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Abstract In this work we study a Susceptible-Infected-Susceptible model coupled
with a continuous opinion dynamics model. We assume that each individual can
take measures to reduce the probability of contagion, and the level of effort each
agent applies can change due to social interactions. We propose simple rules mod-
eling the propagation of conducts that modify the level of effort, and analyze their
impact on the dynamics of the disease.

We derive a finite dimensional set of ordinary differential equations describing
the evolution of the epidemics and the mean value of the effort parameter, and
analyze the equilibria of the system. Let us remark that the stability of the endemic
phase and disease free equilibria depend only on the mean value of the levels of
efforts, and not on the initial distribution of agents in the space of efforts.
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1 Introduction

In the last few years emerged an increasing interest on epidemic models involving
changes in socio-cultural norms and conducts, partly motivated by the emergence
of anti-vaccine movements in different countries and the challenge they pose to
the control of epidemic outbreaks.

Several authors divided the susceptible population in three (or more) different
groups, the vaccinated, the non-vaccinated individuals, and the ones that decided
to remain non-vaccinated, see for instance [15]. Also, related models considered
two groups of susceptible agents, the ones who are aware and those who are not
aware of the threat of an infection [5,11,22]. In those cases, each group has its own
rate of contagion. Of course, a class of exposed agents, together with groups with
different degree of susceptibility or age-dependent, were considered, although the
difficulty to analyze the corresponding models increases since they lead to coupled
differential equations systems, the size of each group being described through an
ordinary differential equation, involving the many parameters that describe the
transitions between the different groups.

Usually, agents can move from one group to another one due to the mechanisms
of the disease (for instance, a susceptible agent was exposed and becomes infected,
or an infected agent recovers after the infection), or due to a personal decision
based on its own beliefs or the influence of other agents. So, the transitions involve
a set of ordinary differential equations modelling the disease dynamic coupled with
different social contact processes like the voter model, the cultural transmission
model of Axelrod [2], or other discrete opinion dynamic models like the ones of
Galam, Sznajd, or Ochrombel [10,12,17,19]. Now, the possibility of an epidemic
outbreak, and its long-term impact will depend on the size of those groups, the
mechanisms of transmission of the disease, the social contact process, and also on
the clustering or other properties of the network modelling the social structure of
the population, see for instance [7,16,18,21,23].

However, there are many infectious diseases that can not be analyzed with these
kind of models because their prevention depends on a sustained effort over time
through preventive measures, and there are no vaccines available. As a paradig-
matic examples we can consider the actual Covid-19 pandemic, the 2009 flu pan-
demic caused by the H1N1 virus, or the outbreaks of Dengue, Zika, and Chikun-
gunya [8]. In those cases it is possible to analyze the spread of conducts (and
misconducts) related to infectious diseases using continuous opinion dynamic mod-
els, like the ones considered by Bellomo, Deffuant, Toscani, Weisbuch and their
collaborators, see for instance [1,3,4,6,13,14,20].

So, we present here a variant of a classic Susceptible-Infected-Susceptible (SIS)
model coupled with a continuous opinion dynamic model. Briefly, the state of any
agent j in the society is characterized by the pair (aj , pj), where aj ∈ {I, S} means
that the agent is infected or susceptible respectively, and pj ∈ (0, 1) is related to its
level of effort to avoid the infection, the lower is p, the greater are the prevention
measures taken by the agent to avoid contagion.

When two agents interact, they change their states as a consequence of both
the epidemic and opinion dynamics, as detailed in Section §2. Although the rates of
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contact β and recovery γ remain unchanged, a susceptible agent i is infected with
probability piβ after a contact with an infected agent; then, both agents increase
or decrease their protection levels depending on the existence or not of contagion
after the interaction. If two susceptible or two infected agents interact, each one
moves its own effort level toward the other agent value.

Let us mention a related model by Funk, Gilad, Watkins and Jansen [9], where
the discrete set of positive integers {k}k≥0 represent different levels of awareness
or effort, the measures taken to reduce the susceptibility (being 0 the maximum
level of awareness, which implies immunity against the disease). The spreading of
awareness on the population depends on several mechanisms: information trans-
mission due to interaction among agents, a decay term since individuals forget
the acquired information, and a reset term since each infected agent becomes fully
informed and goes to 0. A susceptible-infected-recovered (SIR) model was con-
sidered, which always stops in an equilibrium without infected people. When an
infected agent interacts with a susceptible agent at level k, the probability of in-
fection is given by (1 − ρk)β, for some fixed ρ ∈ [0, 1]. The authors studied this
model using agent based simulations, and no mean field or kinetic equations were
derived. Let us observe that long range jumps are accepted, since infected agents
go directly to zero, introducing some kind of nonlocality on the equations.

We are mainly interested here in the extinction or not of the disease. To this
end, in Section §3 we derive a system of ordinary equations describing the number
of susceptible agents and the mean value of the level of efforts of the population,
〈p〉 in the mean field approximation.

Although the system depends on 〈ps〉, the mean value of the level of efforts of
the susceptible population, simulations show that 〈p〉 and 〈pS〉 are very similar, and
coincide when the parameter in the social interaction goes to zero. So, assuming
〈p〉 = 〈ps〉, we study the system of ordinary differential equations satisfied by 〈p〉
and the proportion S of susceptible agents. We find the fixed points and classify
them according to their stability in Section §4. We show in particular the existence
of a critical parameter depending only on the contact rate β and on the recovery
rate γ, and not in the initial value of 〈p〉, such that the disease does not become
endemic if and only if

Rm :=
2β

γ(1 + β)
≤ 1.

(notice that 2β is the rate of contagion in this model). So this generalizes the
classical result for the basic reproduction number R0 = 2β/γ of the SIS model.
and the factor 1 + β helps to reduce the propagation of the disease.

Also, in the long-time limit, the value 〈p〉 converges to (1+β)−1 independently
of the initial distribution of values of p in the population. Agent based simulations
of the dynamics strongly agree with the theoretical results.

We conclude in Section §5.

2 The Model

Let us assume that we have a population of n agents, each one characterized by a
pair (ai, pi), where ai represents the state of agent i, ai = S if it is susceptible and
ai = I if it is infected, and pi ∈ [0, 1] denotes its level of measures of prevention to
avoid infection.
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When two agents i, j interact, they will change their parameters from (ai, pi)
to (a∗i , p

∗
i ), and from (aj , pj) to (a∗j , p

∗
j ) respectively. The dynamics of infection and

recovery are similar to the classical SIS model: if a susceptible agent i interacts
with an infected agent, it becomes infected with probability piβ. On the other
hand, an infected agent becomes susceptible in a unit of time with probability γ,
without interactions.

The level of measures of prevention of two susceptible agents (or two infected
agents) will change following a rule similar to the one introduced by Deffuant
and Weibuch, see [6,14,20], namely both agents move their parameter p close to
the other agent value. However, if a susceptible agent interacts with an infected
agent, both will increase (respectively, decrease) p whenever the agent remains
susceptible (resp., becomes infected).

More precisely, given a positive fixed parameter h ≤ 1/2, both dynamics are
defined by the following rules:

– Contagion and Fear: a susceptible agent i becomes infected with probability
βpi after an interaction with an infected agent j. In this case, i and j feel that
their efforts are not enough, and change their p parameter to

p∗i = pi − hpi,

p∗j = pj − hpj .

– Confidence: a susceptible agent i remains susceptible with probability 1 − piβ
after an interaction with an infected agent j. In this case, i and j feel that their
efforts are excessive and change it to

p∗i = pi + h(1− pi),

p∗j = pj + h(1− pj).

– Persuasion: a susceptible (respectively, infected) agent i remains susceptible if
he interacts with another susceptible (resp., infected) agent j, and they change
theirs levels of effort to

p∗i = pi + h(pj − pi),

p∗j = pj + h(pi − pj),

that is, each one adopts an effort level intermediate between its own value and
the one of the other agent.

– Recovery: a random agent i is selected and becomes susceptible with probability
γ if it was infected, and no changes of pi occur.

Let us observe that both dynamics are coupled, in the sense that the same
contact which can produce a new infection implies a change in the levels of effort
of both agents.

Of course, different rules can be imposed here. For instance, we are assuming
that both agents know the state of the other one, in order to increase or decrease
their levels of effort. Different rules can be studied in a similar way, deriving the
corresponding equations. However, drastic changes in effort levels, such as those
that occur in [9], need a study that includes long jumps in their values, instead of
infinitesimal ones. We will consider this problem in a separate work.
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3 Theoretical Analysis

In this section we derive an ordinary differential equation for 〈p〉, the mean value of
agents levels of susceptibility, and another one for S, the proportion of susceptible
agents.

It is possible to obtain a more detailed description through a Boltzmann-like
equation for the distribution of agents on the levels of susceptibility, coupled with
a SIS system describing the proportion of agents in the infected/susceptible states.
We defer the technical details and the mathematical proofs of existence, uniqueness
and stability of such equations to another work, since the relevant parameter for
the epidemic analysis turns to be the mean value of p.

We introduce now the following notation which will be used below. We assume
that there are finitely many agents, say n, and denote k(t) the number of suscep-
tible agents at time t. The proportions S(t) and I(t) of susceptible and infected
agents are then given by

S(t) =
k(t)

n
, I(t) = 1− S(t).

The means value 〈p〉 and 〈ps〉 of the p parameter in the whole population and in
the susceptible population are

〈p〉 =
1

n

∑
i

pi, 〈ps〉 =
PS
k(t)

, PS =
∑
i∈Sus

pi,

where we denote by Sus and Inf the (time dependent) subsets of susceptible and
infected agents respectively.

3.1 Derivation of the mean-field equations.

We assume that in a unit of time, a pair of agents is selected at random, uniformly
and interact following the rules described in section §2. We aim at obtaingin dif-
ferential equations describing the evolution of the expected values of S(t) and
〈p〉.

Let us fix an agent, say i, and study the expected change pi(t+∆t)− pi(t) in
a small time window [t, t+∆t]. Notice this change depends strongly on the state
of agent i. Supposing first that i is susceptible, we have

pi(t+∆t)−pi(t) =
2h∆t

n(n− 1)

−(n− k)βp2i + (1− pi)(n− k)(1− βpi)−
∑
j∈Sus

(pi − pj)

 ,
(1)

where the three terms in the right-hand side of equation (1) comes from the possible
interactions. Indeed pi(t+∆t)− pi will vary as follows:

– −hpi, when becoming infected after interacting with one of the n− k infected
agents, which occurs with probability 2

n
n−k
n−1βpi;

– h(1 − pi) when remaining susceptible after interacting with one of the n − k
infected agents, which occurs with probability 2

n
n−k
n−1 (1− βpi);

– −h(pi − pj) when interacting with another susceptible agent j.
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Notice eventually that the factor 2 comes from the fact that agent i can be selected
as the first or second agent in the interaction.

When agent i is infected we have

pi(t+∆t)− pi(t) = h∆t

−piP ∗ + (1− pi)P ∗∗ −
2

n(n− 1)

∑
j∈Inf

(pi − pj)

 , (2)

where P ∗ and P ∗∗ are the probabilities that a contagion occurs or not during the
interaction. Let us compute first P ∗, the probability that i infects some susceptible
agent. Notice that the probability agent i interacts with agent j and infects it is

P (i infects j) =
2

n(n− 1)
βpj ,

i.e., the probability that i was selected, j was selected, and the contagion occurs.
Summing over all susceptible agents j we obtain

P ∗ =
2β

n(n− 1)

∑
j∈Sus

pj =
2βPS

n(n− 1)
.

Likewise, the probability of i interacting with a susceptible agent j but not infecting
it is

P (i not infecting j) =
2

n(n− 1)
(1− βpj).

Hence, the probability of i interacting but not infecting a susceptible agent is

P ∗∗ =
2

n(n− 1)

∑
j∈Sus

(1− βpj) =
2(k − βPS)

n(n− 1)
.

Inserting these expressions of P ∗ and P ∗∗ in (2) we obtain

pi(t+∆t)− pi(t) =
2h∆t

n(n− 1)

−βpiPS + (1− pi)(k − βPS)−
∑
j∈Inf

(pi − pj)

 . (3)

We can now derive now the equation for 〈p〉 = 1
n

∑n
i=1 pi, the mean value of p.

Splitting the sum as
∑n
i=1 =

∑
i∈Sus +

∑
i∈Inf , and using (1) and (3), we obtain

n2(n− 1)

2h

〈p(t+∆t)〉 − 〈p(t)〉
∆t

=
∑
i∈Sus

[
− (n− k)βp2i + (1− pi)(n− k)(1− βpi)−

∑
j∈Sus

(pi − pj)
]

+
∑
i∈Inf

[
− βpiPS + (1− pi)(k − βPS)−

∑
j∈Inf

(pi − pj)
]
.

Noticing that ∑
i∈Sus

∑
j∈Sus

(pi − pj) =
∑
i∈Inf

∑
j∈Inf

(pi − pj) = 0,
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this simplifies to

n2(n− 1)

2h

〈p(t+∆t)〉 − 〈p(t)〉
∆t

= (n− k)
∑
i∈Sus

(1− (1 + β)pi) +
∑
i∈Inf

(k − βPS − pik)

= (n− k)[2k − (1 + 2β)PS ]− k
∑
i∈Inf

pi.

Writing

∑
i∈Inf

pi =
n∑
i=1

pi −
∑
i∈Sus

pi = n〈p〉 − k〈ps〉 = n(〈p〉 − 〈ps〉) + (n− k)〈ps〉

we obtain

n2(n− 1)

2h

〈p(t+∆t)〉 − 〈p(t)〉
∆t

= 2(n− k)k[1− (1 + β)〈ps〉]− kn(〈p〉 − 〈ps〉).

i.e. dividing by n2,

(n− 1)

2h

〈p(t+∆t)〉 − 〈p(t)〉
∆t

= 2S(1− S)[1− (1 + β)〈ps(t)〉]− S(〈p〉 − 〈ps〉).

We send ∆t→ 0 to deduce the differential equation

(n− 1)

h

d

dt
〈p(t)〉 = 4S(1− S)[1− (1 + β)〈ps(t)〉]− 2S(〈p〉 − 〈ps〉),

and then rescale time to get rid off the factor h/(n − 1), resulting in the final
equation

d

dt
〈p(t)〉 = 4S(1− S)[1− (1 + β)〈ps(t)〉]− 2S(〈p〉 − 〈ps〉) (4)

Remark 31 In much the same way, we get

d

dt
S = −2〈ps〉βS(1− S) + γ(1− S). (5)

We omit the full derivation since it is similar to usual derivations for SIS models. It

can be obtained following the lines of the previous computation, the main difference

with classical models are the mean susceptibility 〈ps〉β, and the factor 2, which appears

since both the first and the second selected agent can become infected.
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Fig. 1 Plot of 〈ps〉 − 〈p〉 for h = 0.1, 0.01, and 0.01 during a simulation with n = 20000
agents, β = 0.7, and γ = 0.3.

4 Qualitative study of the dynamic

Let us note that the definition of the microscopic interaction rules given in section
§2 concerning the level of effort implies that both susceptible and infected agents
react in the same way. This suggests that their mean level of effort would be the
same. On the other hand, any time an agent is infected, its level of effort increases
slightly, so we can expect a small bias toward lower levels for infected agents. The
agent simulations in Figure 1 confirm this intuition, showing that the difference
between < ps > and < p > is positive of order h (however, this difference could
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be negative for h small). Thus taking h � 1, we will assume from now on that
〈ps〉 = 〈p〉.

With this assumption, equations (4) and (5) for 〈p〉 and S become

d

dt
〈p〉 = 4S(1− S)

(
1− (1 + β)〈p〉

)
, (6)

d

dt
S = (1− S)

(
γ − 2〈p〉βS

)
. (7)

Notice that the square [0, 1] × [0, 1] is clearly invariant for the system, and that
its fixed points in [0, 1] × [0, 1] are the line {S = 1} and the point (〈p〉, S) =(

1
1+β ,

γ(1+β)
2β

)
with γ(1+β)

2β ≤ 1.

Let us study the asymptotic behaviour of a solution starting from a point
(〈p〉(0), S(0)) ∈ [0, 1] × [0, 1). Since S(t) < 1 for any t and noticing that d

dt 〈p〉 has
same sign as 1− (1 + β)〈p〉, we see that

lim
t→+∞

〈p〉 =
1

1 + β
.

We can then rewrite (7) as

1

2β

d

dt
S = 〈p〉(1− S)

( γ

2β〈p〉 − S
)

= 〈p〉(1− S)
(
Rm−1 + ε(t)− S

)
,

where Rm−1 = γ(1+β)
2β and ε(t)

t→+∞−→ 0. We now distinguish three cases.

If Rm−1 > 1 then there exists T > 0 such that Rm−1 + ε(t) ≥ 1 for any t ≥ T .
It follows that for t ≥ T we have d

dtS ≥ 0 with equality only when S = 1. We
conclude that limt→+∞ S(t) = 1.

If Rm−1 < 1 then for any a, b ∈ [0, 1), a < Rm−1 < b, there exists T ′ > 0 such
that for t ≥ T ′ we have

〈p〉(1− s)
(
Rm−1 + ε(t)− s

)
> 0 ∀ s ∈ [0, a],

〈p〉(1− s)
(
Rm−1 + ε(t)− s

)
< 0 ∀ s ∈ [b, 1)

Thus S enters the interval [a, b] at some time T ≥ T ′ and stays there forever. Since
this holds for any a, b ∈ [0, 1), a < Rm−1 < b, we deduce that limt→+∞ S(t) =
Rm−1.

If Rm = 1 then for any δ ∈ (0, 1), there exists T ′ > 0 such that for t ≥ T ′,
|ε(t)| < δ/2 so that

〈p〉(1− s)
(
Rm−1 + ε(t)− s

)
> 0 ∀ s ∈ [0, 1− δ].

Thus if S(0) < 1−δ, then S(t) must enter the interval [1−δ, 1] at some time T ≥ T ′
and then stays there forever. If S(0) ≥ 1− δ then S(t) ≥ 1− δ for any t ≥ 0. Since
this holds for any δ > 0 we deduce that limt→+∞ S(t) = 1.

We can summarize the previous discussion in the following theorem.
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Theorem 41 For any initial condition (〈p〉(0), S(0)) ∈ [0, 1] × [0, 1], the solution

(〈p〉, S) of (6)-(7) satisfies

lim
t→+∞

〈p〉 =
1

1 + β
.

If S(0) = 1 then S(t) = 1 for any t ≥ 0, and if S(0) < 1 then

lim
t→+∞

S(t) =

{
1 if Rm ≤ 1,

Rm−1 if Rm > 1,

where Rm = 2β
γ(1+β) .

It follows from this result that Rm is the basic reproduction number of our
model. Indeed if there is an epidemic outbreak i.e. S(0) < 1, then the disease tends
to disappear if Rm ≤ 1 whereas it becomes endemic if Rm > 1. Comparing with
the basic reproduction number R0 = 2β/γ of the classical SIS model, we observe
the essential role played by the social interactions in our model which result in
Rm = R0/(1 + β) thus effectively lowering the basic reproduction number.

We end this section by presenting some agent simulations to confirm that the
ODE system (6)-(7) accurately models the agents dynamic and to illustrate the
conclusions of Theorem 41. We show in figure 2 the time evolution of S and 〈p〉
averaged over 10 agent-based simulation of the dynamics with n = 20000 agents,
and parameters β = 0.4, γ = 0.7, starting all the agents with p = 1. Observe

that S
t→+∞−→ 1 i.e., the disease goes to extinction, which agrees with the Theorem

41 since Rm = 0.8 < 1. Notice also that 〈p〉t→ +∞−→0.7991 while the expected
equilibrium is 1

1+β = 0.8026, thus yielding a relative error of 0.4%.

Fig. 2 Plot of S(t) and < p > averaged on 10 simulations with 20000 agents, β = 0.7, γ = 0.3,
and h = 0.1
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Figure 3 displays a single run of an agent-based simulation of the dynamics
with n = 20000 agents, and parameters β = 0.7, γ = 0.3, and h = 0.1, starting
all the agents with p = 1 and S(0) = 0.80. Notice that Rm ' 2.8 > 1 so that
disease should persists according to Theorem 41. In fact we can see in Figure 3 that

S
t→+∞−→ 0.3553 thus yielding a relative error of 2.5% with respect to the theoretical

value Rm−1 ' 0.3643. Notice that this is much greater than the asymptotic value

of S in the classical SIS model. Eventually 〈p〉 t→+∞−→ 0.5724 which has a relative
error of 2.7% with respect to the theoretical value 1

1+β ' 0.5882.

Fig. 3 Plot of S(t) and < p > in a single run with 20000 agents, β = 0.7, γ = 0.3, and h = 0.1

5 Conclusions and Final Remarks

We derived an epidemic model coupled with a continuous opinion dynamics model.
We assumed that each individual can take measures to reduce the probability of
contagion, and the level of effort that each agent applies change due to social inter-
actions. We model few mechanisms, fear to contagion, confidence after a contact
without contagion, and persuasion, as the main reasons for behavioral change, and
we studied their impact on the dynamics of the disease.

We obtained a system of two ordinary differential equations, one for the pro-
portion of infected people, and the second one for the mean value of the effort
parameter. We study the asymptotic behaviour of the solutions, and we proposed
a generalization of the basic reproduction number R0 denoted Rm and given by

Rm =
2β

γ(1 + β)

where β and γ are the contact and recovery rate of the disease. Let us remark
that the factor 2 in this condition appears since both the first and second agents
can become infected after an interaction. We prefer to keep this for simplicity
and symmetry in the formulation of the problem, and a comparison with R0 for
classical models must include the factor 2, that is, if the rate of contagion of a
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disease studied with our model is β, this is equivalent to a rate 2β when only the
first agent in some encounter can be infected.

There are several questions of practical interest, particularly in this moment
with the Covid-19 pandemic active. To be clear, we are not claiming the direct
applicability of our specific rules of social interaction, although trends in the pop-
ulation can be detected (like the degree of use of masks, sanitizer products, social
distance), and this gives a personal probability of contagion βi, which can be stud-
ied as the product piβ in our model. Of course, different questions are relevant if
we consider Covid-19, since a SEIR model (including exposed and removed agents)
seems to be a better one to analyze its evolution.

We have chosen the same scale of time for both dynamics. It is easy to change
the frequency of interactions, by separating the ones related to the disease trans-
mission, to the social ones ones which change the level of effort. However, this is
an important point to consider when a SIR or SEIR model is involved.

Also, fundamental agents -governments, media, health organizations- were not
considered here, and their role as social agents interacting with all the population
cannot be neglected. On the negative side of social interactions, there are groups of
people proposing innocuous and even harmful measures, like anti-vaccines move-
ments, and we can see them today violating the social distance, or without masks,
and trying to convince other people to imitate them. In a forthcoming paper we
study their role and their influence on the stability of equilibria.
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