DE GRUYTER Adv. Nonlinear Anal. 2015; 4 (3):235-249

Research Article

Leandro Del Pezzo, Julio Rossi, Nicolas Saintier and Ariel Salort

An optimal mass transport approach
for limits of eigenvalue problems
for the fractional p-Laplacian

Abstract: We find an interpretation using optimal mass transport theory for eigenvalue problems obtained
as limits of the eigenvalue problems for the fractional p-Laplacian operators as p — +oco. We deal both with
Dirichlet and Neumann boundary conditions.

Keywords: Fractional p-Laplacian, eigenvalues, mass transport

MSC 2010: 35]92, 35P30, 45C05

DOI: 10.1515/anona-2015-0013
Received January 28, 2015; revised March 12, 2015; accepted March 12, 2015

1 Introduction

Our main goal in this paper is to use tools from mass transport theory to study eigenvalue problems that are
obtained taking limits as p — +oo in eigenvalue problems that involve fractional spaces WS (with0 < s < 1
and 1 < p < +00). We deal both with Dirichlet and Neumann boundary conditions.

Along this paper we let U be a smooth bounded domain in R" with 1 < p < +co and 0 < s < 1. We also
fix a distance d(-, -) in R" equivalent to the Euclidean one.

Let /\Q » be the first eigenvalue of the fractional p-Laplacian of order s in U with Dirichlet boundary
conditions, that is, let us consider

AD, = 1nf{[ ulf ) 1 u e WHP(U), Jlulpdx=1},

U

(ulf p = J J — U dx dy

|X y|n+sp

where

is the seminorm of W5P(R") and
WSP(U) := {u e WSP(R") : u = 0in R" \ U}.

For this problem, Lindgren and Lindqvist proved in [19] that
1
D ._ q; D \1/p _
Ds oo := im (A5, = &5
where

R := maxdist(x, 0U) = max min |x - y|.
xeU xeU yeoU
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Moreover, via a subsequence, the eigenfunctions u,, suitably normalized (a minimizer for /12 p) converge
uniformly to a minimizer for A? ..

Our first purpose in this work is to relate AE, o t0 an optimal mass transport problem with cost function
c(x,y) = |x — y|°. We prove the following result.

Theorem 1.1. There holds that

= sup Ws(u, P(oU)),
s,00  ueP(U)

where
Ws(u, v) := inf I I Ix - yl* dn(x, y).
uvu

Here, P(A) is the set of probability measures on A and nt € P(U x U) is a measure with marginals y and v.

Note that W(u, v) is the total cost when we have to transport the measure u onto v using the Euclidean dis-
tance to the power s, that is |x — y|*, as the cost for transporting one unit of mass from position x to position y.
We refer to [24] and to Section 2 for precise definitions, notation and properties of optimal mass transport
theory. Hence, our result says that the eigenvalue AQ o is related to the problem of finding a probability mea-
sure supported inside U, u that is far (in terms of the transport cost) from the set of probability measures
supported on the boundary oU. One easy solution to this problem is the following: take a ball Bg(xo) with
maximum radius R inside U and let yo € 0U n 0Bg(xp) (there exists such yo due to the maximality of R).
Then, u = 6y, (with v = §,,,) solves SUD,cp(@) Ws(u, P(oU)). Observe that from Theorem 1.1 we can recover
that A? , = 1/R®.

Now, let us turn our attention to the case of the first nontrivial eigenvalue for Neumann boundary condi-
tions, that is, let us consider

AY, = inf{[ulf , : u € €},

where

p o [u(x) — u(y)P
[uls,p := J J A0y dx dy (1.1)

<
<

and
€:=fue W) : lulw =1, I JulP~2u dx = o}.
U
For this problem, in the case d(x, y) = |x - y|, Del Pezzo and Salort proved in [8] that
2
AY = lim WV )yVP = = |
seo = M (A5 )™ = Cam(@y)s

where diam(U) is the extrinsic diameter, that is,

diam(U) := max |x — y|.

x,yeU

Their proof actually extends to the case in which we consider [[u]]é’,p with d(x, y) any distance as above
(for instance, for the geodesic distance in U). In this case, it holds that

2
AV Nyip_ ___ = 1.2
5,00 piIPm(AS:P) (diamg(U))s’ 2

where diamg(U) is the diameter of U according to d, that is,

diamg4(U) = max d(x, y).
x,yeU
Moreover, as happens for the Dirichlet problem, via a subsequence, the normalized eigenfunctions u, (a min-
imizer for AIS\{ ») converge uniformly to a minimizer for AIS\{ oo
In order to introduce the mass transport interpretation, we need the following notation. We denote
by M(U) the space of finite Borel measures over U. Given o € M(U), we denote its positive and negative part
by ot and 07, sothat 0 = 0" — 0~ and |0| = 0" + 0~. Then, we have the following theorem.
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Theorem 1.2. There holds

=max{Ws(co*,07) : 0 € M(U), 0*(U) = 0~ (U) = 1}, (1.3)

N
As,00

where Wy is as in Theorem 1.1.

Here, we relate AIS\{ « to the problem of finding two probability measures ¢* and o~ supported in U such that
the cost of transporting one into the other is maximized. To obtain a solution to this problem, one can argue
as follows: take two points xo and yq in U that realize the diameter, that is, we have d(xo, Yo) = diamg(U).
Then, take o* = 8y, and 0~ = §,, as a solution to max{Ws(c*, 07) : 0 € M(U), 0*(U) = 0~(U) = 1}. Note that
we can recover (1.2) from Theorem 1.2.

A different concept of Neumann boundary condition for fractional operators was recently introduced
in [10]. More precisely, for the fractional p-Laplacian (-A);, given by

[u(x) — u)P~2(ux) - u(y)) dy

(-Dpu00 =PV | oy

Rn

where the symbol P.V. stands for the principal value of the integral, we consider the nonlocal nonlinear
fractional normal derivative

[u(x) — u@)P~2(ux) - uy))
d(X, y)n+sp

Ns,pu(x) = J dy, xeR"\U.

U

Associated with this operator, we consider the eigenvalue problems

(1.4)

(-A)su = AlufP~?u inU,
Nspu =0 inR"\U.

Before stating our main result concerning these problems, we need to introduce some notation. Let
W5P(U) be the set of measurable functions with finite norm

Wl ey = Nl ) + Hsp (1),

where

[u(x) — u(y)P
Hsp(u) := ” W dx dy
]RZn\(Uc)Z ’

and (U€)?2 = U° x U°®. Let us also introduce

[u(x) — u(y)|
d(x,y)s

Then, we have the following result for (1.4).

Hs,oo(U) 1= sup{ D (x,y) e R?™\ (UC)Z}.

Theorem 1.3. The first nonzero eigenvalue of (1.4) is given by
e

Asp = 5 v e WWP(U)\ {0}, J [vIP~2vdx = O}.
2|Vl !

Concerning the limit as p — +oo of these eigenvalues, we have

2

_ Hi oo (t)
~ (diamg(D))® u A}’

lim (A;,)'/7 :
p—+oo lullLeo(uy

= As 00 1= inf{

where
A= {v € WS(U) \ {0} : sup u(x) + inf u(x) = o}.
xeU xeU

Moreover, if u, is a minimizer of As,, normalized by |upll1»uy = 1, then, up to a subsequence, u, converges

in C(ﬁ) to some minimizer us, € W5 (U) ofAQfoo.
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Note that since the limit A o Of (A, p)l/p coincides with AIS\{ oo (given in (1.2)), we get the same interpretation
in terms of optimal mass transportation given in Theorem 1.2.

To end this introduction, let us briefly comment on previous results. The limit as p — +co of the first
eigenvalue /\g of the usual local p-Laplacian with Dirichlet boundary condition was studied in [15, 16] (see
also [3] for an anisotropic version). In those papers, the authors prove that

1
R’

. . [ IVVILeo(wy 1
AL = lim (AD)VP = 1nf{— vew ’°°(Q)} =

© p—+oo P ||V||L°°(U) 0
where, as before, R is the largest possible radius of a ball contained in U. In addition, the authors show the
existence of extremals, that is, functions where the above infimum is attained. These extremals can be con-
structed taking the limit as p — +oo in the eigenfunctions of the p-Laplacian eigenvalue problems (see [16])
and are viscosity solutions of the eigenvalue problem (called the infinity eigenvalue problem in the literature)

min{|Du| - ADu, Aou} =0 inU,
u=0 on oU.

The limit operator A, that appears here is the co-Laplacian given by Agu = —(D?uDu, Du). Remark that
solutions to Apv, = 0 with Dirichlet data v, = f on oU converge as p — +oo to the viscosity solution to
AoV =0 with v =f on oU (see [2, 4, 6]). This operator appears naturally when one considers absolutely
minimizing Lipschitz extensions in U of a boundary data f (see [1, 2, 14]).

Recently in [5], the authors related Ago to the Monge—Kantorovich distance W;. Recall that the Monge—
Kantorovich distance W; (i, v) between two probability measures y and v over U is defined by

Wiy, v) = maX{J v(du—dv) : ve W-®(U), Vi) < 1}. (1.5)
U

In [5], it was proved that

1
— = sup Wi(u, P(oU)).
Ao ueP(U)

Notice that this result is the analogue to Theorem 1.1 in the local case.

For the Neumann problem for the local p-Laplacian, we refer to [12, 23], where the authors prove the
local analogue to Theorem 1.2. In this local case, the distance that appears in the limit is the geodesic dis-
tance inside U. This is in contrast to the nonlocal case studied here, where we can consider any distance d
equivalent to the Euclidean one (see (1.1)).

For references concerning nonlocal fractional problems, we refer to [10, 11, 17, 19-22] and the refer-
ences therein. For limits as p — +oo in nonlocal p-Laplacian problems and their relation to optimal mass
transport, we refer to [17] (note that eigenvalue problems were not considered in [17]).

The case of a Steklov boundary condition has also been investigated recently. Indeed, the authors in [13]
(see also [18] for a slightly different problem) studied the behavior as p — +oco of the so-called variational
eigenvalues A3 » k > 1, of the p-Laplacian with a Steklov boundary condition. In particular, they proved that

: S \1/p _
p1—1>1:+noo(/11’p) 1

and )
S T S y/p _
Moo = M )™ = Gameoy’
and also identified the limit variational problem defining Ag)oo.

The present paper is organized as follows. In Section 2, we collect some preliminary results concerning
optimal mass transport with cost d(x, y)* and, in particular, we provide a statement of the Kantorovich duality
result that will be used in the proofs of our results. In Section 3 we deal with the Dirichlet problem and prove
Theorem 1.1. In Section 4, we study the Neumann case (Theorem 1.2). Finally, in Section 5, we deal with
problem (1.4) and we prove Theorem 1.3.
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2 Kantorovich duality for the cost c(x, y) = d(x, y)*

In this section, we follow [24]. We first recall the definitions of c-concavity and c-transform.

Definition 2.1 ([24, Definitions 5.2 and 5.7]). Let X, Y be two sets and ¢: X x Y — RU {+co}. A function
Y : X - RU {+oo} is said to be c-convex if i # +co and there exists ¢ : Y — R U {+oo} such that

Y(x) =supp(y) —c(x,y) forallx e X. (2.1)
yeY

Its c-transform is the function Y defined by
Ye@y) = inf () +c(x,y) forally € Y.
X€E

Afunction¢ : Y —» R U {-o0}is c-concaveif ¢ # —coand ¢ = ¢ for some function i) : X - R U {+co}. Then,
its c-transform ¢°¢ is
¢¢(x) =sup p(y) - c(x,y) forallx € X.
yeY
We have the following proposition.

Proposition 2.2 ([24, Proposition 5.8]). For any ¥ : X — R U {+c0}, there holds )¢ = Y and 1 is c-convex
if and only if i = pce.

In the case where the cost function is c(x, y) = d(x, y)*, we have the following characterization of c-convex
functions.

Lemma 2.3. Let c(x,y) = d(x, y)* and X = Y = U. Any c-convex function y satisfies ¢ = 1 and
[Y(x) - PpX)| < d(x,%)° forallx,x € U. (2.2)
Proof. Notice that
Ye(y) = inf P(x) + d(x, y)* < P(y)
xeU
and that the opposite inequality holds if (2.2) holds. We now verify (2.2). Let ¢ : U — R U {+o0} such that
P = ¢C asin (2.1). Since s € (0, 1), we have d(x, y)* < d(x, X)* + d(y, X)’ for any x, X, y € U. It follows that

Y0 = ¢ (x) =sup Pp(y) - d(x, y)* 2 sup p(y) - d(y, %)° — d(x, X)° = P(x) - d(x, X)°,
yeU yeU
that is, Y (%) — Y(x) < d(x, x)*. The opposite inequality holds as well by switching x and X. As a result, we get
that (2.2) holds. O

We recall the following result, see [24, Theorem 5.9].

Theorem 2.4. Let (X, u) and (Y, v) be two Polish probability spaces (that is, metric, complete and separable)
andletc : X x Y — R U {+oo} be a lower semicontinuous function such that

c(x,y)>a(x)+b(y) forall(x,y) e XxY

for some real-valued upper semicontinuous functions a € L(u) and b € L*(v). Then, letting

I = [@av-[wau,

Y X
we have
We(u,v) == min jc(x,y)dn(x,w: sup J(@. ) = sup JC, )
AGLY) o WYL XLIV), p-psc YLl

and in the above sup, one might as well impose P to be c-convex. Moreover, if c is real-valued, W (u, v) < co
and
c(x,y) <cx(x)+cy(y) forall(x,y) e XxY

forsome cx € LY(v) and cy € L'(u), then the above sup is a max and one might as well impose ) to be c-convex.
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In the particular case c(x,y) = d(x, y)5, X = Y = U with U bounded, we obtain in view of Lemma 2.3 the
following result.

Theorem 2.5. Forany u,v € P(ﬁ), there holds

min dx,y)S dn(x,y) = max J dv - du.
neH(u,vLL (o) dn(x,y) pe0)-h(y)I<d(x,y)® 4 by

UxU U

QY —

Proof. In view of Lemma 2.3 and the previous theorem, we can write that

We(p,v) = max  J(§°,¢) < max W, ¥) < su J(p, ) = We(u, v)
i peLl(u) c-convex vy YOO-yy)l<d(x,y)® v (1/),¢)GL1(;E))><L1(V) by s
P-p<d(x,y)®
from which we deduce the result. O

3 The Dirichlet case

In this section, we borrow ideas from [5]. Let us consider the functionals Gp, G, : C (U) x M(U) » R U {+c0}
given by

- J vodx ifoeLP (U), ol g <1, andv e WSP(U), [V]sp < (AD)VP,
Gp(V’ U) = U
+00 otherwise,

and

- J vdo ifo e M(U), |o|(U) < 1, and v € WS®(U), |v(x) - v(y)| < Agoolx -yl*,
Goo(v,0)=1 ¢
+00 otherwise.

We consider the weak convergence of measures in the space M(U) and the uniform convergence in the
space C(U).

First, we have that G, is the limit of G, as p — +co in the I'-limit sense (we refer to [7] for the definition
of I'-convergence).

Lemma 3.1. The functionals Gy, I'-converge as p — +00 to Geo.
Proof. It follows as in [5]. O

Now, we let f, : R" — R be defined as
o) 2= (up ()P,

where u,, is a nonnegative eigenfunction associated to /12 »(U) such that luplL»(y) = 1. When we consider f,
as an element of M(U) together with u,, we obtain a minimizer for G,. The proof of this fact is immediate.

Lemma 3.2. The pair (f,, up) minimizes G in C(U) x M(U) with
Gp(fp,up) =-1.
Now, let us show that we can extract a subsequence p, — +oo such that f,, and uy, converge.
Lemma 3.3. There exists a sequence p, — +oo such that
Up, — Uso

uniformly in R". This limit u., verifies

oo (X) = U] < AD Ix = yI5, x,y e R".
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Moreover, we have
fpn - foo
weakly-+ in M (U) and fo is a nonnegative measure that verifies f, (U) < 1.

Proof. The convergence of up,, via a subsequence, is contained in [19]. Concerning f,,, the conclusion follows
from the inequality

(r-1/p
jfp dx < (j(up)p dx) \ulvP = |u|tP (3.1)
U U

that implies that f}, is bounded in M (U) and, hence, we can extract a sequence p, — +oco such that fon = foo
weakly-* in M (U). The fact that the limit f,, is a nonnegative measure that verifies fo,(U) < 1 also follows
from (3.1). O

We obtain the following corollary from the main property of I'-convergence.
Corollary 3.4. The pair (fe, Us) Minimizes G, with

Goo(foor Uso) = —1.
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. As (foo, Uso) Minimizes G, we obtain that

(e 3)
00 Ago,s

—Jvda

U

minimizes

with (v, o) belonging to

A= {(v,0) e W*°(U) x M(U) : [0](U) < 1, v(x) - v(y)| < d(x,y)*}.

Then,
1 1
-5 = TJ”OO dfs = max Jvda: max max dey: max Ws(u, P(oU))
Aso  Asco (v,0)€A i ueP(U) Iw)-w(y)l<d(x,y)® i ueP(U)
as we wanted to show. O

4 The Neumann case

Again, we follow ideas from [5] (see also [23]). Let up, be an extremal for Aﬁ’, s (that is, a minimizer for (1.1))
normalized by |upllz»y = 1. Then, f, := |up Ip‘zup € LP'(U) satisfies

ol =1 and j fpdx =0, (4.1)
U

where p’ = p/(p - 1). The first step consists in extracting from {f,},-1 a subsequence converging weakly to
some measure f,, € M(U), the weak convergence meaning here that

p—+00

tim [ ¢f dx= [ ¢ dfes

U U

for any ¢ € C(U).
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Lemma 4.1. Up to a subsequence, the measures f, converge weakly in measure in U to some measure fu
supported in U satisfying

fo(U) =0 and |fel(U) =1. (4.2)
Proof. We claim that
pEerI Ifpl dx = 1. (4.3)
U

First, in view of (4.1), we have that

[ ol dx < Ul U717 = 1017 1 asp - oo
U

and then, recalling that u, — uin C (U) with [Ju| Loy = 1,

1= Jupfp dx < uplizeo@ylfpllicrwy = @+ o(A)Ifpllrr ).
u

In particular, it follows that the measures |f,| are bounded in M (U) independently of p. Since U is com-
pact, we can then extract from this sequence a subsequence converging weakly to some measure fo, € M(U).
Passing to the limit in (4.1) and (4.3) gives (4.2). O

Consider the functionals Gp, G : C(U) x M(U) - R U {+co} defined by

- J vodx ifoeLP (U), ol oy < 1, fU 0dx =0, andv e WSP(U), [v]s,p < (AN )P,
Gp(V, 0) = U
+00 otherwise,

and
- j vdo, ifoeM(U), |ol(U) <1, o(U) =0, and v e WS (U), |v(x) - v(y)| < AY, (d(x,y)*,

Goo(v,0)=1 ©
+00 otherwise.

Remark that these functionals are similar to the ones considered for the Dirichlet case but the spaces
involved are different. In fact, here we consider WS-?(U) instead of WS?(U) (that encodes the fact that we are
considering functions that vanish outside U when dealing with the Dirichlet problem).

As for the Dirichlet case, we can prove asin [5, 23] that G, is the limit of G, in the sense of T-convergence.

Lemma 4.2. The functionals G, converge in the sense of I'-convergence to G.

The proof is similar to that of [5, Proposition 3.7] and hence we omit it. As a corollary, we obtain the follow-
ing lemma.

Lemma 4.3. Let u, be an extremal for ]tg’,s. Then, (up, fp) is a minimizer for G, and any limit (U, foo) along
a subsequence p; — +oo is a minimizer for G, with

Goo(Ucos foo) = pEIPOO Gp(up, fp) = -1.

Proof. Notice that the pair (up, fy) is a minimizer of G,. Indeed, given a pair (v, o) admissible for G, take
v € R such that

J lv - ¥|P~2(v - ¥)dx = 0.

U

Then, recalling that IU o dx = 0 and the definition of /\2’, s» we have

Gp(v, 0) = - J(v ~ Vo dx 2 =V - Vp@)lol g = ~Ap ) PIv = Vs p 2 =1 = Gp(up, ).
U
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Moreovet, (up, fp) = (U, foo) along a sequence p; — +oo. Then, it follows that

I;Illigf(inf Gp) = l}ijlllJri(I)lof Gp(Up, fp) = Goo(Ucos foo) = i%f Goos

where B is the set of all pairs (v, a) € W5*°(U) x M(U) such that
lol(U)<1, o0 =0 and [v(x)-v(y)l <AL d(x, ).
Moreover, the lim sup property implies that

lim sup(i%f Gp) < 1r§f Geo-

p—+00
Hence,
lim infG, = li = = inf Go.
m inf Gp = lim Gp(up, fp) = Goo(Uioo, foo) = 10f Goo O

We can now relate AIS\{ oo t0 Ws. Recall thatif o e M (U), then 0* € M(U) denote the positive and negative parts
of g. In particular, 0 = 0* -0 and |o| = 0" + 0.

Proof of Theorem 1.2. The conditions o(U) = 0 and |0|(U) = 1 are equivalent to
— — 1
ot(U)=0(U) = 5
We can therefore rewrite the fact that the pair (uq,, foo) is @ minimizer of G, as

1= max max Jvd(o* -07),
0eMy VEF N
'S,00

where
M; ={0 e M(U) : a*(U) = 6" (U) = t}
and
Fr={ve W>®(U): [v(x) - v(y)| < Rd(x, y)},

that is,

% = max max J vd(o® -07).

Aoo,s oeM; veF;
Then, we obtain the conclusion (1.3), recalling the definition of Wy given by (1.5). O

5 Eigenvalue problems with a different Neumann boundary
condition

In this section, we prove Theorem 1.3. For this purpose, we first present some previous results.
Theorem 5.1. The spaces
WSP(U) := {u : R" — R measurable | ||u||fp(U) + Hs,p(u) < +00}

and
W (U) := {u : R" —» R measurable | |ullLo@) + Hs,oo(U) < +00}
are Banach spaces with the norms
IIMIIIfNS,p(U) = IIHIpr(U) + Hs,p(u)
and
lullvws.eowy := lullreo(wy + Hs,oo (W),

respectively.

The proof follows exactly as in the proof of [10, Proposition 3.1].
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Remark 5.2. It holds that WS:P(U) c WSP(U).
Remark 5.3. The operator I : WP (U) — E = LP(U) x LP(R?" \ (U€)?) given by
L u(x) - u(y)
() = (u, e /p)+s)

is an isometry. Then, I(W*%P(U)) is a closed subspace of E due to the fact that W5 P(U) is a Banach space.
Hence, I(WS:P (D)) is reflexive since E is reflexive. Then, W5:P(U) is reflexive.

Following the proofs of [10, Lemma 3.2 and Lemma 3.7], we have the following result.

Lemma 5.4. Let u and v be bounded C? functions in R". Then, the following formulae hold.
«  Divergence theorem

J(—A)Is,u(x) dx = - J Ns,pu(x) dx.

U R\U
o Integration by parts formula

%f}{w(u, V) = jv(x)(—A)gu(x) dx + J V(X)Ns pu(x) dx,
U R\U

where
[u(x) = u)IP~2ux) - u))(v(x) - v(y))

a0, )P dedy.

:}fs’p(u, V) = J
IRZ"\(UC)Z
This result leads us to the following definition.

Definition 5.5. A function u € WSP(U) is a weak solution of (1.4) if

%U{S,p(u, V) = /lj [ulP~2uv dx (5.1)
U
forall v e WSP(U).

In this context we have the following definition.

Definition 5.6. We say that A is a fractional Neumann p-eigenvalue provided there exists a nontrivial weak
solution u € WSP(U) of (1.4). The function u is a corresponding eigenfunction.

Let us observe the following: if A > 0 is an eigenvalue and u is an eigenfunction associated to A, then, taking
v = 1 as a test function in (5.1), we have
[ulP~2u dx = 0.
U
In fact, we have that A = 0 is the first eigenvalue of our problem.

Lemma 5.7. It holds that A = 0 is an eigenvalue of (1.4) (with u = 1 as eigenfunction) and it is isolated and
simple.

Proof. Let u be an eigenfunction corresponding to A = 0 in problem (1.4). From (5.1), taking v = u as a test
function, we obtain that u is constant in U.

Now, if we have a sequence of eigenvalues A, — 0, then the corresponding eigenfunctions u, normalized
by l[uillzr(uy = 1, converge to some u. It is not difficult to show that u is an eigenfunction corresponding toA = 0
(consequently, u = constant) with |[ull»(yy) = 1 and fU |ulP~2u dx = 0, a contradiction that shows that A = 0 is
an isolated eigenvalue. O

Thus, the existence of the first nonzero eigenvalue of (1.4) is related to the problem of minimizing the nonlocal

quotient
g'(s,p (v)

2IVIEs )
among all functions v € W$P(U) \ {0} such that fU [vIP~2vdx = 0.
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We are now ready to prove Theorem 1.3. For simplicity, we divide the proof of this theorem into three
parts contained in the following lemmas.

First, by a standard compactness argument and using that W$P(U) c W*P(U), we have that A j is the
first nonzero eigenvalue of (1.4).

Lemma 5.8. It holds that A ), is the first nonzero eigenvalue of (1.4).

Remark 5.9. Since WSP(U) c WSP(U) and
[[u]]f,p < Hsp(u) forallu e WHP(U),

we have that

AN

sp < 2Asp.

Our next result shows the asymptotic behavior of (As, p)l/P .

Lemma 5.10. We have

2

_ g{s,oo(u) .
~ (diamg(0))® oY A}’

= As 00 1= inf{ :
lullzeo(w)

lim (A5 ,)'/?
p—+00

where
A= {v € WS(U) \ {0} : sup u(x) + inf u(x) = o}.
xeU xelU

Proof. For the reader’s convenience, we split the proof into four steps.

Step 1. We begin by showing that
2

Ao = (Grama(Oyy

Let xo, yo € U such that d(xo, Yo) = diamgy(U). Let u : R" — R be given by

=—1+— 5.
u(x) * Jamy(0) d(x, yo)
Observe that
supu(x) =—infu(x) =1
xeU xeU
and
[ut) —u@)l _ 2 d(x, y0)® = d(y, yo)*l _ 2
d(x, y)s (diamg(U))3 d(x, y)s "~ (diamg(U))*
forall x,y € R". Then, u € A, |ullz~@) = 1 and
2
T (Gama (O
Therefore,
2
Ns,00 < Hs,00(U) € s
si00 < Fls,oo(Ul) < (diamg4(0))s
Step 2. We now prove that
2

B ® (dlamg (O

If u € A, then
2||ullzeo(uy = sup u(x) — inf u(x)
xeU xeU
= supflu(x) - u(y)| : x,y € U}

< (diamg(0))* sup{%

< (diamg(U))* Hs, 00 ().

:x,yeU}
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Thus,

2 _ I
(diamg(U))* ~ lullzeo(w
for any u € A, that s,

2
B 2 (damg O

Step 3. We show that

2 o 1
@am )y = Fer)

By (1.2) and Remark 5.9, we have that

2

i N \1/p - 1im i 1/p 1/p _ 1imi 1/p
(diamd(U)s)ngglw(As,p) < lim inf 2% (s, (U)) lim inf(As,p (U) 7.

Step 4. Finally, we prove that

2
; e L
;rzfgop(/ls,p) = (diamg(0)°

Asin Step 1, let xo, yo € U be such that d(xo, yo) = diamg(U). Set § = diama(U),

o n.,;
Us := {xe]R .;glf]d(x,y)SS}

and

d(x,yo) ifx € Us,
u(x) :=
0 if x e R"\ Us.
Let € > 0. Then,

d(X’ yO)p
d(x, y)rH'Sp

|d(x, yo) — d(y, yo)IP
3 p(u) < 2 J T dxdy + 2

UxUs Ux(R"\Us)

p(1-s)-¢ 4
<2 J d(x,y) d(x, yo)

d(X, y)n—é‘ dX dy + 2 J d(X, y)n+€+Sp—s
UxUs Ux(R™\Us)

dx dy

dx dy.

Thus, since d is a distance equivalent to the Euclidean one, if
> max{ _& f}
b (1 _ S) ’ S ’
we get that u € WSP(U) and
Hs p(u) < C(diamg (V)P {(diama(U))~* + (diama(U))?}, (5.2)

where C is a constant independent of p.
We now choose ¢, € R such that
Wp(X) = ux) - cp
satisfies
I lwpP~2w, dx = 0.
U
Hence, if p > max{e/(1 - s), £/s}, by (5.2), we have that

H(wp) o Hw) - C

p

< = < (diamy(U))PA-9){(diamg(U))~¢ + (diamg(U))¢}
2wplowy  2Wplhw,  20wpliew,

S,p

and, therefore,

Jim sup(As p)l/p < (diamg(U))1-s

E P Ir— 5.3
p—+00 liminf ||Wp "LI’(U) ( )
p—+00
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On the other hand, in [12] it is proved that

liminf [wpllz» ) 2 dramy(0)" (5.4)
Thus, by (5.3) and (5.4), we get
2
i 1/p
TSP sr) ™ < (Gama @)
This concludes the proof. O

Remark 5.11. By (1.2) and Lemma 5.10, we have that

2
N _ 5 N \1/p _ R H 1/p _
Bs o = lim (As,p) ™ = (diamg(U)) PR, (s.p) Bs.oo-

Concerning the convergence of the eigenfunctions as p — +oo, we have the following result.

Lemma 5.12. If up is a minimizer of As p, normalized with |up|1»(v) = 1, then, up to a subsequence, u, con-
verges in C(U) to some minimizer uq, € WS> (U) ofAQfOO.

Proof. Forany p € (1, co), we consider u, € W$?(U) such that

_ 1
luplrw = 1, J upP 2y dx =0 and  3op(up) = Ao
U

Then, by Lemma 5.10, there exists a constant C, independent of p, such that

1/p
<9‘Cs,p(up)) <C (5.5)
2
forall p € (1, c0).
Let us fix g € (1, co) such that sq > 2n. If p > g, then, by Holder’s inequality, we have that
luplizacay < 1UIMI VP lupllpy < [UIM4YP forallp > g (5.6)
and taking r = s — n/q € (0, 1), again by Holder’s inequality, we get
a _ ([ lup()—up?
Tuply,q = J J Ty dx dy
U
q/p
2(1-g/p) [up () — up(y)IP
=1t (I | aeyyr xa
Uu
q/p
< ZQ/p(diamd(U))"q/p|U|2(1_q/p)( :Hs’pz(up_)) . (5.7)

Then, by (5.5), we get
Tuply,q < 2V/P(diamg(U))?|UPPM9-1P) T forallp > q,

where C is a constant independent of p. Hence, {up}p>4 is a bounded sequence in W"4(U). Then, since
rq = sq — n > n, by fractional compact embedding theorems (see [9, Theorem 4.54]), there exist a function
U € C(U) and a subsequence {up, }jew of {up}p>q such that

Up;, = Uoo uniformly in U,

Up, = Uy Weakly in wra(U).

Hence, by (5.6), we have |[ucllzeq) < |U|*/4, and by (5.7) and Remark 5.11, we get

j—CS,P'(up-) 1/p 2 N
e R

[ucollrq < liminf[up,]y,q < lim infZl/pi(diamd(U))"/pi|U|2(1‘1/p1')<
j—oo j—oo 2

Unauthenticated
Download Date | 12/16/19 9:45 AM



248 =—— L.DelPezzo, ). Rossi, N. Saintier and A. Salort, An optimal mass transport approach DE GRUYTER

and

Letting ¢ — +00, we obtain

lucollLo@) < 1

[Uools,c0 < A oo (5.8)

On the other hand,

1 = up iy < UM up i@y forallj e N

and, as a result,

1 < ueollzeo(wy-

Hence,
lucollLeoquy = 1
and by (5.8), we get
m < éVOO. (5.9)
lucollzeo(uy ’

Finally, in [12, 23] it was proved that the condition

-2
j |up, P~ “up, dx = 0

U
leads to

SUP Ueo (X) + inf U (x) =0

xeU xeU
in the limit as p — +o0o. Then, using (5.9), we have that u, is a minimizer of AQ{ co- O
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