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1 Introduction

Our main goal in this paper is to use tools from mass transport theory to study eigenvalue problems that are
obtained taking limits as p → +∞ in eigenvalue problems that involve fractional spacesW s,p (with 0 < s < 1
and 1 < p ≤ +∞). We deal both with Dirichlet and Neumann boundary conditions.

Along this paper we let U be a smooth bounded domain in ℝn with 1 < p < +∞ and 0 < s < 1. We also
�x a distance d( ⋅ , ⋅ ) inℝn equivalent to the Euclidean one.

Let λDs,p be the �rst eigenvalue of the fractional p-Laplacian of order s in U with Dirichlet boundary
conditions, that is, let us consider

λDs,p := inf{[u]ps,p : u ∈ W̃ s,p(U), ∫
U

|u|p dx = 1},

where
[u]ps,p := ∫

ℝn

∫
ℝn

|u(x) − u(y)|p

|x − y|n+sp
dx dy

is the seminorm ofW s,p(ℝn) and

W̃ s,p(U) := {u ∈ W s,p(ℝn) : u = 0 inℝn \ U}.

For this problem, Lindgren and Lindqvist proved in [19] that

ΛDs,∞ := lim
p→+∞

(λDs,p)1/p =
1
Rs
,

where
R := max

x∈U
dist(x, ∂U) = max

x∈U
min
y∈∂U

|x − y|.
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Moreover, via a subsequence, the eigenfunctions up suitably normalized (a minimizer for λDs,p) converge
uniformly to a minimizer for ΛDs,∞.

Our �rst purpose in this work is to relate ΛDs,∞ to an optimal mass transport problem with cost function
c(x, y) = |x − y|s. We prove the following result.

Theorem 1.1. There holds that 1
ΛDs,∞

= sup
µ∈P(U)

Ws(µ, P(∂U)),

where
Ws(µ, ν) := inf

π
∫
U

∫
U

|x − y|s dπ(x, y).

Here, P(A) is the set of probability measures on A and π ∈ P(U × U) is a measure with marginals µ and ν.

Note thatWs(µ, ν) is the total cost when we have to transport the measure µ onto ν using the Euclidean dis-
tance to the power s, that is |x − y|s, as the cost for transporting one unit of mass from position x to position y.
We refer to [24] and to Section 2 for precise de�nitions, notation and properties of optimal mass transport
theory. Hence, our result says that the eigenvalue ΛDs,∞ is related to the problem of �nding a probability mea-
sure supported inside U, µ that is far (in terms of the transport cost) from the set of probability measures
supported on the boundary ∂U. One easy solution to this problem is the following: take a ball BR(x0) with
maximum radius R inside U and let y0 ∈ ∂U ∩ ∂BR(x0) (there exists such y0 due to the maximality of R).
Then, µ = δx0 (with ν = δy0 ) solves supµ∈P(U)Ws(µ, P(∂U)). Observe that from Theorem 1.1 we can recover
that ΛDs,∞ = 1/Rs.

Now, let us turn our attention to the case of the �rst nontrivial eigenvalue for Neumann boundary condi-
tions, that is, let us consider

λNs,p := inf{[[u]]ps,p : u ∈ C},

where
[[u]]ps,p := ∫

U

∫
U

|u(x) − u(y)|p

d(x, y)n+sp dx dy (1.1)

and
C := {u ∈ W s,p(U) : ‖u‖Lp(U) = 1, ∫

U

|u|p−2u dx = 0}.

For this problem, in the case d(x, y) = |x − y|, Del Pezzo and Salort proved in [8] that

ΛNs,∞ := lim
p→+∞

(λNs,p)1/p =
2

(diam(U))s
,

where diam(U) is the extrinsic diameter, that is,

diam(U) := max
x,y∈U

|x − y|.

Their proof actually extends to the case in which we consider [[u]]ps,p with d(x, y) any distance as above
(for instance, for the geodesic distance in U). In this case, it holds that

ΛNs,∞ = lim
p→+∞

(λNs,p)1/p =
2

(diamd(U))s
, (1.2)

where diamd(U) is the diameter of U according to d, that is,

diamd(U) = max
x,y∈U

d(x, y).

Moreover, as happens for the Dirichlet problem, via a subsequence, the normalized eigenfunctions up (amin-
imizer for λNs,p) converge uniformly to a minimizer for ΛNs,∞.

In order to introduce the mass transport interpretation, we need the following notation. We denote
by M(U) the space of �nite Borel measures over U. Given σ ∈ M(U), we denote its positive and negative part
by σ+ and σ−, so that σ = σ+ − σ− and |σ| = σ+ + σ−. Then, we have the following theorem.
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Theorem 1.2. There holds
2

ΛNs,∞
= max{Ws(σ+, σ−) : σ ∈ M(U), σ+(U) = σ−(U) = 1}, (1.3)

where Ws is as in Theorem 1.1.

Here, we relate ΛNs,∞ to the problem of �nding two probability measures σ+ and σ− supported in U such that
the cost of transporting one into the other is maximized. To obtain a solution to this problem, one can argue
as follows: take two points x0 and y0 in U that realize the diameter, that is, we have d(x0, y0) = diamd(U).
Then, take σ+ = δx0 and σ− = δy0 as a solution to max{Ws(σ+, σ−) : σ ∈ M(U), σ+(U) = σ−(U) = 1}. Note that
we can recover (1.2) from Theorem 1.2.

A di�erent concept of Neumann boundary condition for fractional operators was recently introduced
in [10]. More precisely, for the fractional p-Laplacian (−∆)sp given by

(−∆)spu(x) = P.V. ∫
ℝn

|u(x) − u(y)|p−2(u(x) − u(y))
d(x, y)n+sp dy,

where the symbol P.V. stands for the principal value of the integral, we consider the nonlocal nonlinear
fractional normal derivative

Ns,pu(x) = ∫
U

|u(x) − u(y)|p−2(u(x) − u(y))
d(x, y)n+sp dy, x ∈ ℝn \ U .

Associated with this operator, we consider the eigenvalue problems

{
{
{

(−∆)spu = λ|u|p−2u in U,
Ns,pu = 0 inℝn \ U .

(1.4)

Before stating our main result concerning these problems, we need to introduce some notation. Let
Ws,p(U) be the set of measurable functions with �nite norm

‖u‖pWs,p(U) := ‖u‖pLp(U) +Hs,p(u),

where
Hs,p(u) := ∬

ℝ2n\(Uc)2

|u(x) − u(y)|p

d(x, y)n+ps dx dy

and (Uc)2 = Uc × Uc. Let us also introduce

Hs,∞(u) := sup{ |u(x) − u(y)|d(x, y)s : (x, y) ∈ ℝ2n \ (Uc)2}.

Then, we have the following result for (1.4).

Theorem 1.3. The �rst nonzero eigenvalue of (1.4) is given by

λs,p = inf{
Hs,p(v)
2‖v‖pLp(U)

: v ∈ Ws,p(U) \ {0}, ∫
U

|v|p−2v dx = 0}.

Concerning the limit as p → +∞ of these eigenvalues, we have

lim
p→+∞

(λs,p)1/p =
2

(diamd(U))s
= Λs,∞ := inf{Hs,∞(u)

‖u‖L∞(U)
: u ∈ A},

where
A := {v ∈ Ws,∞(U) \ {0} : sup

x∈U
u(x) + inf

x∈U
u(x) = 0}.

Moreover, if up is a minimizer of λs,p normalized by ‖up‖Lp(U) = 1, then, up to a subsequence, up converges
in C(U) to some minimizer u∞ ∈ W s,∞(U) of ΛNs,∞.
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Note that since the limit Λs,∞ of (λs,p)1/p coincides with ΛNs,∞ (given in (1.2)), we get the same interpretation
in terms of optimal mass transportation given in Theorem 1.2.

To end this introduction, let us brie�y comment on previous results. The limit as p → +∞ of the �rst
eigenvalue λDp of the usual local p-Laplacian with Dirichlet boundary condition was studied in [15, 16] (see
also [3] for an anisotropic version). In those papers, the authors prove that

λD∞ := lim
p→+∞

(λDp )1/p = inf{
‖∇v‖L∞(U)
‖v‖L∞(U)

: v ∈ W1,∞
0 (Ω)} =

1
R
,

where, as before, R is the largest possible radius of a ball contained in U. In addition, the authors show the
existence of extremals, that is, functions where the above in�mum is attained. These extremals can be con-
structed taking the limit as p → +∞ in the eigenfunctions of the p-Laplacian eigenvalue problems (see [16])
and are viscosity solutions of the eigenvalue problem (called the in�nity eigenvalue problem in the literature)

{
{
{

min{|Du| − λD∞u, ∆∞u} = 0 in U,
u = 0 on ∂U.

The limit operator ∆∞ that appears here is the ∞-Laplacian given by ∆∞u = −⟨D2uDu, Du⟩. Remark that
solutions to ∆pvp = 0 with Dirichlet data vp = f on ∂U converge as p → +∞ to the viscosity solution to
∆∞v = 0 with v = f on ∂U (see [2, 4, 6]). This operator appears naturally when one considers absolutely
minimizing Lipschitz extensions in U of a boundary data f (see [1, 2, 14]).

Recently in [5], the authors related λD∞ to the Monge–Kantorovich distance W1. Recall that the Monge–
Kantorovich distanceW1(µ, ν) between two probability measures µ and ν over U is de�ned by

W1(µ, ν) := max{∫
U

v (dµ − dν) : v ∈ W1,∞(U), ‖∇v‖L∞(U) ≤ 1}. (1.5)

In [5], it was proved that
1
λD∞

= sup
µ∈P(U)

W1(µ, P(∂U)).

Notice that this result is the analogue to Theorem 1.1 in the local case.
For the Neumann problem for the local p-Laplacian, we refer to [12, 23], where the authors prove the

local analogue to Theorem 1.2. In this local case, the distance that appears in the limit is the geodesic dis-
tance inside U. This is in contrast to the nonlocal case studied here, where we can consider any distance d
equivalent to the Euclidean one (see (1.1)).

For references concerning nonlocal fractional problems, we refer to [10, 11, 17, 19–22] and the refer-
ences therein. For limits as p → +∞ in nonlocal p-Laplacian problems and their relation to optimal mass
transport, we refer to [17] (note that eigenvalue problems were not considered in [17]).

The case of a Steklov boundary condition has also been investigated recently. Indeed, the authors in [13]
(see also [18] for a slightly di�erent problem) studied the behavior as p → +∞ of the so-called variational
eigenvalues λSk,p, k ≥ 1, of the p-Laplacian with a Steklov boundary condition. In particular, they proved that

lim
p→+∞

(λS1,p)
1/p = 1

and
λS2,∞ := lim

p→+∞
(λS2,p)

1/p =
2

diam(U)
,

and also identi�ed the limit variational problem de�ning λS2,∞.
The present paper is organized as follows. In Section 2, we collect some preliminary results concerning

optimalmass transportwith cost d(x, y)s and, in particular,weprovide a statement of theKantorovichduality
result that will be used in the proofs of our results. In Section 3 we deal with the Dirichlet problem and prove
Theorem 1.1. In Section 4, we study the Neumann case (Theorem 1.2). Finally, in Section 5, we deal with
problem (1.4) and we prove Theorem 1.3.
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2 Kantorovich duality for the cost c(x, y) = d(x, y)s
In this section, we follow [24]. We �rst recall the de�nitions of c-concavity and c-transform.

De�nition 2.1 ([24, De�nitions 5.2 and 5.7]). Let X, Y be two sets and c : X × Y → ℝ ∪ {+∞}. A function
ψ : X → ℝ ∪ {+∞} is said to be c-convex if ψ ̸≡ +∞ and there exists ϕ : Y → ℝ ∪ {±∞} such that

ψ(x) = sup
y∈Y

ϕ(y) − c(x, y) for all x ∈ X. (2.1)

Its c-transform is the function ψc de�ned by

ψc(y) = inf
x∈X

ψ(x) + c(x, y) for all y ∈ Y.

A functionϕ : Y → ℝ ∪ {−∞} is c-concave ifϕ ̸≡ −∞ andϕ = ψc for some functionψ : X → ℝ ∪ {±∞}. Then,
its c-transform ϕc is

ϕc(x) = sup
y∈Y

ϕ(y) − c(x, y) for all x ∈ X.

We have the following proposition.

Proposition 2.2 ([24, Proposition 5.8]). For any ψ : X → ℝ ∪ {+∞}, there holds ψc = ψccc and ψ is c-convex
if and only if ψ = ψcc.

In the case where the cost function is c(x, y) = d(x, y)s, we have the following characterization of c-convex
functions.

Lemma 2.3. Let c(x, y) = d(x, y)s and X = Y = U. Any c-convex function ψ satis�es ψc = ψ and

|ψ(x) − ψ(x̃)| ≤ d(x, x̃)s for all x, x̃ ∈ U . (2.2)

Proof. Notice that
ψc(y) = inf

x∈U
ψ(x) + d(x, y)s ≤ ψ(y)

and that the opposite inequality holds if (2.2) holds. We now verify (2.2). Let ϕ : U → ℝ ∪ {±∞} such that
ψ = ϕc as in (2.1). Since s ∈ (0, 1), we have d(x, y)s ≤ d(x, x̃)s + d(y, x̃)s for any x, x̃, y ∈ U. It follows that

ψ(x) = ϕc(x) = sup
y∈U

ϕ(y) − d(x, y)s ≥ sup
y∈U

ϕ(y) − d(y, x̃)s − d(x, x̃)s = ψ(x̃) − d(x, x̃)s ,

that is, ψ(x̃) − ψ(x) ≤ d(x, x̃)s. The opposite inequality holds as well by switching x and x̃. As a result, we get
that (2.2) holds.

We recall the following result, see [24, Theorem 5.9].

Theorem 2.4. Let (X, µ) and (Y, ν) be two Polish probability spaces (that is, metric, complete and separable)
and let c : X × Y → ℝ ∪ {+∞} be a lower semicontinuous function such that

c(x, y) ≥ a(x) + b(y) for all (x, y) ∈ X × Y

for some real-valued upper semicontinuous functions a ∈ L1(µ) and b ∈ L1(ν). Then, letting

J(ϕ, ψ) := ∫
Y

ϕ dν − ∫
X

ψ dµ,

we have

Wc(µ, ν) := min
π∈Π(µ,ν)

∫
X×Y

c(x, y) dπ(x, y) = sup
(ψ,ϕ)∈L1(µ)×L1(ν), ϕ−ψ≤c

J(ϕ, ψ) = sup
ψ∈L1(µ)

J(ψc , ψ)

and in the above sup, one might as well impose ψ to be c-convex. Moreover, if c is real-valued, Wc(µ, ν) < ∞
and

c(x, y) ≤ cX(x) + cY (y) for all (x, y) ∈ X × Y

for some cX ∈ L1(ν) and cY ∈ L1(µ), then the above sup is amax and onemight as well impose ψ to be c-convex.
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In the particular case c(x, y) = d(x, y)s, X = Y = U with U bounded, we obtain in view of Lemma 2.3 the
following result.

Theorem 2.5. For any µ, ν ∈ P(U), there holds

min
π∈Π(µ,ν)

∫

U×U

d(x, y)s dπ(x, y) = max
|ψ(x)−ψ(y)|≤d(x,y)s

∫

U

ψ dν − ∫

U

ψ dµ.

Proof. In view of Lemma 2.3 and the previous theorem, we can write that

Wc(µ, ν) = max
ψ∈L1(µ) c-convex

J(ψc , ψ) ≤ max
|ψ(x)−ψ(y)|≤d(x,y)s

J(ψ, ψ) ≤ sup
(ψ,ϕ)∈L1(µ)×L1(ν)
ϕ−ψ≤d(x,y)s

J(ϕ, ψ) = Wc(µ, ν)

from which we deduce the result.

3 The Dirichlet case

In this section, we borrow ideas from [5]. Let us consider the functionals Gp , G∞ : C(U) ×M(U) → ℝ ∪ {+∞}
given by

Gp(v, σ) =
{{{
{{{
{

−∫
U

vσ dx if σ ∈ Lp� (U), ‖σ‖Lp� (U) ≤ 1, and v ∈ W̃ s,p(U), [v]s,p ≤ (λDs,p)1/p ,

+∞ otherwise,

and

G∞(v, σ) =
{{{
{{{
{

−∫
U

v dσ if σ ∈ M(U), |σ|(U) ≤ 1, and v ∈ W̃ s,∞(U), |v(x) − v(y)| ≤ ΛDs,∞|x − y|s ,

+∞ otherwise.

We consider the weak convergence of measures in the space M(U) and the uniform convergence in the
space C(U).

First, we have that G∞ is the limit of Gp as p → +∞ in the Γ-limit sense (we refer to [7] for the de�nition
of Γ-convergence).

Lemma 3.1. The functionals Gp Γ-converge as p → +∞ to G∞.

Proof. It follows as in [5].

Now, we let fp : ℝn → ℝ be de�ned as
fp(x) := (up(x))p−1,

where up is a nonnegative eigenfunction associated to λDs,p(U) such that ‖up‖Lp(U) = 1. When we consider fp
as an element of M(U) together with up, we obtain a minimizer for Gp. The proof of this fact is immediate.

Lemma 3.2. The pair (fp , up)minimizes Gp in C(U) ×M(U) with

Gp(fp , up) = −1.

Now, let us show that we can extract a subsequence pn → +∞ such that fpn and upn converge.

Lemma 3.3. There exists a sequence pn → +∞ such that

upn → u∞

uniformly inℝn. This limit u∞ veri�es

|u∞(x) − u∞(y)| ≤ ΛDs,∞|x − y|s , x, y ∈ ℝn .
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Moreover, we have
fpn

∗
⇀ f∞

weakly-∗ in M(U) and f∞ is a nonnegative measure that veri�es f∞(U) ≤ 1.

Proof. The convergence of up, via a subsequence, is contained in [19]. Concerning fpn , the conclusion follows
from the inequality

∫
U

fp dx ≤ (∫
U

(up)p dx)
(p−1)/p

|U|1/p = |U|1/p (3.1)

that implies that fp is bounded inM(U) and, hence, we can extract a sequence pn → +∞ such that fpn
∗
⇀ f∞

weakly-∗ in M(U). The fact that the limit f∞ is a nonnegative measure that veri�es f∞(U) ≤ 1 also follows
from (3.1).

We obtain the following corollary from the main property of Γ-convergence.

Corollary 3.4. The pair (f∞, u∞)minimizes G∞ with

G∞(f∞, u∞) = −1.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. As (f∞, u∞)minimizes G∞, we obtain that

(f∞,
u∞
ΛD∞,s

)

minimizes
−∫
U

v dσ

with (v, σ) belonging to

A := {(v, σ) ∈ W̃ s,∞(U) ×M(U) : |σ|(U) ≤ 1, |v(x) − v(y)| ≤ d(x, y)s}.

Then,

1
ΛDs,∞

=
1

ΛDs,∞
∫
U

u∞ df∞ = max
(v,σ)∈A

∫
U

v dσ = max
µ∈P(U)

max
|w(x)−w(y)|≤d(x,y)s

∫
U

w dµ = max
µ∈P(U)

Ws(µ, P(∂U))

as we wanted to show.

4 The Neumann case

Again, we follow ideas from [5] (see also [23]). Let up be an extremal for λNp,s (that is, a minimizer for (1.1))
normalized by ‖up‖Lp(U) = 1. Then, fp := |up|p−2up ∈ Lp� (U) satis�es

‖fp‖Lp� (U) = 1 and ∫
U

fp dx = 0, (4.1)

where p� = p/(p − 1). The �rst step consists in extracting from {fp}p>1 a subsequence converging weakly to
some measure f∞ ∈ M(U), the weak convergence meaning here that

lim
p→+∞

∫

U

ϕfp dx = ∫

U

ϕ df∞

for any ϕ ∈ C(U).
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Lemma 4.1. Up to a subsequence, the measures fp converge weakly in measure in U to some measure f∞
supported in U satisfying

f∞(U) = 0 and |f∞|(U) = 1. (4.2)

Proof. We claim that
lim
p→+∞

∫
U

|fp| dx = 1. (4.3)

First, in view of (4.1), we have that

∫
U

|fp| dx ≤ ‖fp‖Lp� (U)|U|
1−1/p� = |U|1−1/p� → 1 as p → +∞

and then, recalling that up → u in C(U) with ‖u‖L∞(U) = 1,

1 = ∫
U

up fp dx ≤ ‖up‖L∞(U)‖fp‖L1(U) = (1 + o(1))‖fp‖L1(U).

In particular, it follows that the measures |fp| are bounded in M(U) independently of p. Since U is com-
pact, we can then extract from this sequence a subsequence converging weakly to somemeasure f∞ ∈ M(U).
Passing to the limit in (4.1) and (4.3) gives (4.2).

Consider the functionals Gp , G∞ : C(U) ×M(U) → ℝ ∪ {+∞} de�ned by

Gp(v, σ) =
{{{
{{{
{

−∫
U

vσ dx if σ ∈ Lp� (U), ‖σ‖Lp� (U) ≤ 1, ∫U σ dx = 0, and v ∈ W s,p(U), [[v]]s,p ≤ (λNp,s)1/p ,

+∞ otherwise,

and

G∞(v, σ) =
{{{
{{{
{

−∫
U

v dσ, if σ ∈ M(U), |σ|(U) ≤ 1, σ(U) = 0, and v ∈ W s,∞(U), |v(x) − v(y)| ≤ ΛN∞,sd(x, y)s ,

+∞ otherwise.

Remark that these functionals are similar to the ones considered for the Dirichlet case but the spaces
involved are di�erent. In fact, here we considerW s,p(U) instead of W̃ s,p(U) (that encodes the fact that we are
considering functions that vanish outside U when dealing with the Dirichlet problem).

As for theDirichlet case,we canprove as in [5, 23] thatG∞ is the limit ofGp in the sense of Γ-convergence.

Lemma 4.2. The functionals Gp converge in the sense of Γ-convergence to G∞.

The proof is similar to that of [5, Proposition 3.7] and hence we omit it. As a corollary, we obtain the follow-
ing lemma.

Lemma 4.3. Let up be an extremal for λNp,s. Then, (up , fp) is a minimizer for Gp and any limit (u∞, f∞) along
a subsequence pj → +∞ is a minimizer for G∞ with

G∞(u∞, f∞) = lim
p→+∞

Gp(up , fp) = −1.

Proof. Notice that the pair (up , fp) is a minimizer of Gp. Indeed, given a pair (v, σ) admissible for Gp, take
v̄ ∈ ℝ such that

∫
U

|v − v̄|p−2(v − v̄) dx = 0.

Then, recalling that ∫U σ dx = 0 and the de�nition of λNp,s, we have

Gp(v, σ) = −∫
U

(v − v̄)σ dx ≥ −‖v − v̄‖Lp(U)‖σ‖Lp� (U) ≥ −(λNp,s)−1/p[[v − v̄]]s,p ≥ −1 = Gp(up , fp).
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Moreover, (up , fp) → (u∞, f∞) along a sequence pj → +∞. Then, it follows that

lim inf
p→+∞

(inf Gp) = lim inf
p→+∞

Gp(up , fp) ≥ G∞(u∞, f∞) ≥ inf
B
G∞,

where B is the set of all pairs (v, σ) ∈ W s,∞(U) ×M(U) such that

|σ|(U) ≤ 1, σ(U) = 0 and |v(x) − v(y)| ≤ ΛN∞,sd(x, y)s .

Moreover, the lim sup property implies that

lim sup
p→+∞

(inf
B
Gp) ≤ inf

B
G∞.

Hence,
lim
p→+∞

inf
B
Gp = lim

p→∞
Gp(up , fp) = G∞(u∞, f∞) = inf

B
G∞.

We can now relate ΛNs,∞ toWs. Recall that if σ ∈ M(U), then σ± ∈ M(U) denote the positive and negative parts
of σ. In particular, σ = σ+ − σ− and |σ| = σ+ + σ−.

Proof of Theorem 1.2. The conditions σ(U) = 0 and |σ|(U) = 1 are equivalent to

σ+(U) = σ−(U) = 1
2 .

We can therefore rewrite the fact that the pair (u∞, f∞) is a minimizer of G∞ as

1 = max
σ∈M1/2

max
v∈FΛNs,∞

∫
U

v d(σ+ − σ−),

where
Mt = {σ ∈ M(U) : σ+(U) = σ+(U) = t}

and
FR = {v ∈ W s,∞(U) : |v(x) − v(y)| ≤ R d(x, y)},

that is,
2

ΛN∞,s
= max
σ∈M1

max
v∈F1

∫
U

v d(σ+ − σ−).

Then, we obtain the conclusion (1.3), recalling the de�nition ofWs given by (1.5).

5 Eigenvalue problems with a di�erent Neumann boundary
condition

In this section, we prove Theorem 1.3. For this purpose, we �rst present some previous results.

Theorem 5.1. The spaces

Ws,p(U) := {u : ℝn → ℝmeasurable | ‖u‖pLp(U) +Hs,p(u) < +∞}

and
Ws,∞(U) := {u : ℝn → ℝmeasurable | ‖u‖L∞(U) +Hs,∞(u) < +∞}

are Banach spaces with the norms
‖u‖pWs,p(U) := ‖u‖pLp(U) +Hs,p(u)

and
‖u‖Ws,∞(U) := ‖u‖L∞(U) +Hs,∞(u),

respectively.

The proof follows exactly as in the proof of [10, Proposition 3.1].
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Remark 5.2. It holds thatWs,p(U) ⊂ W s,p(U).

Remark 5.3. The operator I : Ws,p(U) → E = Lp(U) × Lp(ℝ2n \ (Uc)2) given by

I(u) := (u, u(x) − u(y)
d(x, y)(n/p)+s

)

is an isometry. Then, I(Ws,p(U)) is a closed subspace of E due to the fact that Ws,p(U) is a Banach space.
Hence, I(Ws,p(U)) is re�exive since E is re�exive. Then,Ws,p(U) is re�exive.

Following the proofs of [10, Lemma 3.2 and Lemma 3.7], we have the following result.

Lemma 5.4. Let u and v be bounded C2 functions inℝn. Then, the following formulae hold.
∙ Divergence theorem

∫
U

(−∆)spu(x) dx = − ∫
ℝ\U

Ns,pu(x) dx.

∙ Integration by parts formula
1
2Hs,p(u, v) = ∫

U

v(x)(−∆)spu(x) dx + ∫
ℝ\U

v(x)Ns,pu(x) dx,

where
Hs,p(u, v) := ∫ ∫

ℝ2n\(Uc)2

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
d(x, y)n+ps dx dy.

This result leads us to the following de�nition.

De�nition 5.5. A function u ∈ Ws,p(U) is a weak solution of (1.4) if
1
2Hs,p(u, v) = λ∫

U

|u|p−2uv dx (5.1)

for all v ∈ Ws,p(U).

In this context we have the following de�nition.

De�nition 5.6. We say that λ is a fractional Neumann p-eigenvalue provided there exists a nontrivial weak
solution u ∈ Ws,p(U) of (1.4). The function u is a corresponding eigenfunction.

Let us observe the following: if λ > 0 is an eigenvalue and u is an eigenfunction associated to λ, then, taking
v ≡ 1 as a test function in (5.1), we have

∫
U

|u|p−2u dx = 0.

In fact, we have that λ = 0 is the �rst eigenvalue of our problem.

Lemma 5.7. It holds that λ = 0 is an eigenvalue of (1.4) (with u = 1 as eigenfunction) and it is isolated and
simple.

Proof. Let u be an eigenfunction corresponding to λ = 0 in problem (1.4). From (5.1), taking v = u as a test
function, we obtain that u is constant in U.

Now, if wehave a sequence of eigenvalues λk → 0, then the corresponding eigenfunctions uk, normalized
by ‖uk‖Lp(U) = 1, converge to some u. It is not di�cult to show that u is an eigenfunction corresponding to λ = 0
(consequently, u ≡ constant) with ‖u‖Lp(U) = 1 and ∫U |u|p−2u dx = 0, a contradiction that shows that λ = 0 is
an isolated eigenvalue.

Thus, the existence of the�rst nonzero eigenvalue of (1.4) is related to theproblemofminimizing thenonlocal
quotient

Hs,p(v)
2‖v‖pLp(U)

among all functions v ∈ Ws,p(U) \ {0} such that ∫U |v|p−2v dx = 0.
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We are now ready to prove Theorem 1.3. For simplicity, we divide the proof of this theorem into three
parts contained in the following lemmas.

First, by a standard compactness argument and using that Ws,p(U) ⊂ W s,p(U), we have that λs,p is the
�rst nonzero eigenvalue of (1.4).

Lemma 5.8. It holds that λs,p is the �rst nonzero eigenvalue of (1.4).

Remark 5.9. SinceWs,p(U) ⊂ W s,p(U) and

[[u]]ps,p ≤ Hs,p(u) for all u ∈ Ws,p(U),

we have that
λNs,p ≤ 2λs,p .

Our next result shows the asymptotic behavior of (λs,p)1/p.

Lemma 5.10. We have

lim
p→+∞

(λs,p)1/p =
2

(diamd(U))s
= Λs,∞ := inf{Hs,∞(u)

‖u‖L∞(U)
: u ∈ A},

where
A := {v ∈ Ws,∞(U) \ {0} : sup

x∈U
u(x) + inf

x∈U
u(x) = 0}.

Proof. For the reader’s convenience, we split the proof into four steps.

Step 1.We begin by showing that
Λs,∞ ≤

2
(diamd(U))s

.

Let x0, y0 ∈ U such that d(x0, y0) = diamd(U). Let u : ℝn → ℝ be given by

u(x) := −1 +
2

diamd(U)
d(x, y0)s .

Observe that
sup
x∈U

u(x) = − inf
x∈U

u(x) = 1

and
|u(x) − u(y)|
d(x, y)s =

2
(diamd(U))s

|d(x, y0)s − d(y, y0)s|
d(x, y)s ≤

2
(diamd(U))s

for all x, y ∈ ℝn. Then, u ∈ A, ‖u‖L∞(U) = 1 and

Hs,∞(u) ≤ 2
(diamd(U))s

.

Therefore,
Λs,∞ ≤ Hs,∞(u) ≤ 2

(diamd(U))s
.

Step 2.We now prove that
Λs,∞ ≥

2
(diamd(U))s

.

If u ∈ A, then

2‖u‖L∞(U) = sup
x∈U

u(x) − inf
x∈U

u(x)

= sup{|u(x) − u(y)| : x, y ∈ U}

≤ (diamd(U))s sup{
|u(x) − u(y)|
d(x, y)s : x, y ∈ U}

≤ (diamd(U))sHs,∞(u).
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Thus,
2

(diamd(U))s
≤
Hs,∞(u)
‖u‖L∞(U)

for any u ∈ A, that is,
Λs,∞ ≥

2
(diamd(U))s

.

Step 3. We show that
2

(diamd(U))s
≤ lim inf

p→+∞
(λs,p)1/p .

By (1.2) and Remark 5.9, we have that

2
(diamd(U)s)

≤ lim
p→+∞

(λNs,p)1/p ≤ lim inf
p→+∞

21/p(λs,p(U))1/p = lim inf
p→+∞

(λs,p(U))1/p .

Step 4. Finally, we prove that
lim sup
p→+∞

(λs,p)1/p ≤
2

(diamd(U))s
.

As in Step 1, let x0, y0 ∈ U be such that d(x0, y0) = diamd(U). Set δ = diamd(U),

Uδ := {x ∈ ℝn : inf
y∈U

d(x, y) ≤ δ}

and

u(x) :=
{
{
{

d(x, y0) if x ∈ Uδ ,
0 if x ∈ ℝn \ Uδ .

Let ε > 0. Then,

Hs,p(u) ≤ 2 ∫
U×Uδ

|d(x, y0) − d(y, y0)|p
d(x, y)n+sp dx dy + 2 ∫

U×(ℝn\Uδ)

d(x, y0)p
d(x, y)n+sp dx dy

≤ 2 ∫
U×Uδ

d(x, y)p(1−s)−ε
d(x, y)n−ε dx dy + 2 ∫

U×(ℝn\Uδ)

d(x, y0)p
d(x, y)n+ε+sp−ε dx dy.

Thus, since d is a distance equivalent to the Euclidean one, if

p > max{ ε
(1 − s)

, ε
s }
,

we get that u ∈ Ws,p(U) and

Hs,p(u) ≤ C(diamd(U))p(1−s){(diamd(U))−ε + (diamd(U))ε}, (5.2)

where C is a constant independent of p.
We now choose cp ∈ ℝ such that

wp(x) = u(x) − cp

satis�es
∫
U

|wp|p−2wp dx = 0.

Hence, if p > max{ε/(1 − s), ε/s}, by (5.2), we have that

λs,p ≤
H(wp)

2‖wp‖pLp(U)
=

H(u)
2‖wp‖pLp(U)

≤
C

2‖wp‖pLp(U)
(diamd(U))p(1−s){(diamd(U))−ε + (diamd(U))ε}

and, therefore,

lim sup
p→+∞

(λs,p)1/p ≤
(diamd(U))1−s

lim inf
p→+∞

‖wp‖Lp(U)
. (5.3)
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On the other hand, in [12] it is proved that

lim inf
p→+∞

‖wp‖Lp(U) ≥
2

diamd(U)
. (5.4)

Thus, by (5.3) and (5.4), we get
lim sup
p→+∞

(λs,p)1/p ≤
2

(diamd(U))s
.

This concludes the proof.

Remark 5.11. By (1.2) and Lemma 5.10, we have that

ΛNs,∞ = lim
p→+∞

(λNs,p)1/p =
2

(diamd(U))s
= lim
p→+∞

(λs,p)1/p = Λs,∞.

Concerning the convergence of the eigenfunctions as p → +∞, we have the following result.

Lemma 5.12. If up is a minimizer of λs,p, normalized with ‖up‖Lp(U) = 1, then, up to a subsequence, up con-
verges in C(U) to some minimizer u∞ ∈ W s,∞(U) of ΛNs,∞.

Proof. For any p ∈ (1,∞), we consider up ∈ Ws,p(U) such that

‖up‖Lp(U) = 1, ∫
U

|up|p−2up dx = 0 and 1
2Hs,p(up) = λs,p .

Then, by Lemma 5.10, there exists a constant C, independent of p, such that

(
Hs,p(up)

2 )
1/p

≤ C (5.5)

for all p ∈ (1,∞).
Let us �x q ∈ (1,∞) such that sq > 2n. If p > q, then, by Hölder’s inequality, we have that

‖up‖Lq(Ω) ≤ |U|1/q−1/p‖up‖Lp(Ω) ≤ |U|1/q−1/p for all p ≥ q (5.6)

and taking r = s − n/q ∈ (0, 1), again by Hölder’s inequality, we get

[[up]]
q
r,q = ∫

U

∫
U

|up(x) − up(y)|q

d(x, y)sq dx dy

≤ |U|2(1−q/p)(∫
U

∫
U

|up(x) − up(y)|p

d(x, y)sp dx dy)
q/p

≤ 2q/p(diamd(U))nq/p|U|2(1−q/p)(
Hs,p(up)

2 )
q/p
. (5.7)

Then, by (5.5), we get

[[up]]r,q ≤ 21/p(diamd(U))n/p|U|2(1/q−1/p)Cq for all p ≥ q,

where C is a constant independent of p. Hence, {up}p≥q is a bounded sequence in W r,q(U). Then, since
rq = sq − n > n, by fractional compact embedding theorems (see [9, Theorem 4.54]), there exist a function
u∞ ∈ C(U) and a subsequence {upj }j∈ℕ of {up}p≥q such that

upj → u∞ uniformly in U,
upj ⇀ u∞ weakly inW r,q(U).

Hence, by (5.6), we have ‖u∞‖Lq(Ω) ≤ |U|1/q, and by (5.7) and Remark 5.11, we get

[[u∞]]r,q ≤ lim inf
j→∞

[[upj ]]r,q ≤ lim inf
j→∞

21/pj (diamd(U))n/pj |U|2(1−1/pj)(
Hs,pj (upj )

2 )
1/pj

= |U|2/qΛNs,∞.
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Letting q → +∞, we obtain
‖u∞‖L∞(Ω) ≤ 1

and
[[u∞]]s,∞ ≤ ΛNs,∞. (5.8)

On the other hand,
1 = ‖upj‖Lpj (U) ≤ |U|1/pj‖upj‖L∞(U) for all j ∈ ℕ

and, as a result,
1 ≤ ‖u∞‖L∞(U).

Hence,
‖u∞‖L∞(U) = 1

and by (5.8), we get
[[u∞]]s,∞
‖u∞‖L∞(U)

≤ ΛNs,∞. (5.9)

Finally, in [12, 23] it was proved that the condition

∫
U

|upj |pj−2upj dx = 0

leads to
sup
x∈U

u∞(x) + inf
x∈U

u∞(x) = 0

in the limit as p → +∞. Then, using (5.9), we have that u∞ is a minimizer of ΛNs,∞.
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