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Abstract. The fundamental problem of collecting data in the “best way”
in order to assure statistically efficient estimation of parameters is known as

Optimal Experimental Design. Many inverse problems consist in selecting best

parameter values of a given mathematical model based on fits to measured
data. These are usually formulated as optimization problems and the accuracy

of their solutions depends not only on the chosen optimization scheme but

also on the given data. We consider an electromagnetic interrogation problem,
specifically one arising in an electroencephalography (EEG) problem, of finding

optimal number and locations for sensors for source identification in a 3D unit
sphere from data on its boundary. In this effort we compare the use of the

classical D-optimal criterion for observation points as opposed to that for a

uniform observation mesh. We consider location and best number of sensors
and report results based on statistical uncertainty analysis of the resulting

estimated parameters.

1. Introduction. In a series of recent works [9, 10, 12, 15, 16] several authors have
developed a design framework based on the Fisher Information Matrix (FIM) for
a system of differential equations to determine when and where an experimenter
should take samples and what variables to measure in collecting information on a
physical or biological process that is modeled by a vector dynamical system. This
framework has also been proposed for use in inverse problem methodologies in the
context of dynamical system or mathematical model parameter estimation when
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one investigates the sufficiency of the number of observations of one or more states
(variables). Experimental design using the Fisher Information Matrix (FIM), which
is based on sensitivity functions (traditional and generalized), is described in [10] for
the case of scalar data. In [12], the authors develop an experimental design theory
using the FIM to identify optimal sampling times for experiments on physical pro-
cesses (modeled by an ODE system) in which scalar or vector data will be taken.
The methodology can be readily applied to problems involving ordinary, partial
and delay differential equations dynamics but requires both a mathematical model
and a statistical model. Early efforts published in this area were concerned with
parameter estimation for one dimensional dynamic systems in one space or time
dimension. More recently, these ideas were successfully applied in [15] for an ex-
perimentally validated six-compartment HIV model and a thirty-eight dimensional
enzyme kinetics model of the Calvin Cycle in spinach, design of HIV therapy treat-
ment interruptions [6, 19], synthetic gene network interrogation [2], disease-related
nucleated polymerization [11] and design of optimal immune suppression therapy
for organ transplant patients [7].

In [17] and [18] proof-of-concept numerical results for a distributed parameter
system in a 3D one layer spherical domain are presented for several different de-
sign criteria (D-optimal, SE-optimal, IGSF-optimal). In this present effort, a more
general case in 3D is studied. Motivated again by classical problems in EEG anal-
ysis, we consider a stationary process modeled by a Poisson type equation with
multiple interfaces given by

∇ · (κ(x)∇u(x, θ)) = g(x, θ) x ∈ Ω. (1)

Here θ ∈ Rp is the parameter to be estimated, Ω is the multilayered sphere in R3,
κ(x) is a piecewise positive constant conductivity function, u(x, θ) ∈ R, x ∈ ∂Ω
is the output and g : R3+p → R is the source. For this investigation we suppose
that there exists a real value θ0 such that the equation (1) accurately describes the
process.

For the estimation process, we formulate a statistical model [40] of the form
(absolute error)

Y (x) = u(x, θ0) + E(x), x ∈ ∂Ω, (2)

where θ0 is the vector of true values of the unknown parameters and E is a vec-
tor random process that represents observation error for the measured variables.
Realizations of the statistical model (2) can be written as

y(x) = u(x, θ0) + ε(x), x ∈ ∂Ω. (3)

In almost every real problem only a discrete set of output data is available. We
denote {y1, ..., yn} the measurements at Λ = {x1, . . . , xn} ⊂ ∂Ω. In this context, the
parameter value θ0 may be estimated by an Ordinary Least Square (OLS) procedure

yielding an estimate θ̂. That is,

θ̂ = arg min
θ∈A

JΛ(θ)

where A is the set of admisible parameter values and JΛ(θ) denotes the square
errors between the measured and simulated outputs at the observation points, i.e.,

JΛ(θ) =

n∑
j=1

|u(xj , θ)− yj |2. (4)
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Different choices of the points x1, . . . , xn ∈ Λ may lead to different estimates, and
thus it is important to look for the optimal set of observation points that will
lead to an accurate parameter estimation. This is the purpose of the so-called
Optimal Design methods, like D-Optimal, SE-Optimal, E-optimal design methods
(see [9, 10]). For the sake of clarity, in the remainder of this article we omit the
subindexes Λ on J .

The results presented here will clearly illustrate the advantages of performing
some type of design such as D-Optimal design in connection to the estimation of
the parameters in the problem described by (1).

2. The EEG Inverse problem. The electrical activity of the brain consists of
currents generated by biochemical sources at the cellular level. The electric and
magnetic fields that they produce can be estimated by means of Maxwell equations
(see [32, 38]). Based on the properties of the tissues involved, the velocity of prop-
agation of the electromagnetic waves caused by potential changes within the brain
is such that the effect may be detected simultaneously at any point in the brain or
in the surrounding tissues. This fact justifies the use of a static approximation of
Maxwell equations. This approximation uncouples the equations for the magnetic
and electric fields leading to a 3D Poisson-type equation with interfaces that relates
the electric potential u in the head with the impressed current C.

The equation that relates the electric potential u and the impressed current C
reads:

∇ · (κ(x)∇u(x)) = ∇ · C, x ∈ Ω,

∂u

∂ν
= 0 x ∈ ∂Ω,

where the volume Ω represents the head, ν is the external normal vector and κ is
the conductivity function. The impressed current is often represented by an electric
dipole, C(x) = q δ(x − rq), where δ is the Dirac distribution, rq is a fixed point
in the brain which represents the dipole location, and q is the dipole moment [32].
Observe that, since a static approximation is considered, the values of u(x) do not
depend on time; instead they correspond to a precise instant of the underlaying
process.

A simplified geometric model is usually considered where the head is represented
by a 3D three-layered sphere. The nested subsets Ω3,Ω2\Ω3 and Ω1\Ω2 correspond
to the brain, skull and scalp, respectively. The location of the dipole rq ∈ Ω3 (see
Fig. 1) is in the brain. The function κ(x) represents the conductivity of the tissues

Figure 1. 3D Three-layered Domain.
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involved and is usually considered as a positive piecewise constant function

κ(x) =


κ3 x ∈ Ω3,
κ2 x ∈ Ω2\Ω3,
κ1 x ∈ Ω1\Ω2,
0 x /∈ Ω.

Assuming that the potential and its normal derivative multiplied by the conduc-
tivity function are continuous across the transition surfaces, the following interface
conditions are imposed

[u]

∣∣∣∣
Si

= 0 [κ(x)
∂u

∂ν
]

∣∣∣∣
Si

= 0 i = 2, 3.

where [·]
∣∣∣∣
Si

denotes the difference between the values of the functions inside the

brackets through the interface surfaces Si = ∂Ωi, i = 1, .., 3 that surround the
different subsets.

In this framework, the forward problem of EEG consists in finding the electric
potential u in the head for a given current source C. Conversely the inverse problem
of EEG consists in finding the location rq of the electric dipole and its moment q,
for a given scalp potential u. The remaining parameters of the model κ1, κ2, κ3,
as well as the radii of the spheres, are supposed to be known. We recall that the
values of u(x), x ∈ ∂Ω, do not depend on time, since they are collected at a precise
instant.
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Figure 2. Forward and inverse problems of EEG.

Electroencephalographic source localization by noninvasive techniques is an area
of interest in clinic epileptology, in particular concerning models of dipolar and
distributed sources for the investigation of focal epilepsy. In this context the scalp
data corresponding to an instant of a seizure should be considered. An accurate
solution to the inverse problem could provide useful information to determine the
location of epileptogenic zones within the brain from EEG recordings. In the last
decade several authors have been working in this area. Source models were analyzed
in [25, 39, 43] while forward and inverse problem solutions were studied in [33,
36, 37], among others. In [21], the authors developed a method for EEG source
localization based on rational approximation techniques in the complex plane and
they presented results using simulated data. We refer to the references therein for
a review of the principal results concerning the inverse problem in EEG.

Since in practice the scalp potential u is measured only at a finite set of points
x1, · · · , xn, on the scalp where the electrodes are placed, the inverse problem of EEG
consists in recovering rq and q from u(x1), · · ·u(xn). Challenged by this problem,
we analyze the corresponding mathematical model considering that only a finite
set of potential values are available. Parameter estimation techniques and optimal
design schemes are performed to solve the inverse problem accurately.
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3. Mathematical model. Motivated by the above formulation we consider the
following second order elliptic partial differential equation (PDE)

∇ · (κ(x)∇u(x, θ)) = ∇ · F (x, θ), in Ω,

∂u

∂ν
(x, θ) = 0 in ∈ ∂Ω,

(5)

where Ω is the unit ball of R3, and κ is a positive piecewise constant function defined
by

κ(x) =


κ3 x ∈ Ω3,
κ2 x ∈ Ω2\Ω3,
κ1 x ∈ Ω1\Ω2,
0 x /∈ Ω,

(6)

where Ω1 = Ω and Ω2, Ω3 are balls centered at the origin with radii r2, r3 such that
0 < r3 < r2 < 1.

The mathematical formulation is completely defined with the following interface
and boundary conditions:

[u]

∣∣∣∣
Si

= 0 [κ(x)
∂u

∂ν
]

∣∣∣∣
Si

= 0 i = 2, 3, (7)

∂u(x)

∂η
= 0, x ∈ ∂G, (8)

where [·]Si
denotes the difference between the values of the functions inside the

brackets through the surface Si = ∂Ωi and η is the external normal vector. This type
of system appears in a number of applied problems such electrostatic interrogation
systems, medical imaging, geophysical exploration and nondestructive testing, etc,
[3, 4, 5, 8, 14, 20, 22, 23, 29, 30, 31, 34, 35].

Once again based on the formulations discussed above, we consider a function
F of the form F (x, θ) = qδ(x − rq), where δ denotes the dirac distribution. Then
the source ∇ · F (x, θ) could represent for example an electric dipole with moment
q = (q1, q2, q3) ∈ R3 and location rq = (rq1 , rq2 , rq3) ∈ Ω3. The parameter of the
model is then θ = (rq, q) ∈ R6. Existence and uniqueness of a solution u(x, θ) to
this case have been studied in [24] and its dependence with respect to Ω and κ
appears in [41, 42], respectively.

In [24] the author gives an explicit formula in terms of a series, for u and its
derivatives with respect to the parameters for spherical domains. This formula
allows one to compute u at any point of Ω given a dipole that can be located
anywhere in Ω. Since we are only interested in computing u(x) for x in the boundary
∂Ω of the domain and with a dipole located in the innermost layer, i.e., rq ∈ Ω3,
we will only recall the expression of u in this situation. The formula for u given in
[24] is

4πu(x) = q ·
( rq
‖rq‖

(S1 − S0 cosω) +
x

‖x‖
S0

)
, (9)

where cosω =
rq
‖rq‖

x
‖x‖ is the cosine of the angle formed by the observation point x,

the dipole location rq and the origin, and S0, S1 are given by

S0 =
1

r0

∑
n≥1

(2n+ 1)Rn(r0, r)P
′
n(cosω), and S1 =

∑
n≥1

(2n+ 1)R′n(r0, r)P
′
n(cosω).

(10)
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Here r0 = ‖rq‖, r = ‖x‖, Pn is the n-th Legendre polynomial and P ′n its derivative
which can be computed from the recursive formula

P0(x) = 1, P1(x) = x, (11)

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), n ≥ 2. (12)

Finally, rq ∈ Ω3 implies r0 < r3, hence the definitions of Rn and R′n given in [24]
reduce to

Rn(r0, r) = −{U3(r0, 0)}12

A
rn0 , and R′n(r0, r) = −{U3(r0, 0)}22

κ3A
rn0 ,

where A = {U1(r1, r2)U2(r2, r3)U3(r3, 0)}22, and the matrix Uj(ra, rb) is defined as

(2n+ 1)Uj(ra, rb)

=



(
ra
rb

)−2n−2
(

nra
rb

− ra
κj

−n(n+1)κj

rb
n+ 1

)
+

(
n+ 1 rb

κj
n(n+1)κj

ra
nrb
ra

)
if ra, rb ∈ (rj+1, rj),

j = 1, 2,(
0 1

κ3

0 n
ra

)
if rb = 0, j = 3.

(13)
We can thus rewrite Rn and R′n as

Rn(r0, r) = − rn0
(2n+ 1)κ3A

and R′n(r0, r) = − nrn−1
0

(2n+ 1)κ3A
, (14)

so that

S0 = − 1

κ3

∑
n≥1

P ′n(cosω)

A
rn−1
0 and S1 = − 1

κ3

∑
n≥1

nP ′n(cosω)

A
rn−1
0 . (15)

The formula (9) with S0 and S1 given by the previous formula (15) allow us to
compute easily the solution to (5) when rq ∈ Ω3 and x ∈ ∂Ω.

4. Inverse problem formulation. We consider the inverse problem or parameter
estimation for the mathematical model described by (5). It consists in estimating
the unknown parameter θ = (rq, q) ∈ R6 from the data y1, .., yn, corresponding to
n observation points at x1, .., xn on the boundary ∂Ω.

We choose the Ordinary Least Square (OLS) method to calculate estimates θ̂ of
θ0; that is, we minimize

J(θ) =

n∑
j=1

|u(xj , θ)− yj |2, θ ∈ A, (16)

where A = {(r, q)|r ∈ Ω3}. We compute the solution u of our model by means of
(9).

The OLS-estimator θ̂ is then

θ̂ = arg min
θ∈A

J(θ).

Theoretical results concerning existence and ill-posedness of the inverse problem
associated with (5 )-(8) have been studied in [26, 27, 28].

As already noted, a statistical model is necessary to study and implement in-
verse problem techniques properly. Here we take the absolute error model (2) with
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realizations (3). In this context the inverse problem consists of the estimation of
the unknown parameters θ0 from the data

yi := u(xi, θ0) + εi , i = 1, .., n,

where we assume that the additive noises ε1, .., εn are independent realizations of a
centered normal random variable with variance σ2.

Recall that θ̂ is a realization of a random variable Θ̂. It can be proved that under
suitable hypothesis (see [13, 40]), Θ̂ has asymptotically normal distribution

Θ̂ ∼ N(θ0, (σ
2F (x1, .., xn, θ0))−1), (17)

where F (x1, .., xn, θ) ∈ R6×6 is the usual Fisher Information Matrix defined by

Fij(x1, .., xn, θ) =

n∑
k=1

∂u

∂θi
(xk, θ)

∂u

∂θj
(xk, θ). (18)

The partial derivatives ∂u
∂θj

(xk, θ) are the traditional sensitivity functions that, as-

suming smoothness on u, quantify the variations in u with respect to changes in
the jth component of the parameter θ. A precise discussion of the hypothesis and
the approximations involved in the above theory is given in [13].

For our model representation, the sensitivities of u with respect to θ can be easily
computed by directly differentiating (9). The computation of the derivative ∇qu
of u with respect to the moment q of the dipole is immediate from (9). For the
derivative ∇rqu the author in [24] found that

4π∇rqu(x)

=
rq
r0

{
q · rqr0

(
3S0

r0
cosω − S1

r0
+ S2 − 2S3 cosω + S4(cosω)2

)
+q · x

(
S3 − S0

r0
− S4 cosω

)}
+q
{
S1

r0
− S0

r0
cosω

}
+ x
{
q · rqr0

(
S3 − S0

r0
− S4 cosω

)
+ q · xS4

}
,

(19)

where S0 and S1 are given in (15), and S3, S4 are defined as

S4 =
1

r2
0

∑
n≥1

(2n+ 1)Rn(r0, r)P
′′
n (cosω) = − 1

κ3

∑
n≥1

P ′′n (cosω)

A
rn−2
0 ,

S3 =
1

r0

∑
n≥1

(2n+ 1)R′n(r0, r)P
′
n(cosω) = − 1

κ3

∑
n≥1

nP ′n(cosω)

A
rn−2
0 .

Here P ′′n is the 2nd derivative of Pn that can be calculated from (11), and one can
use the expressions (14) of Rn and R′n to make the simplifications, and obtain

S2 =
∑
n≥1

(2n+ 1)R′′n(r0, r)Pn(cosω).

Then using

R′′n(r0, r) =
n(n+ 1)

r2
0

Rn(r0, r)−
2

r0
R′n(r0, r) = − n(n− 1)

(2n+ 1)κ3A
rn−2
0 ,

we find

S2 = − 1

κ3

∑
n≥1

n(n− 1)Pn(cosω)

A
rn−2
0 .
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4.1. Optimal design. It is often useful to have some criteria to determine where
samples should be taken for any type of interrogation problem, especially those that
can be expensive and/or invasive. This is the goal of the optimal design techniques:
to search for the optimal set of observation points in order to carry on the estimation
procedures. Different criteria generally give rise to different selections of observation
points. In most cases optimal design methods for parameter estimation problems
choose the sampling distribution by minimizing a specific cost function related to
the error or to the accuracy in parameter estimates. Data collected in this optimal
way will lead to parameter estimates with increased accuracy.

In view of the asymptotic distribution (17)-(18) it is natural to choose the points
xi that minimize F (x1, .., xn, θ0) in some sense (see [9, 10]). A well-known and
widely used optimal design method is the D-optimal criteria that consists in min-
imizing det F (x1, ...xn, θ)

−1. Geometrically, this corresponds to minimizing the
volume of the confidence ellipsoid for the covariance matrix Cov = σ2F−1.

With that purpose we choose the set ΛD = {x1,D . . . , xn,D} ⊂ ∂Ω of n observa-
tion points where the measurements {y1, ..., yn} are to be obtained by minimizing
the function

G(x1, ...xn, θ0) = det F (x1, ...xn, θ0)−1, x1, ...xn ∈ ∂Ω,

starting with some initial set of points and considering θ0 as an initial guess value
for the parameter. After having selected the observation points, we perform OLS
with the optimal set ΛD and the initial guess θ0. In the next section we present a
detailed description of the way our numerical calculations were performed for the
problems of interest to us in this presentation.

5. Numerical preliminaries. Since we consider simulated data, we are able to
study the actual errors and analyze the performance of Optimal Design for an
optimal selection of data.

The values used in the numerical simulation are given in the following two ta-
bles. Table 1 contains the values for the mathematical model that are used in each
numerical experiments. They are fixed values of the model and they are assumed
to be known.

Layer ri κi
Ω1\Ω2 1 0.33
Ω2\Ω3 0.92 0.0042

Ω3 0.84 0.33

Table 1. Known model values (used for all simulations).

Two different electric dipoles were chosen to illustrate a general behaviour. The
first potential dipole (Example 1) is defined by F (x, y, z) = (3, 4, 0) δ((x, y, z) −
(0.3, 0.4, 0)). It is a parallel dipole since its moment q = (3, 4, 0) is parallel to the
vector position rq = (0.3, 0.4, 0). The second electric dipole (Example 2) is given
by F (x, y, z) = (2,−1, 1) δ((x, y, z) − (0.3, 0.4, 0)). Note that we kept the dipole
position while its moment is significantly different. These parameter values and
their respective initial relative errors are shown in Table 2.

The observation data is simulated as

yi = ui,+εi, i = 1, . . . , n, (20)
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Potential Dipole (Case 1) Potential Dipole (Case 2)
Position rq Moment q Position rq Moment q

θ0 (0.3, 0.4, 0) (3, 4, 0) (0.3, 0.4, 0) (2, -1, 1)
θg (0.2, 0.2, 0.1) (2, 2, -1) (0.1, 0.2, -0.1) (0, 1, -1)

Initial relative error 0.4899 0.8466 0.6000 1.4142
Table 2. Parameter values for inverse problem experiments,
where θ0 denotes true parameter values and θg represents initial
guess values.

where the values ui = u(xi, θ0), i = 1, · · · , n are computed as a sum of 20 terms
of the form given in (9), for θ0 = (0.3, 0.4, 0, 3, 4, 0) in the first example and
θ0 = (0.3, 0.4, 0, 2, −1, 1) in the second.

The observation noise εi at each observation point xi is calculated by the Matlab
function randn with standard deviations σ = 0, 0.05, 0.1, 0.15 and 0.2 to produce
noise free data as well as data sets with nontrivial increasing noise levels.

Note that the observation data is taken for the outer surface of the domain which
is considered as a unit sphere (r3 = 1). Hence, the observation points can be written
as (x, y, z) = (sin(α) cos(φ), sin(α) sin(φ), cos(α)), with (α, φ) ∈ [0, π] × [0, 2π]. We
define a uniform grid on spherical coordinates with constant step ∆α = π/30 for
α and ∆φ = 2 ∗ π/30 for φ. This gives us 31 × 31 grid points in the rectangle
[0, π] × [0, 2π] of the form (αi, φj) where αi = (i − 1) ∗ ∆α, i = 1, ..., 31, φj =
(j − 1) ∗ ∆φ, j = 1, ..., 31. The gridpoints are numbered on the rectangular grid
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Figure 3. Rectangular grid in (φ, α) (left) and Spherical grid (right).

from left to right and from bottom to top as shown in Fig. 3 (left). The spherical
gridpoints are shown in Fig. 3, on the right. Note that the bottom line of gridpoints
correspond to α = 0 and the top line to α = φ. Each of these lines correspond
to only one point on the unit sphere, they are (0, 0, 1) and (0, 0,−1) in cartesian
coordinates, which are the poles. On the other hand, the extreme points of the same
line are the same, due to the periodicity of trigonometrical functions. One needs to
take these facts into account when considering observation points.

As mentioned before, the estimated value for the parameter is based on the initial
set Λ of observation points.

We ran numerical experiments considering different numbers of measurements
from n = 7 to n = 20. For each case, the points xi, i = 1, .., n in Λ are chosen from
the set of observable gridpoints as follows. First, we fix the first and the last points
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of Λ at the gridpoints numbered as 100 and 650, respectively; that is x1 = xg100,
xn = xg650. In this way we are sure that they fall far from the poles. The rest of
the points are uniformly distributed on the numbered grid, which means

xl = xgk, k = 100 + (l − 1)
550

n− 1
, l = 1, ..., n. (21)

6. Parameter estimation. We obtain two estimates θ̂Λ and θ̂D of θ0 performing
OLS with the initial guess θg and two different sets of observations points x1, . . . , xn:

• the estimate θ̂Λ is obtained performing OLS with the initial guess θg and the
set Λ = {x̃1, . . . , x̃n} of observation points given by (21).

• we obtain a second estimate θ̂D of θ0 applying OLS using the observation
points arising from the D-optimal design criteria as follows. We first look for
a set ΛD = {xD1 , . . . , xDn } of n observation points minimizing the function

det F (x1, ...xn, θg)
−1

starting with Λ as initial observation points. We then perform OLS with θg
as initial guess for θ and the observation points in ΛD .

The D-optimal set of observations points are calculated by means of the Mat-
lab function fmincon with the following optimset: MaxIter=50000, MaxFunEvals
=700000, TolFun=1e-21, TolX=1e-6, with constraints 0, π for α and 0, 2π for φ.

The OLS-estimate is computed by the Matlab function lsqnonlin with the same
options as fmincon except that in this case we set TolFun=1e-10.

We repeat these procedures N times (generating a new set of perturbations
ε1, . . . , εn each time) thus we obtain 2N different estimates: N of them denoted by

θjΛ = (r̂jqΛ, q̂
j
Λ), j = 1, . . . , N ( OLS estimates) and the remaining ones denoted by

θjD = (r̂jqD, q̂
j
D), j = 1, . . . , N ( D-Optimal -OLS estimates). We then compute the

relatives errors for rq and q:

ejΛ(rq) :=
‖r̂qjΛ − rq0‖
‖rq0‖

, ejΛ(q) :=
‖q̂jΛ − q0‖
‖q0‖

, j = 1, .., N,

ejD(rq) :=
‖r̂qjD − rq0‖
‖rq0‖

, ejD(q) :=
‖q̂jD − q0‖
‖q0‖

, i = j, .., N,

and then average them:

ēΛ(rq) =
1

N

N∑
j=1

ejΛ(rq), ēD(rq) =
1

N

N∑
j=1

ejD(rq), (22)

ēΛ(q) =
1

N

N∑
j=1

ejΛ(q), ēD(q) =
1

N

N∑
j=1

ejD(q). (23)

6.1. Example 1: (Parallel dipole). We first consider a parallel dipole where the
“true” values for the parameters are given by

θ0 = (0.3, 0.4, 0, 3, 4, 0)

and the initial “guess” values are

θg = (0.2, 0.2, 0.1, 2, 2, −1).

Tables 3 and 4 give the resulting values for ēΛ(rq), ēD(rq), and for ēΛ(q), ēD(q),
respectively, for N = 500 with n = 7, . . . , 20 observation points and noise standard
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deviations σ = 0, 0.05, 0.1, 0.15, 0.2 for Example 1 (the parallel dipole example).
These values are displayed graphically in Figures 4 (No optimal design) and 5 (D-
optimal design).

We denote by θ̂Λ = (r̂qΛ, q̂Λ) and θ̂D = (r̂qD, q̂D) the average of the estimated

parameters {θ̂jΛ}1≤j≤N and {θ̂jD}1≤j≤N , namely

θ̂Λ =
1

N

N∑
i=1

θ̂iΛ, θ̂D =
1

N

N∑
i=1

θ̂iD.

n\σ σ = 0.2 σ = 0.15 σ = 0.1 σ = 0.05 σ = 0

n ēD ēΛ ēD ēΛ ēD ēΛ ēD ēΛ ēD ēΛ
7 0.286 1.151 0.205 1.071 0.130 0.893 0.065 0.658 0.6e-15 0.5e-11

8 0.208 0.682 0.155 0.510 0.100 0.334 0.050 0.167 0.5e-12 0.8e-11

9 0.202 0.459 0.154 0.3454 0.102 0.237 0.049 0.112 0.2e-14 0.1e-14

10 0.199 1.297 0.136 1.1389 0.093 0.973 0.045 0.597 0.1e-12 0.6e-12

11 0.195 0.317 0.145 0.2392 0.096 0.148 0.047 0.073 0.3e-15 0.8e-15

12 0.179 0.375 0.133 0.2595 0.085 0.165 0.040 0.082 0.7e-15 0.5e-13

13 0.184 0.375 0.130 0.2846 0.090 0.186 0.043 0.095 0.6e-14 0.2e-12

14 0.164 0.330 0.121 0.2175 0.079 0.138 0.040 0.072 0.3e-14 0.2e-12

15 0.160 0.262 0.123 0.1996 0.079 0.129 0.040 0.063 0.1e-14 0.6e-14

16 0.152 0.258 0.118 0.1865 0.074 0.125 0.038 0.060 0.4e-15 0.8e-15

19 0.148 0.886 0.106 0.7488 0.072 0.630 0.036 0.403 0.5e-12 0.1e-10

17 0.155 0.299 0.115 0.2133 0.073 0.139 0.037 0.068 0.4e-15 0.9e-15

18 0.149 1.043 0.109 0.9104 0.073 0.708 0.037 0.409 0.2e-15 0.4e-13

20 0.136 0.207 0.102 0.1477 0.070 0.102 0.035 0.049 0.1e-15 0.4e-15

Table 3. Example 1. Mean relative errors ēD(rq) and ēΛ(rq) for
rq as defined in (22) for different number of observation points n
and different value of the noise standard deviation σ.

n\σ σ = 0.2 σ = 0.15 σ = 0.1 σ = 0.05 σ = 0

n ēD ēΛ ēD ēΛ ēD ēΛ ēD ēΛ ēD ēΛ
7 0.115 0.738 0.086 0.643 0.059 0.489 0.029 0.306 0.1e-15 0.2e-11

8 0.103 0.210 0.077 0.151 0.051 0.101 0.026 0.050 0.2e-12 0.2e-11

9 0.103 0.129 0.079 0.095 0.052 0.064 0.025 0.031 0.2e-15 0.6e-15

10 0.099 0.791 0.071 0.608 0.049 0.468 0.024 0.257 0.4e-13 0.5e-12

11 0.092 0.083 0.074 0.067 0.048 0.043 0.024 0.022 0.3e-15 0.9e-16

12 0.092 0.096 0.066 0.068 0.044 0.045 0.022 0.022 0.2e-15 0.2e-13

13 0.086 0.172 0.063 0.120 0.044 0.084 0.022 0.041 0.8e-15 0.1e-12

14 0.081 0.083 0.068 0.059 0.040 0.039 0.021 0.019 0.1e-15 0.5e-12

15 0.078 0.078 0.059 0.057 0.040 0.038 0.021 0.018 0.1e-15 0.2e-14

16 0.079 0.076 0.060 0.056 0.039 0.037 0.020 0.018 0.9e-16 0.1e-15

17 0.077 0.090 0.057 0.065 0.038 0.042 0.019 0.021 0.0e-16 0.4e-15

18 0.074 0.204 0.057 0.170 0.037 0.132 0.019 0.071 0.3e-15 0.1e-13

19 0.071 0.5489 0.056 0.425 0.037 0.313 0.018 0.176 0.2e-12 0.2e-11

20 0.071 0.074 0.052 0.054 0.035 0.036 0.018 0.018 0.1e-15 0.3e-16

Table 4. Example 1. Mean relative errors ēD(q) and ēΛ(q) for q
as defined in (23) for different number of observation points n and
different value of the noise standard deviation σ.

To compare the statistical relevance of θ̂Λ and θ̂D we compute the confidence
intervals (CI) for θ0 based on these two estimates in the following way. We first
generate two sets of simulated observations {ui,D}1≤i≤n and {ui,Λ}1≤i≤n defined in



750 H. T. BANKS, D. RUBIO, N. SAINTIER AND M. I. TROPAREVSKY

(20) using the set of observation points ΛD and Λ respectively. We then compute
the estimated variances σ̂2

Λ and σ̂2
D defined as

σ̂2
Λ =

1

n− 6

n∑
i=1

(
ui,Λ − u(x̃i, θ̂Λ)

)2

, σ̂2
D =

1

n− 6

n∑
i=1

(
ui,D − u(xDi , θ̂D)

)2

.

The standard errors SE(θ̂Λ), SE(θ̂D) ∈ R6 are then defined as

SE2
k(θ̂Λ) = σ̂2

Λ(F (x̃1, . . . , x̃n; θ̂Λ)−1)kk, SE2
k(θ̂D) = σ̂2

D(F (xD1 , . . . , x
D
n ; θ̂D)−1)kk

where k = 1, . . . , 6, and F is the Fisher matrix defined in (18). The approximate

CI at the (1−α)% level for the k-th component θ0,k of θ0 corresponding to θ̂Λ and

θ̂D are then given respectively by

[ θ̂Λ,k − t1−α/2 SEk(θ̂Λ) , θ̂Λ,k + t1−α/2 SEk(θ̂Λ) ] (24)

[ θ̂D,k − t1−α/2 SEk(θ̂D) , θ̂D,k + t1−α/2 SEk(θ̂D) ]. (25)

The results for rq(1) (the first component of rq) and q(1) (the first component of
q) are shown in Figures (6)-(9). Figure 6 depicts the results when σ = 0.05. From
top to bottom: The mean relative errors, length of the confidence intervals (built
using formula (24) (in blue) and (25)) and the confidence intervals. On the left are
the results for rq(1) and on the right are the results for q(1). Similar results for
σ = 0.1, 0.15, 0.2 are depicted in Figures 7 - 9.
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Figure 4. Mean relative errors ēΛ(rq) and ēΛ(q) (no optimal de-
sign) as functions of n and σ .
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Figure 5. Mean relative errors ēD(rq) and ēD(q) (using D-
Optimal design) as functions of n and σ.
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Figure 6. Results for noisy realizations with σ = 0.05 using D-
optimal design (red) and no optimal design (blue). From top to
bottom: Mean relative errors ēD(rq) and ēΛ(rq) (right) and ēD(q)
and ēΛ(q) (left); length of confidence intervals for rq(1) (right) and
q(1) (left); confidence intervals at 90 % confidence level for rq(1)
(right) and q(1) (left).

6.2. Example 2: (Nonparallel dipole). To illustrate our findings with a second
example, we consider Example 2 introduced above where the moment and location
are non parallel. In this case we chose true values for θ0 = (0.3, 0.4, 0, 2, −1, 1)
and used initial guess parameter values θg = (0.1, 0.2, -0.1, 0, 1, -1). Results for
different levels of noise are given in Tables 5 and 6. Findings for mean relative
errors and confidence intervals of level 90 % are given in Figures 12 - 15.

7. Conclusions. In this paper we have investigated a typical interrogation problem
such as those arising in EEG. We have shown the value of using some type of
optimal design criterion (such as those studied in other biomedical and biological
applications [2, 9, 10, 12, 15, 16, 6]) in determining how to best collect data. From
the numerical results summarized here, we would conclude that:

• D-optimal design techniques provide a set observations points leading to a
more accurate estimate of the parameters of interest. The results of this paper
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Figure 7. Results for noisy realizations with σ = 0.1 using D-
optimal design (red) and no optimal design (blue). From top to
bottom: Mean relative errors ēD(rq) and ēΛ(rq) (right) and ēD(q)
and ēΛ(q) (left); length of confidence intervals for rq(1) (right) and
q(1) (left); confidence intervals at 90 % confidence level for rq(1)
(right) and q(1) (left).

emphatically demonstrate the benefits of using some type of optimal design
criterion (D-optimal in this case) in deciding how data should be collected in
a specific application.

• For the specific EEG problem investigated, the length of the confidence inter-
vals as well as the mean relative error do not decrease significantly for more
than 10 or 11 observation points. Hence an optimal array of sensors of this
size is sufficient in practice. Moreover, there are dramatic differences between
estimation accuracies with a smaller number of sensors ( ≈ 7 or 8) and the
optimal values of 10 or 11 sensors.
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Figure 8. Results for noisy realizations with σ = 0.15 using D-
optimal design (red) and no optimal design (blue). From top to
bottom: Mean relative errors ēD(rq) and ēΛ(rq) (right) and ēD(q)
and ēΛ(q) (left); length of confidence intervals for rq(1) (right) and
q(1) (left); confidence intervals at 90 % confidence level for rq(1)
(right) and q(1) (left).
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Figure 9. Results for noisy realizations with σ = 0.2 using D-
optimal design (red) and no optimal design (blue). From top to
bottom: Mean relative errors ēD(rq) and ēΛ(rq) (right) and ēD(q)
and ēΛ(q) (left); length of confidence intervals for rq(1) (right) and
q(1) (left); confidence intervals at 90 % confidence level for rq(1)
(right) and q(1) (left).

in Scientific Computation, North Carolina State University, 2013. Mathematical Biosciences
and Engineering (Submitted).

[7] H. T. Banks, J. E. Banks, K. Link, J. A. Rosenheim, C. Ross and K. A. Tillman, Model
comparison tests to determine data information content, Applied Math Letters, 43 (2015),
10–18.

[8] H. T. Banks, M. W. Buksas and T. Lin, Electromagnetic Material Interrogation Using Con-

ductive Interfaces and Acoustic Wavefronts, Frontiers in Applied Mathematics, Vol. FR21,
SIAM, Philadelphia, PA, 2000.

[9] H. T. Banks, S. Dediu and S. L. Ernstberger, Sensitivity functions and their uses in inverse
problems, J. Inverse and Ill-posed Problems, 15 (2007), 683–708.

[10] H. T. Banks, S. Dediu, S. L. Ernstberger and F. Kappel, A new optimal approach to optimal
design problem, J. Inverse and Ill-posed Problems, 18 (2010), 25–83.

[11] H. T. Banks, M. Doumic, C. Kruse, S. Prigent and H. Rezaei, Information content in data
sets for a nucleated-polymerization model, CRSC-TR14-15, N. C. State University, Raleigh,
NC, November, 2014; J. Biological Dynamics, submitted.

http://www.ams.org/mathscinet-getitem?mr=MR3305622&return=pdf
http://dx.doi.org/10.1016/j.aml.2014.11.002
http://dx.doi.org/10.1016/j.aml.2014.11.002
http://www.ams.org/mathscinet-getitem?mr=MR1787981&return=pdf
http://dx.doi.org/10.1137/1.9780898719871
http://dx.doi.org/10.1137/1.9780898719871
http://www.ams.org/mathscinet-getitem?mr=MR2374978&return=pdf
http://dx.doi.org/10.1515/jiip.2007.038
http://dx.doi.org/10.1515/jiip.2007.038
http://www.ams.org/mathscinet-getitem?mr=MR2629678&return=pdf
http://dx.doi.org/10.1515/JIIP.2010.002
http://dx.doi.org/10.1515/JIIP.2010.002


OPTIMAL DESIGN IN EEG PROBLEMS 755

n\σ σ = 0.2 σ = 0.15 σ = 0.1 σ = 0.05 σ = 0

n ēD ēΛ ēD ēΛ ēD ēΛ ēD ēΛ ēD ēΛ
7 0.669 1.688 0.521 1.630 0.327 1.612 0.162 1.456 0.8e-015 1.875

8 0.601 1.271 0.458 1.213 0.298 1.043 0.148 0.640 0.5e-015 0.7e-13

9 0.450 0.639 0.332 0.483 0.213 0.302 0.106 0.150 0.8e-015 0.3e-15

10 0.427 1.572 0.319 1.460 0.201 1.210 0.095 0.628 0.2e-13 0.6e-13

11 0.377 0.512 0.267 0.138 0.179 0.273 0.089 0.126 0.8e-15 0.3e-15

12 0.454 0.460 0.323 0.369 0.208 0.229 0.108 0.110 0.1e-14 0.9e-15

13 0.357 0.960 0.286 0.772 0.175 0.520 0.090 0.237 0.1e-13 0.5e-10

14 0.367 0.426 0.257 0.318 0.165 0.206 0.083 0.100 0.2e-14 0.4e-15

15 0.389 0.434 0.270 0.306 0.187 0.201 0.089 0.100 0.7e-12 0.5e-12

16 0.324 0.429 0.238 0.322 0.159 0.204 0.077 0.098 0.3e-14 0.7e-15

17 0.311 0.401 0.228 0.313 0.156 0.193 0.076 0.100 0.2e-13 0.1e-13

18 0.331 1.079 0.249 0.856 0.165 0.694 0.078 0.423 0.5e-15 0.4e-10

19 0.307 1.225 0.232 1.081 0.156 0.755 0.078 0.331 0.3e-15 0.3e-14

20 0.296 0.444 0.229 0.306 0.143 0.204 0.072 0.098 0.1e-15 0.4e-11

Table 5. Example 2. Mean relative errors ēD(rq) and ēΛ(rq) for q
as defined in (22) for different number of observation points n and
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Figure 15. Results for noisy realizations with σ = 0.2 using D-
optimal design (red) and no optimal design (blue). From top to
bottom: Mean relative errors ēD(rq) and ēΛ(rq) (right) and ēD(q)
and ēΛ(q) (left); length of confidence intervals for rq(1) (right) and
q(1) (left); confidence intervals at 90 % confidence level for rq(1)
(right) and q(1) (left).
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