1.5)
d

dt
µ+ div(F [µ]µ) = 0,

with initial condition µN (0). Here, for a given probability measure µ on Rd,
F [µ] is the vector field given by F [µ](x) =

∫
Rd K(x, y)µ(dy). Well-posedness in

C([0,+∞),P(Rd)) of (1.5) for a wide class of initial condition is well-known (see
e.g. [13] and references therein) assuming that K is bounded Lipschitz. In par-
ticular it is known that the solution depends continuously on the initial condition.
Thus if µN (0) → µ(0) as N → +∞, we have convergence of the corresponding
solutions namely µN (t) → µ(t). In that sense we can consider (1.5) as the cor-
rect equation to treat the interacting population whether the number of agents is
finite or not. We mention that measure-valued solutions are proving increasingly
useful to model various phenomena ranging from biology (see e.g. flocking e.g. [7],
population dynamic e.g. [1],[6],[15]), game theory (e.g. [3],[25]), sociology (opinion
formation process [22],[23], political polarizaition [26],[29]) to traffic (see e.g. [9]).

In this paper we extend this approach to the delayed system (1.2). To do so
we notice that the solution µ(t) of (1.5) can also be thought of as the law of the
solution to the ODE x′(t) = F [µ(t)](x(t)) when the initial condition is chosen
randomly according to the probability distribution µ(0) ∈ P(Rd). In the delayed
setting we are thus led to consider delay differential equation with random initial
condition. We prove the well-posedness of such equations and argue that they are
the correct limit of the system (1.2) as N → +∞. Notice that now the state of the
population at time t is given by a probability measure µ(t) on E in case (a) or on
Rd in case (b). In any case

(c) at any time t ≥ 0, there exists a family of probability distributions µ(t+s),
s ∈ [−τ, 0], giving the density of agents in the time-window [t− τ, t] which
is common knowledge for all agents.

Remark 1.1. Let us mention briefly that in (c) we are using the notion of common
knowledge introduced by Aumann, see for instance [17], which implies that everybody
knows µ(x, t+ s), and also everybody knows that everybody knows that, and so on.
So, everybody will use this family of measures in order to predict the evolution of the
system. Let us note that if a particular agent knows exactly the position of finitely
many agents, this information does not enter in her/his analysis, since it is a set
of zero measure respect to µ.

As an application of our model, we can consider a population of ants moving on
some planar domain. Usually, they leave traces of pheromones that serve as a guide
to other ants, and the concentration decay with time. This chemical concentration
in some ball around an ant can be easily modeled with a kernel supported in this
ball, and weighting different the paths at different times, for instance, using∫ 0

−τ

N∑
j=1

K
(
x(i)(t), x(j)(t+ s)

)
ρ(s)ds

with ρ → 0 when t → −τ , being τ some characteristic time for the duration of
the pheromones. Let us mention the pioneer work of Fontelos and Friedman [12],
where the behavior of ants was modeled using a system of two partial differential
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equations, one governing the distribution of ants, and the other one devoted to the
generation and decay of the pheromones, see also [5]. Since new pheromones appear
in the path each ant travelled, it is enough to know their paths and weighting them
with a function of t in order to model the decay of the chemical trail. We will study
this problem in a separate work.

The paper is organized as follow. We first recall some preliminary results about
probability measures and differential equations, with and without delay. We then
study interacting particles system like (1.2) and its limit as N → +∞ in the form
of delayed differential equations with random initial condition. The main result of
this paper is the well-posedness of such equation. We go on examining in details
the case of a kernel like (1.3). We conclude by examining some possible direction
for future research. The proofs are given at the very end of the paper for an easy
flow.

2. Preliminaries

In this section we establish some notations and recall known results that we use
throughout this article.

Let us fix some constants τ > 0, the maximum value of the delay. We denote

x
(i)
t the path in the time-window [t − τ, t] of a an agent i. It is an element of the

space

(2.1) E := C([−τ, 0],Rd).

with x
(i)
t (s) := x(i)(t − s), s ∈ [−τ, 0]. We will usually denote σ a generic element

of E. We endow E with the usual sup-norm ‖σ‖∞ = maxs∈[−τ,0] |σ(s)|, σ ∈ E.

2.1. Preliminaries on probability measures. Let (X, d) be a metric space. We
denote P(X) the set of Borel probability measures on (X, d). For instance δ{x} is
the Dirac measure at the point x ∈ X which is defined for any A ⊂ X Borel by
δ{x}(A) = 1 if x ∈ A, and δ{x}(A) = 0 if x /∈ A. Notice in particular that

(2.2)

∫
X

ϕ(y) dδ{x}(y) = ϕ(x)

for any continuous function ϕ : X → R.
A measure µ ∈ P(X) has finite first moment if

∫
X
d(x, x0) dµ(x) < ∞ for some

(hence for any) x0 ∈ X. We denote P1(X) the set of such probability measures.
As a matter of notation we will indifferently denote

∫
X
f(x) dµ(x) or

∫
f(x)µ(dx).

Given another measure space Y with some σ-algebra ΣY , the push forward of a
measure µ on X by a measurable function f : X → Y is the measure f#µ on Y
defined by

(2.3) f#µ(A) := µ(f−1(A))

for each A ∈ ΣY . This is equivalent to saying that∫
Y

φd(f#µ) =

∫
X

φ ◦ f dµ

for any bounded measurable φ : Y → R.
On P1(X) we consider the Monge-Kantorovich distance W1 defined by

(2.4) W1 (µ, µ̃) := sup

{∫
X

ϕd (µ− µ̃) : ϕ : X → R, and Lip(ϕ) ≤ 1

}
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for µ, µ̃ ∈ P1(X). Here Lip(ϕ) denotes the Lipschitz constant of ϕ i. e. the
least constant C > 0 such that |φ(x) − φ(y)| ≤ Cd(x, y) for any x, y ∈ X. It is
known that if (X, d) is complete (resp. Polish, compact) then so is (P1(X),W1).

Moreover given µk, µ ∈ P1(X), the convergence W1(µk, µ)
k→+∞−→ 0 is equivalent to

the convergence
∫
φdµk →

∫
φdµ for any continuous function φ : X → R with at

most linear growth (i. e. |φ(x)| ≤ C(1+ |x|) for some C > 0). We refer e. g. to [33]
for the proof of these statements and more details on Monge-Kantorovich distance.

When X = Rd, we will need to consider space

(2.5) E := C
(
[−τ, 0],P1(Rd)

)
that we endow with the sup distance W1 defined by

(2.6) W1(µ, ν) := max
s∈[−τ,0]

W1 (µ(s), ν(s)) µ, ν ∈ E .

Notice that if (X, d) is complete, so that (P1(Rd),W1) is complete, then (E ,W1)
is complete. Eventually given some µ ∈ C

(
[−τ, T ],P1(Rd)

)
and t ∈ [0, T ] we let

µt ∈ E be defined as µt(s) := µ(t+ s), s ∈ [−τ, 0].

2.2. Preliminaries on Ordinary Differential Equations. Consider a vector
field F : (x, t) ∈ Rd × [0, T ] → F(x, t) ∈ Rd that we suppose continuous in (x, t)
and also globally Lipschitz in x uniformly in t. Then it is well-known that for any
x ∈ Rd and s ∈ R, the differential equation

(2.7) y′(t) = F(y(t), t) t ∈ R
with initial condition y(s) = x, has a unique global solution that we denote
T (s, t, x). We then have the flow property T (s, t + t′, x) = T (t, t + t′, T (s, t, x)).
Eventually for any s, t ∈ R, T (s, t, ·) : Rd → Rd is a C1-diffeomorphism with inverse
T (t, s, ·). For simplicity we will denote T (t, ·) := T (0, t, ·), t ∈ R.

Take s = 0 and suppose now that the initial condition x in (2.7) is chosen at
random following some probability measure µ(0) ∈ P(Rd). Then the solution y to
(2.7) is a random vector whose distribution µ(t) at time t is the probability measure
µ(t) := T (t, ·)]µ(0). It is well-known that for any T > 0, µ is the unique solution
in C([0, T ],P(Rd)) to the first order equation

(2.8) ∂tµ+ div(Fµ) = 0

in the sense that

(2.9)

∫
Rd

φdµ(t) =

∫
Rd

φdµ(0) +

∫ t

0

∫
Rd

F(x, t)∇φ(x)µ(s)(dx)ds

for any φ ∈ C1
c (Rd). We refer e.g. to [33]. Moreover, given two initial condition

µ(0), µ̃(0) ∈ P1(Rd), the corresponding solutions µ(t), µ̃(t) to (2.8) satisfy

(2.10) W1(µ(t), µ̃(t)) ≤ eLtW1(µ(0), µ̃(0)) t ∈ R.
where L > 0 is such that |F(x, t) − F(y, t)| ≤ L|x − y|, x, y ∈ Rd, t ≥ 0. This
follows easily from (2.4) and µ(t) := T (t, ·)]µ(0), µ̃(t) := T (t, ·)]µ̃(0).

To end this section we recall the classical Grönwall’s inequality:

Lemma 2.1 (Grönwall’s inequality). Let be u, a, b : [a, b]→ [0,∞) continuous and
such that

u(t) ≤ a(t) + b(t)

∫ t

0

u(h) dh for any t ≥ 0.
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Then

u(t) ≤ a(t) + b(t)

∫ t

0

a(h)e
∫ t
h
b dh for any t ≥ 0.

2.3. Preliminaries on Delay Differential Equations. A Delay Differential Equa-
tion (DDE) is an equation of the form

(2.11) x′(t) = F (t, xt)

where x takes in values in Rp for a given p, xt ∈ C([−τ, 0],Rp) is defined as before
by xt(s) := x(t+ s), and F : (t, σ) ∈ R× C([−τ, 0],Rp) → F (t, σ) ∈ Rp. Thus the
evolution of x at time t depends on the past history of x in [t− τ, t]. For instance

if F (t, σ) = F̃ (t, σ(0)) for some F̃ : R×Rp → R, then the DDE (2.11) becomes the

ODE x′(t) = F̃ (t, x(t)). In general given a probability measure ρ ∈ P([−τ, 0]), we

can consider F (σ) =
∫ 0

−τ F̃ (s, σ(s)) dρ(s). In that case the DDE (2.11) becomes

x′(t) =

∫ 0

−τ
F̃ (s, x(t+ s)) dρ(s)

so that the evolution of x at time t depends on the previous states x(t+s) weighted

by ρ. We recover the ODE x′(t) = F̃ (x(t), t) taking ρ = δ{0}.
To start the evolution from t = 0, we must prescribe the values of x(s), s ∈

[−τ, 0]. Thus the DDE must be complemented with an initial condition of the form

x(s) = φ(s), s ∈ [−τ, 0]

i. e. x0 = φ in [−τ, 0], for some function φ ∈ C([−τ, 0],RN ).
We refer to the classical book [14] and also to the more recent book [30] for a

thorough treatment of DDE. We quote in particular the following existence and
uniqueness result from [30], see also section 2.3 in [14]:

Theorem 2.1. [Thm. 3.7, p.32] Suppose that F :∈ C([−τ, 0],Rp) × R → Rp is
continuous and satisfies the following local Lipschitz condition: for all a, b ∈ R and
M > 0, there exists L > 0 such that:

|F (t, σ)− F (t, σ̃)| ≤ L‖σ − σ̃‖

for any t ∈ [a, b] and σ, σ̃ ∈ C([−τ, 0],Rp) such that ‖σ‖, ‖σ̃‖ ≤M .
Then for any M > 0, there exists δ > 0 depending only on M , such that for

any initial condition φ ∈ C([−τ, 0],Rp) such that ‖φ‖ ≤ M , there exists a unique
solution x to the DDE defined up to time δ:{

x′(t) = F (xt, t) 0 ≤ t < δ,
x0 = φ.

Observation 2.1. It follows from Remark 3.8 in [30] that in the setting of Theorem
2.1, if F satisfies a global Lipschitz condition instead of a local one, that is, if L
can be chosen independent of a, b, M , then the solution x exists for all t ≥ 0.

We will see in the next section how the study of interacting particles systems with
delay naturally leads to consider DDE with random initial condition in the same
spirit that (2.8) stems from considering the ODE (2.7) where the initial condition
is chosen at random following some probability distribution µ(0).
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3. Interacting particles system with delay.

As explained in the introduction this paper is devoted to the study of a inter-
acting particles system with delay of the form (1.2), namely

(3.1)
d

dt
x(i)(t) =

1

N

N∑
j=1

K
(
x(i)(t), x

(j)
t

)
, i = 1, . . . , N,

where the interaction kernel is K : Rd × E → Rd with E = C([−τ, 0],Rd).
We assume that

(H) K : (x, σ) ∈ Rd × E → K(x, σ) ∈ Rd is globally Lipschitz: there exists
L > 0 such that for any x, x̃ ∈ Rd and any σ, σ̃ ∈ E,

|K(x, σ)−K(x̃, σ̃)| ≤ L(|x− x̃|+ |σ − σ̃|).
A direct application of Theorem 2.1 and Remark 2.1 shows that

Theorem 3.1. If K satisfies asssumption (H) then for any σ1
in, . . . , σ

N
in ∈ E, there

exists a unique solution to (3.1) with initial condition xi0 = σiin, i = 1, . . . , N .

Proof. For each i = 1, . . . , N , define Fi : C([−τ, 0], (Rd)N )→ Rd by

Fi(σ) =
1

N

N∑
j=1

K(σi(0), σj), σ = (σ1, . . . , σN ).

Then (3.1) is d
dtσ

i(t) = Fi(σ
1
t , . . . , σ

N
t ), i = 1, . . . , N . It is easily seen using as-

sumption (H) that F1, . . . , FN are globally Lipschitz. The result then follows from
Theorem 2.1 and Remark 2.1. �

Denote µN (t) the empirical measure associated to x1t , . . . , x
N
t namely

(3.2) µN (t) :=
1

N

N∑
i=1

δ
{
x
(i)
t

}
,

where δ
{
x
(i)
t

}
is the Dirac mass at the point xit of E. Notice that µN ∈ C([0,+∞),P(E)).

Independently for any µ ∈ C([0,+∞),P(E)), consider the vector fields F [µ] :
R× Rd → Rd defined by

(3.3) F [µ](t, x) =

∫
E

K(x, σ)µ(t)(dσ).

Then (3.1) can be written as

(3.4)
d

dt
x(i)(t) = F [µN ](t, x(i)(t)) i = 1, . . . , N.

We can interpret this system of equations thinking that we are solving the equa-
tion

d

dt
x(t) = F [µN ](t, x(t))

choosing the inital condition in the set {x(1)0 , . . . , x
(N)
0 } with equiprobability i. e.

following µN (0). Then µN (t) is the distribution of xt. Thus as N → +∞ the limit
µ(t) := limN→+∞ µN (t), if it exists, should satisfy the equation

d

dt
X(t) = F [µ](t,X(t))(3.5)
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where Xt is a random variable with values in E whose distribution is µ(t), and the
initial condition is a given random variable X0 : Ω → E (where Ω is a underlying
probability space) with distribution µ(0) := limN→+∞ µN (0) (if the limit exists).
This equation is understood in a path-wise sense: for almost any ω ∈ Ω,

X(t)(ω) = X0(0)(ω) +

∫ t

0

F [µ](s,X(s)(ω)) ds t ≥ 0,

X(t)(ω) = X0(t)(ω) t ∈ [−τ, 0].

(3.6)

We are thus led to consider the random delay differential equation

(3.7)

{
X ′(t) = F [µ](t,X(t)) =

∫
CK(X(t), σ) dµ(t, σ), µ(t) = L(Xt),

µ(0) = L(X0),

where L(Xt) ∈ Prob(E) denotes the distribution of Xt. We have the following
well-posedness result:

Theorem 3.2. Suppose that K : Rd × E → Rd satisfies assumption (H) above.
For any R0 > 0 and any initial distribution µ(0) ∈ Prob(E) supported in the ball
B0(R0) ⊂ E, there exists a unique solution to (3.7) in a path-wise sense.

Moreover, given two initial condition µin, νin ∈ P(E) supported in some ball
B0(R0), the law µ(t) and ν(t) of the corresponding solution satisfy

(3.8) W1(µ(t), ν(t)) ≤ r(t)W1(µin, νin)

for some explicit continuous function r : [0,+∞)→ [0,+∞) such that r(0) = 1.

The proof of this result is given in section 6 below. It consists first in rewriting
the problem as fixed-point equation for curves in P(E), and then applying the
standard Banach fixed-point Theorem. In particular the law µ(t) of Xt is shown to
be characterized by the fixed-point equation

(3.9) (res[t] ◦ ext[µ])]µin = µ(t) t ≥ 0,

where the restriction operator res[t], t ≥ 0, is defined by

res[t] : C([−τ,+∞),Rd) → E
σ 7→ σt,

and the extension operator ext[µ] is

(3.10)
ext[µ] : E → C([−τ,+∞),Rd)

σ 7→
{
σ(t) if t ≤ 0
T (t, σ(0);µ) if t > 0,

being T (s, t, x;µ) the flow of te vector field (t, x)→ F [µ](t, x).
Coming back to the system (3.1), suppose that the empirical measure associated

to the initial conditions x
(i)
0 , namey µN (0) = 1

N

∑N
i=1 δ{x

(i)
0 } ∈ Prob(E) converges

as N → +∞ to some measure µ(0) ∈ P(E). Denote µ(t) the solution of the fixed-
point equation (3.9) i. e. µ(t) is the law of the unique solution X(t) to (3.7). Then
according to (3.8),

W1(µN (t), µ(t)) ≤ r(t)W1(µN (0), µ(0)) t ≥ 0,

so that for any t ≥ 0,

lim
N→+∞

W1(µN (t), µ(t)) = 0.



10 J.P. PINASCO, M. RODRIGUEZ CARTABIA, N. SAINTIER

We can thus consider that (3.9), or equivalently (3.7), is the correct equation to
describe an arbitrary population of agents interacting through binary interaction
via the kernel K.

4. Imperfect vs perfect memory

In our general model an agent at some time t updates his trajectory reacting
to the past history in [t − τ, t] of all the others individuals. We can thus consider
he/she has a perfect memory of all individual history in the recent past [t − τ, t].
However, it may happen that for some specific interaction kernel K this complete
knowledge is not fully used. Consider for instance the kernel

(4.1) K(x, σ) =

∫ 0

−τ
K̃(x, σ(s)) dρ(s) x ∈ Rd, σ ∈ E,

for some probability measure ρ ∈ P([−τ, 0]) and kernel K̃ : Rd × Rd → Rd. Then
the system (3.1) of interacting agents becomes

d

dt
x(i)(t) =

1

N

∑
j

∫ 0

−τ
K̃(x(i)(t), x(j)(t+ s)) dρ(s).(4.2)

We assume that

(H’) K̃ : Rd × Rd →∈ Rd is globally Lipschitz: there exists L > 0 such that for
any x, x̄, y, ȳ ∈ Rd,

|K(x, y)−K(x̄, ȳ)| ≤ L(|x− x̄|+ |y − ȳ|).

It follows that K satisfies assumption (H) so that (4.2) has a unique solution for

any given initial condition x
(1)
0 , . . . , x

(N)
0 .

Introducing

µ̃N (t) =
1

N

N∑
j=1

δ{x(j)(t)} ∈ P(Rd), s ∈ R,

equation (4.2) can be rewritten

(4.3)
d

dt
x(i)(t) =

∫ 0

−τ

(∫
Rd

K̃(x(i)(t), y) µ̃N (t+ s)(dy)
)
dρ(s) i = 1, . . . , N.

The measure µ̃N (s) gives the distribution at time s of the agents in Rd. Thus
the time evolution of each x(i)(t) depends only on this distribution at time t + s,
s ∈ [−τ, 0], and not on the full knowledge of individual trajectories. In that sense
we can say that agents have imperfect memory of the past: they only need to know
the past distribution of the whole population and not the precise trajectory of each
individual. So it seems that in this case the natural state space is P(Rd).

For any µ̃ ∈ C([−τ,+∞],P(Rd)), let us introduce the vector field

(4.4) F̃ [µ̃](t, x) :=

∫ 0

−τ

(∫
Rd

K̃(x, y) µ̃(t+ s)(dy)
)
dρ(s) t ≥ 0, x ∈ Rd.

Thus,
d

dt
x(i)(t) = F̃ [µ̃N ](x(i)(t)) i = 1, . . . , N, t ≥ 0.
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Given some test function ϕ ∈ C1
c (Rd), taking the time derivative of

∫
φdµN (t) =

1
N

∑N
i=1 ϕ(x(i)(t)), we obtain

d

dt

∫
Rd

ϕ(x) dµN (x, t) =
1

N

N∑
i=1

∇ϕ(x(i)(t)) · F̃
[
µN
]

(x(i)(t))

=

∫
Rd

∇ϕ(x) · F̃
[
µN
]

(x)µN (t)(dx).

Thus µN is a solution, in the sense of definition (2.9), of the equation

(4.5)
d

dt
µ+ div

(
F̃ [µ]µ

)
= 0,

with initial condition µ0 = µ̃N0 i. e. µ(s) = µ̃N (s) for s ∈ [−τ, 0].
The next result states this equation is well-posed for arbitrary initial condition:

Theorem 4.1. For any R0 > 0 and any initial condition µin ∈ E such that µin(t) is
suported in the ball B0(R0) ⊂ Rd for any t ∈ [−τ, 0], there exists a unique solution
µ ∈ C

(
[−τ,∞),P1

(
Rd
))

to (4.5) with intial condition µ0 = µin. Moreover µ(t)
has compact support for any t ≥ 0.

Eventually, the solution depends continuously on the initial data: there exists a
continuous increasing function r : [0,∞) → [1,∞) with r(0) = 1 such that for any
compactly supported initial conditions µin and νin, the corresponding solutions µ(t)
and ν(t) of (4.5) satisfy

(4.6) W1 (µt, νt) ≤ r(t)W1(µin, νin),

where the distance W is defined in (2.6).

The proof of this result is given in section 7 below.
As before, the estimate (4.6) allows us to consider equation (4.5) as the correct

limit as N → +∞ of the interacting agents system (4.3).
However, system (4.3) is an example of the general system (3.1), we must study

how both equations (4.5) and (3.9) are related. For any s ∈ [−τ, 0], denote ev(s)
the evaluation operator defined by

ev[s] : E → Rd
σ 7→ σ(s).

Notice in particular that for any µ(0) ∈ P(E) and any s ∈ [−τ, 0], we have
ev(s)]µ(0) ∈ P(Rd). Moreover if we assume that µ(0) is supported in some ball
B0(R0) ⊂ E then the curve s ∈ [−τ, 0]→ ev(s)]µ(0) ∈ P(Rd) is continuous.

So, we have

Theorem 4.2. Fix some R0 > 0 and an initial distribution µ(0) ∈ P(E) supported
in the ball B0(R0) ⊂ E, and denote µ(t) be the unique solution of the fixed-point
equation (3.9) as given by Theorem 3.2. Then µ̃(t) := ev(0)]µ(t) ∈ P(Rd) is the
unique solution of (4.5) with initial condition µ̃(s) := ev(s)]µ(0), s ∈ [−τ, 0].

The proof of this result is deferred to section 8 below.
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5. Conclusions and future work

In this work we considered an interacting population of agents incorporating a
delay in the dynamic. We argued that a useful way to study this dynamic for an
arbitrary number of agents is through a delayed differential equation with random
initial condition where the vector field depends on the distribution of the solution
itself. We showed well-posedness of this equation using a fixed-point argument.
Eventually we studied a particular case where information is lost and how it is
related to the general case.

To conclude we want to comment briefly on some possible extensions of this
work.

First we could add a noise to the random delayed differential equation (3.7), and
consider for instance the stochastic delayed differential equation

(5.1)

{
dX(t) = F [µ(t)](t,X(t))dt+ σ(µ(t))dW (t), µ(t) = L(Xt)
µ(0) = L(X0)

This is a delayed version of the classic McKean-Vlasov process [19]. In the absence
of delay, well-posedness results are known under various regularity and growh as-
sumptions of the coefficients (see e.g. the classical [31], the references in [4], and also
Chapter 5 in [28] and Chapter 6 in [18] for a very general theory). We also mention
the recent preprint [4] where the authors study a McKean stochastic equation, with
a fixed delay τ , of the form

dX(t) =b(X(t), X(t− τ),L(X(t),L(X(t− τ)))dt

+ σ(X(t), X(t− τ),L(X(t),L(X(t− τ)))dW (t).

Delayed dynamic for interacting population could also be interesting from a
modelling point of view. Indeed, an agent updates its position reacting to the
past trajectories of other agents. In particular he could react to some geometric
features of these trajectories thus allowing to anticipate to some extent the future
movements of others agents. This should be interesting in the modelling of crowds
or interactions predator-preys.

The remaining sections of the paper are devoted to the proof of Theorem 3.2,
Theorem 4.1 and Theorem 4.2.

6. Proof of Theorem 3.2

This section is devoted to the proof of Theorem 3.2 concerning the well-posedness
of

(6.1)

X
′(t) = F [µ](t,X(t)) =

∫
C
K(X(t), σ) dµ(t, σ), µ(t) = L(Xt) t ≥ 0,

µ(0) = L(X0)

where K : Rd ×E → Rd, with E = C([−τ, 0],Rd), satisfies assumption (H) namely
there exists L > 0 such that for any x, x̃ ∈ Rd and any σ, σ̃ ∈ E,

|K(x, σ)−K(x̃, σ̃)| ≤ L(|x− x̃|+ |σ − σ̃|).

The proof consists in two steps. First we want to rewrite (6.1) as a fixed-point
problem. We fix some T > 0. Notice first that, as a consequence of assumption
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(H), for any ν ∈ C([0, T ],P1(E)), the vector field (t, x) → F [ν](t, x) is continuous
and Lipschitz in x ∈ Rd uniformly in t ∈ [0, T ]. Indeed

|F [ν](t, x)−F [ν](t̃, x̃)|

≤
∣∣∣ ∫ K(x, σ)

(
ν(t)(dσ)− ν(t̃)(dσ)

)∣∣∣+

∫
|K(x, σ)−K(x̃, σ)| ν(t̃)(dσ)

≤ L
(
W1(ν(t), ν(t̃)) + |x− x̃|

)
where we used that the function σ → K(x, σ) is L-Lipschitz for any x ∈ Rd. Let
T (s, t, x; ν) be the flow of F [ν](t, x), i. e.,

d

dt
T (s, t, x; ν) = F [ν](T (s, t, x; ν), t) t ∈ R,

T (s, s, x; ν) = x.

Then the solution of the DDE

d

dt
x(t) = F [ν](t, x(t))

starting from x0 ∈ E is

(6.2) x(t) =

{
x0(t) t ∈ [−τ, 0],

T (0, t, x(0); ν) t ≥ 0.

If the initial condition is a random variable X0 : Ω→ E, then the unique pathwise
solution to

(6.3) X ′(t) = F [ν](t,X(t))

is the random variable X(t) defined by

(6.4) X(t)(ω) =

{
X0(t)(ω) t ∈ [−τ, 0],

T (0, t,X0(0); ν)(ω)) t ≥ 0

for any ω ∈ Ω.
To simplify notation we introduce the following extension operator

(6.5)
ext[ν] : E → C([−τ,+∞),Rd)

σ 7→
{
σ(t) if t ≤ 0
T (0, t, σ(0);µ) if t > 0.

Thus X(t) = ext[ν](X0). Snce E is the natural state space for DDE, we also need
the restriction operator res[t] : C([−τ, T ],Rd)→ E defined by

res[t] : C([−τ,+∞),Rd) → E
σ 7→ σt.

Notice that

res[t] ◦ ext[ν] : E → E

and that

Xt = (res[t] ◦ ext[ν])(X0).

Denoting ν̃(t) the distribution of Xt and µ(0) that of X0, it follows that

(6.6) ν̃t = (res[t] ◦ ext[ν])]µ0.
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Indeed, for any φ : E → R measurable and bounded, we have∫
E

φdν̃(t) = E[φ(Xt)]

= E[φ((res[t] ◦ ext[ν])(X0))]

=

∫
φ ◦ (res[t] ◦ ext[ν]) dµ(0)

=

∫
φd((res[t] ◦ ext[ν])]µ(0)).

In conclusion, for any ν ∈ C([0,+∞),P1(E)) the solution Xt to (6.3) with an initial
condition distributed as µ0 has distribution ν̃t given by (6.6). We thus deduce that

Step 1. A stochastic process Xt with distribution µt is solution of (6.1) path-wise
with initial condition µ0 if and only if µt satisfies the fixed-point equation

(6.7) µt = (res[t] ◦ ext[µ])]µ0 t ≥ 0.

We must therefore prove that the fixed-point equation (6.7) has a unique solution.
From now on we assume that the distribution µ0 of the initial condition is supported
in the B0(R0) ⊂ E. For a time T > 0 to be specified later, we consider the map Γ
defined by

(6.8)
Γ : C([0, T ],P1(E)) → C([0, T ],P1(E))

µ(·) 7→ (res[·] ◦ ext[µ])#µ0.

We also consider the set

AT :=
{
µ ∈ C([0, T ],P1(E)) : µ(0) = µin, and suppµ(t) ⊂ B0(2R0)∀ t ∈ [0, T ]

}
.

We endow P1(E) with the W1 distance and C([0, T ],P1(E)) with the associated sup
distance maxt∈[0,T ]W1(µ(t), ν(t)) for µ, ν ∈ C([0, T ],P1(E)). Since (P1(E),W1) is
complete, C([0, T ],P1(E)) is also complete. Endowed with the same distance, AT
is therefore complete as a closed subspace of C([0, T ],P1(E)).

We will apply the classical Banach fixed point to Γ and AT for T small enough.

Step 2. There exists T > 0 depending only on L (as defined in assumption (H))
such that Γ(AT ) ⊂ AT and Γ is a contraction in AT in the sense that there is a
C ∈ [0, 1) such that

max
t∈[0,T ]

W1(Γ(µ)(t),Γ(ν)(t)) ≤ C max
t∈[0,T ]

W1 (µ(t), ν(t)) .

It follows that Γ has a unique fixed point in AT . We can then repeat the
argument in [T, 2T ], [2T, 3T ], ... to obtain the unique µ solving (6.7).

Before beginning the proof of Step 2, we state an easy lemma concerning the
flow T (s, t, x;µ) of the vector field (t, x)→ F [µ](t, x) for µ ∈ AT .

Lemma 6.1. There exists C > 0 depending only on R0 and K such that for any
x, y ∈ Rd, any µ, ν ∈ AT , and any t ∈ [0, T ], there holds

|T (t, x;µ)| ≤ |x|eCt + (eCt − 1)(1 + 2R0),(6.9)

|T (t, x;µ)− T (t, y;µ)| ≤ eLt|x− y|,(6.10)

|T (t, x;µ)− T (t, x; ν)|

≤ L
∫ t

0

(
W1(µ(h), ν(h)) + L

∫ h

0

W1(µ(r), ν(r)) dr eL(t−h)

)
dh.(6.11)
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Proof. In view of assumption (H) there exists C > 0 depending only on K such
that |K(x, σ)| ≤ C(1 + |x|+ |σ|) for any x ∈ Rd and σ ∈ E. Since µ(t) is supported
in B0(R0) ⊂ E for any t ∈ [0, T ] we obtain

F [µ](t, x) ≤ C
∫
E

(1 + |x|+ |σ|)µ(t)(dσ) ≤ C(1 + |x|+ 2R0).

From this we obtain

|T (t, x;µ)| ≤ |x|+
∫ t
0
|F [µ](T (h, x;µ), h)| dh

≤ |x|+ C(1 + 2R0)t+ C
∫ t
0
|T (h, x;µ)| dh.

We deduce (6.9) applying Grönwall’s lemma 2.1.
To prove (6.10) we first notice that

(6.12) |F [µ](t, x)−F [µ](t, y)| ≤
∫
E

|K(x, σ)−K(y, σ)|µ(t)(dσ) ≤ L|x− y|.

Thus

|T (t, x;µ)− T (t, y;µ)| ≤ |x− y|+
∫ t

0

|F [µ](h, T (h, x;µ))−F [µ](h, T (h, y;µ))| dh

≤ |x− y|+ L

∫ t

0

|T (h, x;µ)− T (h, y;µ)| dh.

We deduce (6.10) applying Grönwall’s lemma 2.1.
We eventually prove (6.11). First for any h ∈ [0, T ] and x ∈ Rd,

|F [µ](h, x)−F [ν](h, x)| ≤
∣∣∣ ∫
E

K(x, σ) (µ(h)− ν(h))(dσ)
∣∣∣ ≤ LW1(µ(h), ν(h))

where we used that K(x, σ) is L-Lipschitz in σ for any x ∈ Rd. Thus using (6.12)
we obtain

|F [µ](h, x)−F [ν](h, y)| ≤ |F [µ](h, x)−F [µ](h, y)|+ |F [µ](h, y)−F [ν](h, y)|
≤ L|x− y|+ LW1(µ(h), ν(h)).

Thus

|T (t, x;µ)− T (t, x; ν)| ≤
∫ t

0

|F [µ](h, T (h, x;µ))−F [ν](h, T (h, x; ν))| dh

≤ L
∫ t

0

W1(µ(h), ν(h)) dh+ L

∫ t

0

|T (h, x;µ)− T (h, x; ν)| dh.

Applying Grönwall’s lemma gives (6.11). �

We are now in position to prove Step 2:

Proof of Step 2. We first prove that Γ(AT ) ⊂ AT . Fix some µ ∈ AT . Since µin is
a probability measure it follows from the definition (2.3) of the push-forward that
Γ(µ)(t) is a probability measure for all t ≥ 0. Also because res[0] ◦ ext[µ] is the
identity in E we have Γ(µ)(0) = µin.

For any σ ∈ E such that ‖σ‖ ≤ R0 we have by definition of ext[µ] that for any
t ∈ [0, T ],

‖res[t] ◦ ext[µ](σ)‖ ≤ max
h∈[−τ,T ]

|ext[µ](σ)(h)| ≤ max
h∈[0,T ]

{|Th(σ(0);µ)| , ‖σ‖}.
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Using (6.9) we deduce that

‖res[t] ◦ ext[µ](σ)‖ ≤ max
{
R0e

CT + (eCT − 1)(1 + 2R0), R0

}
which is ≤ 2R0 for T small enough depending only on C i. e. on K. As a
consequence for any ϕ : E → R supported outside the ball B0(2R0), we have
ϕ(res[t] ◦ ext[µ](σ)) = 0 for any ‖σ‖ ≤ R0. Since µin is supported in B0(R0) we
obtain ∫

E

ϕ(σ) dΓ(µ)(σ, t) =

∫
E

ϕ(res[t] ◦ ext[µ](σ)) dµin(σ) = 0.

Thus, supp Γ(µ)(t) ⊂ B0(2R0) for any t ∈ [0, T ].
We eventually prove that Γ(µ)(t) is continuous in t for the distance W1. Since

supp Γ(µ)(t) ⊂ B0(2R0), it is enough to prove that

lim
s→t

∫
φd(Γ(µ)(s)− Γ(µ)(t)) = 0

for any φ : E → E bounded continuous. Fix such a φ. Then∫
E

φd(Γ(µ)(s)−Γ(µ)(t)) =

∫
E

φ(res[s] ◦ ext[µ](σ))−φ(res[t] ◦ ext[µ](σ)) dµ(0)(σ).

We can pass to the limit s → by applying the Dominated Convergence Theorem
using that res[s] ◦ ext[µ](σ) is continuous in t.

We now verify that Γ is a strict contraction for T small enough. Let τ0 =
min{τ, t}. For any µ, ν ∈ AT we have using (6.11) that

(6.13)

‖res[t] ◦ ext[µ](σ)− res[t] ◦ ext[ν](σ)‖
= maxs∈[−τ0,0] |Tt+s(σ(0);µ)− Tt+s(σ(0); ν)|
≤ maxs∈[−τ0,0]

∣∣∣L ∫ t+s0
W1(µ(h), ν(h)) dh

+L2
∫ t+s
0

∫ h
0
W1(µ(r), ν(r)) dr eL(t+s−h) dh

∣∣∣
≤ L

∫ t
0
W1(µ(h), ν(h)) dh+ L2

∫ t
0

∫ h
0
W1(µ(r), ν(r)) dr eL(t−h) dh.

Then, for every ϕ : E → Rd 1-Lipschitz and any t ∈ [0, T ], we have using (6.13)
that ∣∣∣∣∫

E

ϕ(σ) d(Γ(µ)(t)− Γ(ν)(t))(σ)
∣∣∣

=

∫
E

|ϕ(res[t] ◦ ext[µ](σ))− ϕ(res[t] ◦ ext[ν](σ))| dµin(σ)

=

∫
E

‖(res[t] ◦ ext[µ](σ))− (res[t] ◦ ext[ν](σ))‖ dµin(σ)

≤ max{L,L2}CT max
h∈[0,T ]

W1(µ(h), ν(h)),

where CT → 0 as T → 0. Taking the supremum over all such ϕ we deduce

max
t∈[0,T ]

W1(Γ(µ)(t),Γ(ν)(t)) ≤ max{L,L2}CT max
h∈[0,T ]

W1(µ(h), ν(h)).

We thus take T small enough so that max{L,L2}CT < 1. �

We eventually prove that the unique fixed point of Γ depends continuously on
the initial condition.
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Step 3. Given two initial condition µino, νinp ∈ P(E) supported in some ball
B0(R0), the corresponding fixed-point µ and ν solution for t ≥ 0 of

µt = (res[t] ◦ ext[µ])]µinp and νt = (res[t] ◦ ext[ν])]νinp

satisfy

(6.14) W1(µ(t), ν(t)) ≤ r(t)W1(µin, νin).

for some continuous increasing function r : [0,+∞)→ [1,∞) such that r(0) = 1.

Proof. Observe first that for any µ ∈ AT and any σ, σ̃ ∈ E, we have using (6.10)
that

‖res[t] ◦ ext[µ](σ)− res[t] ◦ ext[µ](σ̃)‖

≤ max

{
max
h∈[0,t]

|Th(σ(0);µ)− Th(σ̃(0);µ)|, ‖σ − σ̃‖
}

≤ max

{
max
h∈[0,t]

eLh |σ(0)− σ̃(0)|, ‖σ − σ̃‖
}

≤ eLt ‖σ − σ̃‖

Therefore, (res[t] ◦ ext[µ]) is eLt-Lipschitz.
Then, for every ϕ : C → Rd 1-Lipschitz we have using (6.13) that∣∣∣ ∫

E

ϕ(σ) d(µ(t)− ν(t))(σ)
∣∣∣

=

∣∣∣∣∫
E

ϕ(res[t] ◦ ext[µ](σ)) dµin(σ)−
∫
E

ϕ(res[t] ◦ ext[ν](σ)) dνin(σ)

∣∣∣∣
≤
∣∣∣ ∫
E

ϕ(res[t] ◦ ext[µ](σ)) d(µin − νin)(σ)
∣∣∣

+

∫
E

|ϕ(res[t] ◦ ext[µ](σ))− ϕ(res[t] ◦ ext[ν](σ))| dνin(σ).

Since (res[t]◦ext[µ]) is eLt-Lipschitz, the first term is bounded by eLtW1(µin, νin).
We bound the 2nd term using (6.13) by∫

E

|(res[t] ◦ ext[µ](σ))− (res[t] ◦ ext[ν](σ))| dνin(σ)

≤ L
∫ t

0

W1(µ(h), ν(h)) dh+ L2

∫ t

0

∫ h

0

W1(µ(r), ν(r)) dr eL(t−h) dh

≤ L
∫ t

0

W1(µ(r), ν(r)) dr

(
1 + L

∫ t

0

eL(t−h) dh

)
We thus obtain∣∣∣ ∫

E

ϕ(σ) d(µ(t)− ν(t))(σ)
∣∣∣ ≤ eLtW1(µin, νin) + LeLt

∫ t

0

W1(µ(r), ν(r)) dr.

Taking the supremum over all such φ gives

W1(µ(t), ν(t)) ≤ eLtW1(µin, νin) + LeLt
∫ t

0

W1(µ(r), ν(r)) dr.

We deduce (6.14) applying Gronwall’s Lemma 2.1. �
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7. Proof of Theorem 4.1.

The proof of Theorem 4.1 is very similar to the proof of Theorem 3.2 so we will
only sketch it.

We fix R0 > 0 and an initial condition µin ∈ C([−τ, 0],P(Rd)) such that
µin(s)(B0(R0)) = 1 for any s ∈ [−τ, 0].

Recall that for any µ ∈ C([−τ, T ],P(Rd)), the unique solution in C([−τ, T ],P(Rd))
of

∂tν + div(F̃ [µ]ν) = 0, t ≥ 0

with initial condition ν0 = µin and where F̃ [µ] is defined in (4.4), is given by ν = Γµ
where Γ : C([−τ, T ],P1(Rd))→ C([−τ, T ],P1(Rd)) is defined by

Γ[µ](t) =

{
µin(t) if t ≤ 0,

T̃ (t, ·;µ)#µin(0) if t ≥ 0.

Here T̃ (t, x;µ) is the flow of F̃ [µ]. We must therefore prove that Γ has a unique
fixed point.

We look for such a fixed point in the set AT defined by

AT = {µ ∈ C([−τ, T ],P(Rd)) : µ0 = µin, suppµ(t) ⊂ B0(2R0), ∀ t ∈ [0, T ]}.

We endow C([−τ, T ],P(Rd)) with the distance maxs∈[−τ,T ]W1 (µ(s), ν(s)) that makes
it complete. With the induced distance, AT is closed and thus complete.

Because we assumed that K̃ satisfies assumption (H’), properties (6.9) and (6.10)

stated in Lemma 6.1 hold with T̃ (t, x;µ) in place of T (t, x;µ). Concerning (6.11),
it must be replaced by

|T̃ (t, x;µ)− T̃ (t, x; ν)| ≤ LeLt
∫ t

0

W1(µs, νs) ds(7.1)

for any µ, ν ∈ AT , t ≥ 0, and x ∈ Rd, and whereW1(µs, νs) = maxh∈[−τ,0]W1(µ(s+
h), ν(s+ h)). Indeed,

|F̃ [µ](t, x)− F̃ [ν](t, x̄)| ≤ |F̃ [µ](t, x)− F̃ [µ](t, x̄)|+ |F̃ [µ](t, x̄)− F̃ [ν](t, x̄)|
≤ L|x− x̄|

+

∫ 0

−τ

∫
Rd

K̃(x̄, y)(µ(t+ s)(dy)− ν(t+ s)(dy)) dρ(s).

Since K(x̄, .) is L-Lipschitz, the second term can be bounded by

L

∫ 0

−τ
W1(µ(t+ s)(dy), ν(t+ s)(dy)) dρ(s) ≤ LW1(µt, νt).

Thus

|F̃ [µ](t, x)− F̃ [ν](t, x̄)| ≤ L|x− x̄|+ LW1(µt, νt).

We then obtain

|T̃ (t, x;µ)− T̃ (t, x; ν)| ≤
∫ t

0

|F̃ [µ](s, T̃ (s, x;µ))− F̃ [ν](s, T̃ (t, x; ν))| ds

≤ L
∫ t

0

W1(µs, νs) ds+ L

∫ t

0

|T̃ (s, x;µ)− T̃ (s, x; ν)| ds.

Gronwall’s inequality then gives (7.1).
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We can then prove, as in the proof of Theorem 3.2, that for a small enough T
depending only on L (defined in assumption (H’)), we have Γ(AT ) ⊂ AT and Γ a
strict contraction, i. e., there is a constant C ∈ [0, 1) such that

max
t∈[0,T ]

W1 (Γ(µ)(t),Γ(ν)(t)) ≤ C max
t∈[0,T ]

W1(µ(t), ν(t)) µ, ν ∈ AT .

We deduce the existence of a unique fixed point of Γ in AT . Iterating this argument
gives the existence and uniqueness statement of Theorem 4.1.

To finish the proof we have to prove the continuous dependence of the solution
with respect to the initial data. Fix another initial condition νin and denote ν the
corresponding solution. For every 1-Lipschitz ϕ : Rd → R we have for t ≥ 0 that∫

Rd

ϕ(x) (µ(t)(dx)− ν(t)(dx))

=

∫
Rd

ϕ(T̃ (t, x;µ))µin(0)(dx)−
∫
Rd

ϕ(T̃ (t, x; ν)) νin(0)(dx)

=

∫
Rd

ϕ(T̃ (t, x;µ)) (µin(0)(dx)− νin(0)(dx))

+

∫
Rd

ϕ(T̃ (t, x;µ))− ϕ(T̃ (t, x; ν)) νin(0)(dx)

=: A+B.

We bound A by

A ≤ Lip(ϕ(T̃ (t, ·;µ)))W1(µin(0), νin(0)) ≤ eLtW1(µin(0), νin(0)).

Concerning B we use that φ is 1-Lipschitz and (7.1) to write

B ≤
∫
Rd

|T̃ (t, x;µ))− T̃ (t, x; ν)| νin(0)(dx) ≤ LeLt
∫ t

0

W1(µs, νs) ds.

Thus after taking the supremum over all 1-Lipschitz functions ϕ we obtain

W1(µ(t), ν(t)) ≤ eLt
(
W1(µin(0), νin(0)) + L

∫ t

0

W1(µs, νs) dh

)
t ≥ 0.

Incorporating times t ∈ [−τ, 0], we obtain

W1(µ(t), ν(t)) ≤ eLt
(
W1(µin, νin) + L

∫ t

0

W1(µs, νs) dh

)
t ≥ −τ.

We have in particular that for any t ≥ 0 and h ∈ [−τ, 0],

W1(µ(t+ h), ν(t+ h)) ≤ eLt
(
W1(µin, νin) + L

∫ t

0

W1(µs, νs) dh

)
so that

W1(µt, νt) ≤ eLt
(
W1(µin, νin) + L

∫ t

0

W1(µs, νs) dh

)
t ≥ 0.

Gronwall’s lemma yields the result.
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8. Proof of Theorem 4.2.

Fix some R0 > 0 and an initial distribution µ(0) ∈ P(E) supported in the ball
B0(R0) ⊂ E, and denote µ(t) be the unique solution of the fixed-point equation
(3.9) as given by Theorem 3.2. We must prove that µ̃(t) := ev(0)]µ(t) ∈ P(Rd) is
the unique solution of (4.5) with initial condition µ̃(s) := ev(s)]µ(0), s ∈ [−τ, 0].

Let us first observe that

(8.1) ev(s)]µ(t) = µ̃(t+ s) for any t ≥ 0 and s ∈ [−τ, 0].

Indeed for any σ ∈ C([−τ,+∞),Rd), we have

(ev(s) ◦ res(t))(σ) = σt(s) = σ(t+ s) = σt+s(0) = (ev(0) ◦ res(t+ s))(σ)

so that ev(s)◦res(t) = ev(0)◦res(t+s). Recalling that µ(t) = (res(t)◦ext(µ))]µ(0)
we obtain

ev(s)]µ(t) = (ev(s) ◦ res(t) ◦ ext(µ))]µ(0)

= (ev(0) ◦ res(t+ s) ◦ ext(µ))]µ(0)

= ev(0)](res(t+ s) ◦ ext(µ))]µ(0)

= ev(0)]µ(t+ s)

= µ̃(t+ s),

which is (8.1).

It follows that the vector field F [µ] and F̃ [µ̃] defined in (3.3) and (4.4) coincide:

F [µ](t, x) = F̃ [µ̃](t, x) for any t ≥ 0 and x ∈ Rd.
Indeed, in view of the definition (4.1) of K, we have

F [µ](t, x) =

∫
E

K(x, σ)µ(t)(dσ) =

∫ 0

−τ

(∫
E

K̃(x, σ(s))µ(t)(dσ)
)
dρ(s)

=

∫ 0

−τ

(∫
Rd

K̃(x, y) (ev(s)]µ(t))(dy)
)
dρ(s).

Using (8.1) this is

F [µ](t, x) =

∫ 0

−τ

(∫
Rd

K̃(x, y) µ̃(t+ s)(dy)
)
dρ(s)

= F̃ [µ̃](t, x).

We can now prove that µ̃(t) := ev(0)]µ(t) is the unique solution of (4.5) with
initial condition ev(t)]µ(0), t ∈ [−τ, 0]. According to the proof of Theorem 4.1 (see
the definition of Γ) this is equivalent to proving that

µ̃(t) =

{
ev(t)]µ(0), t ∈ [−τ, 0],

T̃ (t, ·; µ̃)]µ̃(0) t ≥ 0,

where T̃ (t, x; µ̃) is the flow of the vector field F̃ [µ̃]. The equality for t ∈ [−τ, 0]
follows from (8.1). For t ≥ 0, using the definition (3.10) of ext(µ), we have for any
σ ∈ E,

(ev(0) ◦ res(t) ◦ ext(µ))(σ) = ext(µ)(σ)(t) = T (t, σ(0);µ)

where T (t, x;µ) is the flow of the vector field F [µ]. Thus,

ev(0) ◦ res(t) ◦ ext(µ) = T (t, ·;µ) ◦ ev(0).
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It follows that

µ̃(t) = ev(0)]µ(t)

= (ev(0) ◦ res(t) ◦ ext(µ))]µ(0)

= T (t, ·;µ)](ev(0)]µ(0))

= T (t, ·;µ)]µ̃(0).

Since F [µ] = F̃ [µ̃], we have T (t, x;µ) = T̃ (t, x; µ̃). Thus, µ̃(t) = T̃ (t, ·; µ̃)]µ̃(0) for
any t ≥ 0, which completes the proof.
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