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UBA-CONICET and Departamento de Matemática, Facultad de Ciencias Exactas y Naturales,

Universidad de Buenos Aires,
Av Cantilo s/n, Ciudad Universitaria (1428) Buenos Aires, Argentina

nsaintie@dm.uba.ar

Received (Day Month Year)

Revised (Day Month Year)
Communicated by (xxxxxxxxxx)

In this work we propose a method of opinion pooling based on pairwise interactions.

We assume that each agent has a probability measure on the possible outcomes of some
situation, and they try to find a single measure aggregating their estimates. This is

a classical problem in Decision Theory, where expert opinions contain some degree of

uncertainty, and a Decision Taker needs to pool these estimates.
We study this problem using a kinetic theory approach, obtaining a Boltzmann

type equation for opinions which are symmetric probability measures defined on the real
line. We obtain a non local, first order, mean field equation as its grazing limit when

the parameter in the interaction goes to zero. Also, we prove the convergence to quasi-

consensus with explicit estimates on the convergence time depending on the variance of
these measures.

Let us remark that this model can be interpreted as a noisy model of opinion dy-

namics. In many models, the opinion of each agent is a point in the real line, the agents
interact and observe other agents opinions. We can consider that observed opinions are

perturbed or deformed by some noise in the transmission channel or in the interpretation

of the agents, so we can think of agents opinions directly as random variables instead of
a single point.

Keywords: Opinion formation models; active particles; Boltzmann equation; Grazing

limit.
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1. Introduction

Let us consider a group of agents facing a situation where each one has its own

opinion on the correct procedure to follow. Usually, this opinion is represented by

binary -or more generally, finite- options, such as political candidates in an election,

support or not some project, or choosing the meal, among many other cases.25,44,48

In other problems, opinions can be represented by real numbers, as the degree of

adhesion to some idea, or the rating of a product, a service or a movie.1,12,27 Also,

higher dimensional opinions, represented as vectors in Rd, are used as continuous

version of the Axelrod model,4 and also as the position and velocity of a bird in a

flock or a robot in a de-centralized search.18

However, there are many situations where the agents opinions are inherently

uncertain, and only represent some degree of belief. This happens when they try to

predict the future value of an asset, or forecast the weather, or they are playing some

complex game with no obvious Nash equilibria. In those cases, it is customary to

model the opinion of each agent as a probability distribution, and the problem now

is to extract from them a single probability distribution as the experts advice. This

is a classical topic in the areas of Artificial Intelligence, Decision Theory, and Expert

Systems, where some Decision Taker aggregates the expert opinions, a procedure

known as opinion pooling, and we refer the interested reader to Ref. 16, 29, 31 and

the comprehensive work of Cooke17 on the subject.

The study of opinion pooling given a group of experts goes back to Savage,41 and

several methods were proposed, mainly through weighted means of the probability

distributions, or using behavioral procedures where each agent reviews their own

probability distribution combining it with the distributions of the others experts,

with important contributions of Stone,45 Winkler,52 and specially DeGroot,21 who

proposed the first dynamical model of this type.

It is known that each method has their own drawbacks, and cannot be applied

in every situation. Weighted means, for instance, depend on the arbitrary weights

assigned to the experts, while internal discussion among the experts is heavily in-

fluenced by psychological factors.47 For example, DeGroot proposed in Ref. 21 a

mix between both methods, where each agent updates its opinion by performing a

weighted mean of the different probability distributions, assigning its own weight

to each expert. His algorithm is a Markov process on the set of probability mea-

sures and hence the formation of consensus is guaranteed assuming the process is

irreducible.

Let us observe that in behavioral methods, like DeGroot’s method mentioned

before, a full knowledge of the expert distributions is needed, and sometimes this

is not possible. For instance, in a game, only the pure strategies played in a round

are observed, instead of the mixed strategies used to select them. Moreover, it is

difficult to learn the mixed strategy of the opponent if each player updates it after

the game, and it is well known that the players cannot learn the optimal way of

playing in several games using only this information.28
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We propose here a simple method of opinion pooling based on pairwise inter-

actions. We assume that each agent has a probability density on the real numbers,

assumed to be the set of possible opinions, and they are willing to reach a consensus.

This attitude toward a compromise is natural from the perspective of a Decision

Taker, since she/he needs to pool the different estimates.

Let us mention also that the whole population can affect the individual opinion

of a single agent through the publications of polls and surveys, and the results of

elections or referendums. A mean field model covering this kind of interactions is

out of the scope of this work and it would be interesting to consider a background

-depending on the population- interacting with the individuals.

Now, agents are randomly matched in pairs, and each one generates a number

with her/his distribution which is observed by the other agent. Then, they update

their distributions, and different rules for the dynamic are available at this stage:

(a) Only the mean is moved toward the observed value.

(b) The mean is moved if the observed value belongs to some interval close to

the mean, a model with bounded confidence.

(c) The full probability distribution is moved as a weighted mean with the

Dirac’s Delta at the single value observed.

We mainly study (a) in this work, and we deal with (b) and (c) in a separate

paper. We prove for (a) that agents mean opinion converges to some value in each

realization, although, due to the random nature of the process, it is not always the

same. We derive the microscopic equations of the dynamics, and its continuous ap-

proximation by a Boltzmann type equation. We perform the grazing limit obtaining

a first order, nonlocal, mean field equation, and characterize the expected value of

consensus, or, more precisely, quasi-consensus, see below.

Rule (a) projects the dynamics on a one dimensional space, and we proceed

as in continuous models of opinion formation, which were thoroughly studied in

the last years using the kinetic theory of granular flows and gases. However, an

important difference arise whenever agents have the possibility to take decisions,

and the so-called kinetic theory of active particles introduced by Bellomo and its

collaborators,8,35 which is a technique well suited for study this kind of problems.

There many important references in opinion modeling and related socio-economics

problems, both by mathematicians,9,15,36,37 and physicists.10,11,25,42,43

Observe that we can re-interpret the classical opinion dynamics models as a case

of measure valued opinion dynamics, identifying agents opinions with Dirac Delta

masses. However, the main difference is the lack of certainty in the observation of

the other agents opinions, so the binary (or collective) interactions will depend on

the particular realizations of the opinions, since they are random variables.

This will forces us to abandon the notion of consensus, and we talk instead of

quasi-consensus. The uncertainty in the opinions implies that the agents never reach

a consensus state, since new interactions could change this state. So, we will say

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in M3AS

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

IO
W

A
 o

n 
11

/2
5/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



October 31, 2019 9:32 WSPC/INSTRUCTION FILE lpjppns-fin

4 L. Pedraza, J.P Pinasco, N. Saintier

that the agents reach a quasi-consensus state when all the means are concentrated

in a small interval.

On the other hand, our model has another interpretation. Let us suppose that

each agent i has a well-defined opinion, represented by a real number xi without

uncertainty. Now, when agent i interacts with agent j, and observes a noisy signal

mj = xj + εj , where xj is the true opinion of agent j plus a random noise εj . So,

our results can be thought as an analysis of the consensus formation under noise,

and the effect of the noise in the time to consensus.

Usually, noise appears in opinion dynamics as a random variable representing

free thinking, and agent opinions perform independent random walks in the space of

opinions, and adds a diffusion term in the continuous approximations of different dy-

namics.1,20,22,27,38,49,50 However, this one is a different class of noise, depending on

the communication channel, and was studied mainly trough simulations.26,30,40,46

Here, very interesting phenomena appear, since the noise intensity can destroy the

consensus both in discrete or continuous problems, or it could help to reach a quasi-

consensus state destroying the clusters in Hegselmann-Krause models, or flip the

agents between different equilibria. Here, we provide a rigourous theoretical analy-

sis of the convergence to a continuous equation, and the time of convergence to a

quasiconsensus.

1.1. Organization of the paper and main results

In order to describe the main results, let us assume that agents opinions belong to

the same family of probability distributions with different means xi. For instance

every agent could have as an opinion a normal distribution N(xi, σ
2) where σ2

is given (the same for every agent) and the mean opinion xi will change during

interactions. We fix a small positive parameter h, and if agent i observes a signal

mj from agent j, greater than (respectively, smaller than) its own mean xi, then

her/his new mean will be xi + h (resp., xi − h). This rule of discrete updates was

used recently in several works.5–7,34,39

Briefly, the opinion of agent i is the random variable Xi = σY + xi, where Y
is a fixed symmetric random variable with a continuous distribution and variance

V ar[Y] = 1. Notice that Xi has expected value xi and variance σ2. We call F the

cumulative distribution of Y, Fσ(·) = F (·/σ) the cumulative distribution of σY,

and we define

Ψσ = 1− 2Fσ.

In Section §2 we define precisely the interaction rules, and we introduce the

notation and some previous results which will be needed later.

In Section §3 we present the model and derive the associate Boltzmann equation

when all the agents have the same probability distribution and only the means are

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in M3AS

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

IO
W

A
 o

n 
11

/2
5/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



October 31, 2019 9:32 WSPC/INSTRUCTION FILE lpjppns-fin

Measure valued opinion dynamics 5

different, following the ideas in Ref. 9. We will have in mind the case of Normal

distributions with a fixed variance, although the results are proved for an arbitrary

symmetric random variable Y with a continuous distribution.

In Section §4 we study the existence of solutions to the Boltzmann equation using

A. Bressan’s techniques,2,13 by considering it as an ordinary differential equation

in a abstract space. We denote by Mb(R) the space of bounded Borel measures on

R, and by P(R) the set of probability measures on R (we refer to Section §2 for the

precise definitions and the needed properties of P(R) andMb(R)). The main result

in Section §3 is the following theorem:

Theorem 1.1. For any initial condition f0 ∈ P(R) and any h > 0 there exists

a unique fh ∈ C([0,+∞),P(R)) ∩ C1([0,+∞),Mb(R)), solution to the Boltzmann

equation

d

dt

∫
φdfht =

∫
E[φ(x′)− φ(x)] dfht (x)dfht (x∗) φ ∈ Cb(R), (1.1)

where Mb(R)) and P(R) are endowed with the total variation norm.

Also, we derive an ordinary differential equation for the variance of the agents

distribution V ar[fht ], which enable us to describe its clustering, and is the key point

to prove the long time asymptotic behavior of the opinions.

In Section §5 we perform the so-called grazing (or quasi-invariant) limit when

the parameter h goes to zero, see for references Pareschi and Toscani’s book37 and

the references therein. We obtain a first order mean field equation and we show

that its unique solution approximates the solutions to the Boltzmann equation for

h small, namely:

Theorem 1.2. Suppose that f0 has finite first moment, and let P(R) be endowed

with the weak convergence. Denote ghτ := fht with τ = ht. Then, up to a subsequence

as h→ 0, {ghτ } converges in C([0, T ],P(R)) for any T > 0 to gτ ∈ C([0,+∞),P(R)),

a solution to

d

dτ

∫
φdgτ =

∫
(Ψσ ∗ gτ )(x)φ′(x) dgτ (x) (1.2)

which is the weak formulation of the first order, nonlocal, mean field equation

∂τgτ + ∂x

(
(Ψσ ∗ gτ )gτ

)
= 0 (1.3)

with initial condition g0 = f0.

It is well-known (see e.g. Ref. 23 and references therein) that a first order

equation like (1.3) with a solution-dependent vector-field has a unique solution

in C([0,+∞), P (R)) when the vector-field satisfies some mild properties satisfied in

our case.
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Moreover, we prove that the expected value of the distribution of the means of

the agents is constant in time and that the variance of this distribution decreases

to 0. So, the agents reach asymptotically a quasi-consensus state whose expected

value equals the expected value of the initial distribution f0 of the opinion means:

Theorem 1.3. Suppose that g0 has finite second moment. The solution gτ to equa-

tion (1.3) converges as τ → +∞ to the Dirac mass located at E[f0]:

lim
τ→+∞

gτ = δE[f0].

The next result gives an explicit estimate on the convergence time to the quasi-

consensus. We assume that agent’s opinions are of the form x + σY where σ > 0

is given and Y is a symmetric random variable with mean 0 and variance 1 having

a density fY ∈ C1(R). We assume that f ′Y is bounded and F (x) > F (0) for x > 0

(this holds if e.g. fY(0) > 0), where F is the cumulative distribution function of Y.

Under these assumptions we can prove the next theorem:

Theorem 1.4. We suppose that g0 has compact support and let us fix R0 > 0 such

that supp g0 ⊂ [−R0, R0]. Then, as τ → +∞, the support of gτ shrinks to the single

point c = E[f0], and for any t ≥ 0,

W2(gτ , δc)
2 = V ar[gτ ] ≤ (V ar[g0]) exp

{4τ

σ

(
− fY(c/σ) +

R0

σ
‖f ′Y‖∞

)}
.

Moreover, for any ε > 0, there exists τε > 0 such that

W2(gτ , δc)
2 = V ar[gτ ] ≤ (V ar[g0])e(− 4fY(c/σ)

σ +ε)τ , τ ≥ τε. (1.4)

Here, W2(., .) is the Wasserstein distance, see Section §2 for the definitions, and

V ar[gτ ] is the variance of the probability measure gτ namely V ar[gτ ] =
∫

(x −
E[gτ ])2 dgτ (x), being E[gτ ] =

∫
x dgτ (x) the mean value of gτ .

Remark 1.1. If fY ∈ C1 is non-increasing in (0,+∞), we can give a lower bound

for W2(gτ , δc):

W2(gτ , δc)
2 = V ar[gτ ] ≥ (V ar[g0])e(− 4fY(c/σ)

σ )τ ,

so the estimate given by inequality (1.4) is asymptotically optimal in this case.

Let us note that this lower bound hold in the particular case that Y ∼ N(0, 1).

Let us compare briefly our results and proofs with the formalism of gradient

flows in Wasserstein spaces introduced by Jordan, Kinderlehrer and Otto,32 and

fully developed in the monograph Ref. 3. Indeed, Eq. (1.3) can be seen as a gradient

flow in the space P2(R) of probability measures with finite second moment for the

energy functional

φ(µ) =

∫

R×R
W (x− y) dµ(x)µ(y) µ ∈ P2(R),

where the interaction potential W : R → R is such that W ′ = −Ψσ (see example

11.2.7 in Ref.3). For instance we can take W (x) =
∫ x

0
(2Fσ(y)−1) dy so that W (0) =
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0 and W is even. Moreover W ′′(x) = 2F ′σ(x) = 2
σfY(x/σ) where fY is the density

of Y. Thus infRW ′′ = 0 so that W is λ-convex with λ = 0. It follows that φ is

λ-convex with λ = 0 along generalized geodesic (see remark 9.2.5 in Ref. 3).

Making the additional assumption that W is doubling in the sense that W (x+

y) ≤ C(1 +W (x) +W (y)) for any x, y ∈ R, the energy functional φ satisfies all the

assumptions stated in section 10.4.7 and we can then apply Theorem 11.2.8 and

Theorem 11.2.1 in Ref. 3. We deduce that Eq. (1.3) has a unique solution in P2(R)

obtained as the gradient flow of φ and which satisfies, among others properties,

that for any minimum point µ̄ of φ, φ(µt) − φ(µ̄) ≤ W 2
2 (µ0, µ̄)/(2t) and the map

t→W2(µt, µ̄) is not increasing.

Notice that since we only have λ = 0, i.e. W is convex but not uniformly

strictly convex in R, we cannot deduce directly from this theory that φ has a unique

minimum point, nor the exponential convergence of the solution µt to the minimum.

Indeed, the value of min φ is a priori not clear though we can conjecture that it

should be equal to 0, which corresponds to µ being a Dirac’s mass.

However, in view of our Theorem 1.3 and its proof, the support of gτ shrinks

to the point c = E[f0]. Then, after a sufficiently long time, we can approximate

the infimum of W ′′ on the support of gτ by its value at c, namely 2
σfY(c/σ). We

thus approximately obtain that W is λ-convex, and so that φ is λ-convex along

generalized geodesic, with λ ≈ 2
σfY(c/σ). Then Theorem 11.2.8 and Theorem 11.2.1

in Ref. 3 gives in particular for times τ � 1 that W2(gτ , δc) ≤W2(g0, δc)e
− 2
σ fY(c/σ)τ ,

which is essentially the content of our Theorem 1.4.

Theorem 1.4 states that this asymptotic behaviour is the correct one and can be

justified rigorously. Its proof is quite elemental since it is essentially based on scaling

arguments and it is also completely self-contained (in particular it does not refer to

the theory developed in Ref. 3). Moreover, we also prove (and observe numerically)

that this exponential convergence is optimal in some cases (see Remark 1.1).

In Section §6 we present microscopic simulations of the dynamics. The simula-

tions show a good agreement with the theoretical predictions about the expected

value of consensus and the time of convergence. We conclude in Section §7, where

we compare the results with the corresponding ones of DeGroot’s model in some

particular cases, and we describe possible extensions.

2. Preliminaries

2.1. Notations and definitions

Given K ⊂ R, we denote by P(K) the convex set of probability measures on K.

For any f ∈ P(K), we write the integral of a function φ ∈ Cb(K) against f both

as
∫
K
φ(x) df(x) or

∫
K
φ(x)f(x) dx. Let us stress that f(x) dx is only a notation

convention since we are not assuming that f has a density, indeed, f could be a

Dirac Delta measure.

M(K) stands for the space of Borel signed measures onK, andMb(K) ⊂M(K)
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denotes the measures with finite total mass. These sets are endowed with the total

variation norm,

‖f‖TV = sup

{∫

K

φdf : φ ∈ C(K) such that ‖φ‖∞ ≤ 1

}
. (2.1)

Let us remark that M(K) becomes a Banach space with this norm.

We will need to endow the set P(K) with the weak* topology. We will use also

the Wasserstein distances Wp, with p ≥ 1, between two probability measures µ, ν,

which are defined as

Wp(µ, ν) =

(
inf

α∈Γ(µ,ν)

∫

K×K
|x− y|pdα(x, y)

)1/p

p ≥ 1, (2.2)

being Γ(µ, ν) the collection of all probability measures on K × K with marginal

measures ν and µ on the first and second factor, respectively. Any Wasserstein

distance Wp, p ≥ 1, metrizes the weak*-convergence when K is bounded. When

p = 1 the Kantorovich-Rubinstein Theorem provides a dual representation of W1,

namely

W1(ν, µ) = sup

{∫

K

ϕd(µ− ν) : ϕ is 1-Lipschitz

}
. (2.3)

See Ref. 24,51 for details.

Let Y be a random variable. We say that Y is symmetric if

P (Y ∈ [−x, 0]) = P (Y ∈ [0, x]) for any x ≥ 0.

Notice that a symmetric random variable has expected value 0. We say that Y has

finite k-th moment, k ∈ N, if E(|Y|k) <∞.

3. Mathematical Modelling

The system we study in this paper consists of a large population of interacting

agents characterized only by their internal state, here their opinion. The mathe-

matical modelling of the system will be done at two scales, the micro- and the

macroscopic scale. At the microscopic scale we will be concerned with the precise

definition of the rules governing the updating of the opinion of agents involved in an

interaction. At the macroscopic level on the other hand we will adopt the paradigm

of statistical physics namely describing the whole population through a probability

density function modelling the global distribution of opinion in the population. The

evolution in time of this probability distribution will be encoded in a Boltzmann-

like equation, namely Eq. (1.1), as classically done in statistical mechanics and in

the modelling of complex living system, see e.g. Ref. 9.

The microscopic and macroscopic modelling are presented in the next two sub-

sections. See also Section §6 for a Master Equation approach, where we consider

only a discrete range of values for {xi}, and we study the discrete random process
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by computing the expected gain and loss terms, and we obtain the corresponding

continuous equation. Let us stress that our informal approach can be made rigor-

ous by using the probabilistic theory of interacting particles, and the hydrodynamic

limit can be computed following the ideas in Ref. 19,33.

We will then go on proving the well-posedness of the Boltzmann equation, and

the rest of the paper will be devoted to the studying both theoretically and numer-

ically the long-time behaviour of the solution.

3.1. Microscopic scale modelling

Let us consider a population with N agents. We model the opinion of an agent, say

agent i, by a real-valued random variable Xi with mean xi and variance σ2, the

same variance for every agent. We can thus write

Xi = σYi + xi

where Yi is a reduced centered random variable. We assume that Y1,Y2, ... are

independent copies of a reduced centered random variable Y that we additionally

suppose symmetric with finite second moment.

As a result of interactions, agents modify their opinion. We assume that during

an interaction the random variables Y1,Y2, ... and the common variance σ2 remain

unchanged and that only the means x1, x2, ... change.

To describe the updating rule for the means we first fix some h > 0. Consider two

interacting agents with opinions X = σY + x, X∗ = σY∗ + x∗ before the encounter,

and let us denote by X′ = σY + x′, X′∗ = σY∗ + x′∗ the new opinions after the

interaction. Suppose now that the second agent emits an opinion m∗ ∈ R, that is,

m∗ is a realization of X∗. The first agent will then update his/her mean opinion x

in the following way:

x′ =

{
x+ h if x < m∗

x− h if x > m∗.
(3.1)

This interaction rule models the tendency to compromise of the agents since the

first agent slightly moves his mean opinion x toward the opinion emitted by the

second agent. Notice that the means of the agents opinion are random variables

due to the stochastic nature of this updating rule.

3.2. Macroscopic kinetics and properties

Let us present a generalized Boltzmann model, obtaining kinetic equations for the

distribution function fht (x) which gives the distribution of agents whose opinion has

mean x at time t ≥ 0, hence fht is a probability measure on R. Intuitively fht (x)dx

is the proportion of agent whose mean opinion belongs to [x, x+ dx] at time t.

Let us note that fht (x) : [0,∞) × R → R+ depend on a single state variable x,
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and we assume that the number of agents is conserved,
∫

R
fht (x)dx = 1, t ≥ 0.

The state x will change by pair interactions, according to the previous micro-

scopic rules (3.1). We assume that encounters between agents occur according to a

Poisson process with constant rate, that we can assume equal to one up to re-scaling

time, and that the encounters times and the Y1,Y2, ... are independent.

As usual for binary interactions, we assume that they are statistically indepen-

dent, in order to avoid a BBGKY hierarchy of coupled equations. The time evolution

of fht results from the balance of gain and loss terms, and can be described using

a Boltzman type integro-differential equation. By taking a test function φ ∈ Cb(R)

we get the weak formulation

d

dt

∫
φ(x) dfht (x) =

∫
E[φ(x)](G[f ]− L[f ]),

where E is the mathematical expectation, and G[f ], L[f ] are the gain and loss term,

namely

G[fht ](t, x) =

∫∫
B(x, x′, x∗, x

′
∗) df

h
t (x′)dfht (x′∗),

L[fht ](t, x) = fht (x)

∫
dfht (x′∗).

Here B is the kernel which takes into account the interactions, given initial opinions

x, x∗, and post-interaction opinions x′, x′∗ (see below how it can be computed

explicitly).

Let us recall that we take the expected value of the changes since x is a random

variable, and that all the random variables considered so far, namely Y1,Y2, ..., Y,

and the means x1, x2, ..., are supposed to be defined on some common probability

space (Ω,F ,P). The expectation E is taken with respect to this probability space.

Finally, we can change variables in order to obtain

d

dt

∫
φ(x) dfht (x) =

∫
E[φ(x′)− φ(x)] dfht (x)dfht (x∗) =: (Q[fht ], φ) (3.2)

for any test function φ ∈ Cb(R), see for instance Ref. 14,37.

In order to write explicitly the gain and loss terms, or the collision operator Q[f ]

in the right hand side of (3.2), notice first that

P (X∗ ≤ x) = P (σY∗ + x∗ ≤ x) = P (σY ≤ x− x∗).

We denote by F the cumulative distribution function of Y, namely F (x) = P (Y ≤ x)

for x ∈ R, and by Fσ(·) = F (·/σ) the cumulative distribution of σY. Thus

P (X∗ ≤ x) = Fσ(x− x∗). (3.3)
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As a consequence for any x, x∗ ∈ R,

F [φ](x, x∗) := E[φ(x′)]

= φ(x+ h)(1− Fσ(x− x∗)) + φ(x− h)Fσ(x− x∗).
It follows that Q[f ] is the measure defined, for a given bounded measure f on R,

by

(Q[f ], φ) =

∫
φ(x+ h)(1− Fσ(x− x∗)) + φ(x− h)Fσ(x− x∗) df(x)df(x∗)−

∫
φdf

=

∫
F [φ](x, x∗) df(x)df(x∗)−

∫
φdf

=: (Q+[f ], φ)− (Q−[f ], φ)

(3.4)

for any φ ∈ Cb(R). Notice that Q−[f ] = f for any f .

We prove now a few results about Q[f ] which will be needed later.

Proposition 3.1. The collision operator Q satisfies the following properties:

(1) Q[f ] has total mass 0.

(2) Positivity: if f ≥ 0 then Q+[f ] ≥ 0.

(3) Regularity: for any f ∈ C([0, T ],Mb(R)) we have that Q[f ] ∈ C([0, T ],Mb(R)).

(4) Lipschitz continuity: Q is locally Lipschitz for the total variation norm: for any

R > 0 we have

‖Q[f ]−Q[g]‖TV ≤ (2R+ 1)‖f − g‖TV
for any f, g ∈Mb(R) such that ‖f‖TV , ‖g‖TV ≤ R.

Proof. Properties (1) and (2) follows by direct computation. Let us prove the

regularity. Given f ∈ C([0, T ],Mb(R)), let us show that Q[f ] ∈ C([0, T ],Mb(R)).

Since Q− is the identity we only have to show that Q+[f ] ∈ C([0, T ],Mb(R)). For

any φ ∈ C(R), ‖φ‖∞ ≤ 1, and any s, t ∈ [0, T ], we have

|(Q+[fs]−Q+[ft], φ)| = |
∫
F [φ](x, x∗)(dfs(x)dfs(x∗)− dft(x)dft(x∗))|

≤ ‖F [φ]‖∞‖fs ⊗ fs − ft ⊗ ft‖TV
≤ 2‖φ‖∞‖fs ⊗ fs − ft ⊗ ft‖TV
≤ 2‖fs ⊗ fs − ft ⊗ ft‖TV .

To conclude, notice that the right hand side goes to 0 as s → t since for any

φ, ψ ∈ C(R) with ‖φ‖∞ ≤ 1 and ‖ψ‖∞ ≤ 1,

|(fs ⊗ fs − ft ⊗ ft, φ⊗ ψ)| = |(fs, φ)(fs, ψ)− (ft, φ)(ft, ψ)|
= |(fs, φ)(fs − ft, ψ) + (fs − ft, φ)ft, ψ)|
≤ max

0≤τ≤T
‖fτ‖TV ‖fs − ft‖TV .
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Thus

‖fs ⊗ fs − ft ⊗ ft‖TV ≤ max
0≤τ≤T

‖fτ‖TV ‖fs − ft‖TV .

Let us check now the Lipschitz continuity. Take f, g ∈ Cb(R) with

‖f‖TV , ‖g‖TV ≤ R. Then for any φ ∈ C(R), ‖φ‖∞ ≤ 1,

|(Q[f ]−Q[g], φ)| ≤ |(Q+[f ]−Q+[g], φ)|+ |(Q−[f ]−Q−[g], φ)| =: A+B

where

B = |(f − g, φ)| ≤ ‖f − g‖∞
and

A = |
∫
F [φ] d(f ⊗ f − g ⊗ g)(x, x∗)| ≤ 2‖φ‖∞‖f ⊗ f − g ⊗ g‖TV

≤ 2 max{‖f‖TV , ‖g‖TV }‖f − f‖TV . ≤ 2R‖f − f‖TV .
Thus

‖(Q[f ]−Q[g]‖TV ≤ (2R+ 1)‖f − g‖TV ,
and the proof is finished.

Given f ∈ C([0, T ],Mb(R)), let us define Q̃[f ] : [0, T ] → Mb(R) by Q̃[f ]t :=

Q[ft]. For ease of notation we still denote Q̃ by Q. According to the previous propo-

sition, we have:

Corollary 3.1. For any f, g ∈ C([0, T ],Mb(R)),

(1) Q[f ] ∈ C([0, T ],Mb(R)).

(2) If ‖ft‖TV ≤ R and ‖gτ‖TV ≤ R for any t ∈ [0, T ],

‖(Q[f ]t −Q[g]s‖TV ≤ (2R+ 1)‖ft − gs‖TV .
In particular if f, g ∈ C([0, T ],P(R)) then

‖(Q[f ]t −Q[g]s‖TV ≤ 3‖ft − gs‖TV .

4. The Boltzmann Equation

Let us study now the existence and uniqueness of solutions to the Boltzmann equa-

tion Eq. (3.2).

4.1. Existence for the Boltzmann equation

We recall the existence and uniqueness result proved in Theorem 6.1 of Ref. 2 which

generalizes Bressan’s techniques.13 The authors in Ref. 2 consider the equation

∂tf = Q[f ] in [0, T )× E (4.1)

f(0) = f0 ∈ S (4.2)
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where E is a Banach space, S is a closed bounded convex subset of E, and

Q : C([0, T ], S)→ C([0, T ], E)

is a causal operator in the sense that Q[f ](t) = Q[f1[0,t]](t) for any f ∈ C([0, T ], E).

They assume the following conditions on Q:

• Hölder continuity: for any f, g ∈ C([0, T ], S) and any times 0 ≤ s ≤ t ≤ T ,

there exists β ∈ (0, 1) such that

‖Q[f ](t)−Q[g](s)‖ ≤ C
(

max
0≤τ≤s

‖f(τ)− g(τ)‖β + ‖f(t)− g(s)‖β + |t− s|β
)

• Sub-tangent condition: for any f ∈ C([0, T ], S),

lim inf
h→0+

1

h
sup

0≤t≤T
{dist(f(t) + hQ[f ](t), S)} = 0

• One-sided Lipschitz condition: for any f, g ∈ C([0, T ], S) and any t ∈ [0, T ],
∫ t

0

[
f(s)− g(s), Q[f ](s)−Q[g](s)

]
ds ≤ L

∫ t

0

‖f(s)− g(s)‖ ds

where [Φ, φ] := limh→0−
1
h [‖Φ + hΦ‖ − ‖Φ‖].

Under these assumptions it is proved in Ref. 2 that Eq. (4.1) has a unique solution

in C([0, T ), S) ∩ C1((0, T ), E).

Using this result we can prove now Theorem 1.1.

Proof. [Proof of Theorem 1.1]

We apply Theorem 6.1 in Ref. 2 with E = (Mb(R), ‖.‖TV ), S = P(R), and Q

the collision operator defined by (3.4). Hölder continuity with β = 1 is given by

Corollary 3.1, which also implies the one-sided Lipschitz condition. Indeed, for any

f, g ∈ Mb(R), the function h → ‖f + hg‖TV is globally Lipschitz and convex, so,

as in Ref. 13,

lim
h→0−

1

h
(‖f + hg‖TV − ‖f‖TV ) := [f ; g]− ≤[f ; g]+ := lim

h→0+

1

h
(‖f + hg‖TV − ‖f‖TV )

≤‖g‖TV .
Thus for any f, g ∈ C([0, T ], P (R)) and any s ∈ [0, T ],

[fs − gs;Q[f ]s −Q[g]s]
− ≤ ‖Q[f ]s −Q[g]s‖TV ≤ 3‖fs − gs‖TV .

It follows that
∫ t

0

[fs − gs;Q[f ]s −Q[g]s]
− ds ≤ 3

∫ t

0

‖fs − gs‖TV .

Let us observe that the sub-tangent condition is trivial here since for any f ∈
P(R) and any h ∈ (0, 1), the measure f + hQ[f ] is a probability measure. Indeed it

has total mass 1 because

(f + hQ[f ], 1) = (f, 1) + h(Q[f ], 1) = 1 + 0 = 1
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and is non-negative because since Q+[f ] ≥ 0 and Q−[f ] = f for any f , we have

f + hQ[f ] = f + hQ+[f ]− hQ−[f ] ≥ (1− h)f ≥ 0.

We thus obtain the existence and uniqueness of a solution in C([0, T ), P (R)) ∩
C1((0, T ),Mb(R)) for some T > 0.

Remark 4.1. In order to make the paper self-contained, let us give a short idea of

the main steps in the proof in Ref. 2 adapted to our case.

Starting from the initial condition f0 ∈Mb(R) and given some small ε > 0, we

define an approximate solution fε ∈ C([0,+∞),Mb(R)) by the recurrence formula

fεs =

{
f0 + sQ[f0], s ∈ [0, ε],

fεkε + (s− kε)Q[fεkε] s ∈ [kε, (k + 1)ε], k = 1, 2, ...

Notice that since f0 ∈ P (R), we have fεs ∈ P (R) for any ε > 0 and any s ≥ 0. Then

using the various properties of Q we have for any k = 0, 1, ... and s ∈ (kε, (k + 1)ε)

that

‖Q[fεkε]‖ = ‖Q[fεkε]−Q[0]‖ ≤ 3‖fεkε‖ = 3

and

‖∂sfεs −Q[fεs ]‖ = ‖Q[fεkε]−Q[fεs ]‖
≤ 3‖fεkε − fεs ]‖
≤ 3ε‖Q[fεkε]‖
≤ 9ε‖fεkε‖
= 9ε.

(4.3)

Then

d

ds
‖fεs − fε

′
s ‖ = lim

δ→0

1

δ

(
‖fεs+δ − fε

′
s+δ‖ − ‖fεs − fε

′
s ‖
)

≤ lim
δ→0

1

|δ|
∣∣∣‖fεs − fε

′
s + δ(∂sf

ε
s − ∂sfε

′
s ) + o(δ)‖ − ‖fεs − fε

′
s ‖
∣∣∣.

Using |‖a+ b‖ − ‖a‖| ≤ ‖b‖ and the bound obtained in (4.3) we obtain

d

ds
‖fεs − fε

′
s ‖ ≤ ‖∂sfεs − ∂sfε

′
s ‖

≤ ‖Q[fεs ]−Q[fε
′
s ]‖+ 9(ε+ ε′)

≤ 3‖fεs ]− fε′s ‖+ 9(ε+ ε′).

By integrating we obtain

‖fεt − fε
′
t ‖ ≤ 3

∫ t

0

‖fεs − fε
′
s ‖ ds+ 9(ε+ ε′)t

and Gronwall’s inequality implies that for t ∈ [0, T ] we get

‖fεt − fε
′
t ‖ ≤ 9(ε+ ε′)Te3T .
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It follows that for any T > 0, we have a Cauchy sequence {fε}ε in the complete space

C([0, T ],Mb(R)) and thus converges to some f ∈ C([0,+∞),Mb(R)). Moreover,

using (4.3) we have for any j that

∥∥∥εQ[fεjε]−
∫ (j+1)ε

jε

Q[fεs ] ds
∥∥∥ ≤

∫ (j+1)ε

jε

‖Q[fεjε]−Q[fεs ]‖ ds ≤ 9ε2.

Thus given some t ≥ 0 with kε ≤ t < (k + 1)ε,

fεt = (t− kε)Q[fεkε] + fεkε

= (t− kε)Q[fεkε] + εQ[fε(k−1)ε] + fε(k−2)ε

= ...

= (t− kε)Q[fεkε] + ε

k∑

j=0

Q[fεjε] + f0

=

∫ t

0

Q[fεs ] ds+ f0 +O(ε2).

Letting ε→ 0 using the continuity of Q and the uniform convergence of fε to f on

compacts, we obtain

ft = f0 +

∫ t

0

Q[fs] ds

so that f ∈ C1((0,+∞),Mb(R)) with ∂tft = Q[ft]. Eventually, since Q is Lipschitz,

denoting by f̃t the solution for another initial condition f̃0, we have

d

dt
‖ft − f̃t‖ ≤ ‖Q[ft]−Q[f̃t]‖ ≤ 3‖ft − f̃t‖

so that

‖ft − f̃t‖ ≤ ‖f0 − f̃0‖e3t

from which we deduce the uniqueness and the continuous dependence on initial

conditions. The proof is finished.

4.2. Properties of fh
t

We denote by 〈x〉t the mean-value of x at time t, namely,

〈x〉t =

∫
x dfht (x).

Proposition 4.1. The mean value 〈x〉t is constant in time:

〈x〉t = 〈x〉|t=0.

Proof. Let us take φ(x) = x in (1.1). Then

d

dt
〈x〉t =

∫
E(x′ − x) dft(x)dft(x∗). (4.4)
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According to the interaction rule (3.1), we have the following expression for the

expected value of the interaction:

E(x′ − x) = hP (X∗ ≥ x)− hP (X∗ ≤ x) = h(1− 2P (X∗ ≤ x))

= h(1− 2Fσ(x− x∗))
where we used (3.3) in the last equality. Therefore

1

h

d

dt
〈x〉t =

∫
(1− 2Fσ(x− x∗)) dft(x)dft(x∗)

= 1− 2

∫
Fσ(x− x∗) dft(x)dft(x∗).

By using that Fσ(−x) = 1− Fσ(x) (becaue of the symmetry of Y), we see that the

integral in the r.h.s is equal to 1/2. The result is proved.

From now on we will assume without loss of generality that f0 has zero mean. Let

us note that this correspond to relabel all agents opinions with the same translation.

This implies that fht has zero mean value for any t, h by Proposition 4.1. The

variance of fht is then given by

V ar[fht ] = 〈x2〉 =

∫
x2 dfht (x).

Proposition 4.2. There holds

d

dt
V ar[fht ] = h2 − 4h

∫
x(Fσ ∗ fht )(x) dfht (x).

Proof. Notice that

E[(x′)2 − x2] = E[(x′ − x)(x′ + x)]

= h(2x+ h)P (x ≤ X∗)− h(2x− h)P (x ≥ X∗)
= h(2x+ h)− 4xhFσ(x− x∗).

By taking φ(x) = x2 as test-function, we obtain

d

dt
V ar[fht ] =

d

dt
〈x2〉

= 2h〈x〉|t=0 + h2 − 4h

∫
x(Fσ ∗ fht )(x) dfht (x)

= h2 − 4h

∫
x(Fσ ∗ fht )(x) dfht (x),

where we have used that 〈x〉|t=0 = 0, and the proof is finished.

Given f ∈ P(R) we define

Iσ(f) :=

∫
x(Fσ ∗ f)(x) df(x) =

∫
xFσ(x− y) df(x)df(y).
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Then

d

dt
V ar[fht ] = h2 − 4hIσ(fht ).

We also introduce

Jσ(f) :=

∫
x(Ψσ ∗ f)(x) df(x) =

∫
xΨσ(x− y) df(x)df(y)

where

Ψσ := 1− 2Fσ.

If X is a real random variable with distribution f ∈ P(R) we also denote

Iσ(X) := Iσ(f),

Jσ(X) := Jσ(f).

Proposition 4.3. We have:

(1) For any f ∈ P (R) such that E[f ] = 0,

Jσ(f) = −2Iσ(f).

(2) Moreover,

Jσ(f) =

∫

{x,y∈R: x−y>0}
(x− y)Ψσ(x− y) df(x)df(y). (4.5)

(3) If f has positive variance then, as a function of σ > 0, Jσ(f) is strictly increas-

ing and goes to 0 as σ → +∞. Then if E[f ] = 0, Iσ(f) is strictly decreasing

with σ and goes to 0 as σ → +∞.

(4) The following scaling relations hold: for any t > 0 and a real random variable

X,

Iσ(tX) = tIσ/t(X)

Jσ(tX) = tJσ/t(X).
(4.6)

Proof. Let us prove (4.5). Since Y is symmetric, we have Fσ(0) = 0 and then

Ψσ(0) = 0. It follows that

Jσ(f) =

∫

{x−y>0}
xΨσ(x− y) df(x)df(y) +

∫

{x−y<0}
xΨσ(x− y) df(x)df(y).

We rewrite the second integral in the right hand side by exchanging x and y, and

using that Ψ is odd, we get
∫

{x−y<0}
xΨσ(x− y) df(x)df(y) =

∫

{y−x<0}
yΨσ(y − x) df(x)df(y)

= −
∫

{x−y>0}
yΨσ(x− y) df(x)df(y),

and we obtain (4.5).
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Thus

d

dσ
Jσ(f) =

∫

{x,y∈R: x−y>0}
(x− y)

∂

∂σ
Ψσ(x− y) df(x)df(y)

=
2

σ2

∫

{x,y∈R: x−y>0}
(x− y)2F ′(

x− y
σ

) df(x)df(y)

This integral is positive, since F ′ is the (positive) density of Y, except when f ⊗ f
is concentrated on the diagonal {(x, y) ∈ R2 : x = y} which happens only if f is a

Dirac mass, that is, if f has zero variance (in that case Jσ(f) = 0 for any σ). Thus

if V ar[f ] > 0 then d
dσJσ(f) > 0 and otherwise Jσ(f) = 0 for any σ.

Eventually, since limσ→+∞Ψσ(x) = 0, we have by Lebesgue’s Dominated Con-

vergence Theorem (if f has a finite first moment) that limσ→+∞ Jσ(f) = 0.

The rescaling in point (4) follows by using that if X has a distribution f , then

tX has distribution 1
t f(x/t). Then

Iσ(tX) =

∫
xFσ(x− y)f(x/t)f(y/t)

dxdy

t2
= t

∫
xFσ(t(x− y))f(x)f(y)dxdy

= t

∫
xFσ/t(x− y)f(x)f(y)dxdy = tIσ/t(X)

and the proof is finished.

Remark 4.2. Intuitively, this suggests the following dynamic of V ar[fht ]. Initially,

if V ar[f0]� h then V arf [fht ] decreases strictly with time at a decreasing rate until

V ar[fht ] ' h, and after this point it will oscillate around h.

When h → 0 we thus expect that V ar[ft] → 0 as t → +∞ and thus ft → δ0,

since E[f0] = 0.

Both phenomena are observed in the simulations of agents dynamics, see the

last section.

To justify the previous remark, we will perform the grazing limit in the next

section and we obtain an ordinary differential equation for V ar[ft] which describes

its behavior.

5. The Grazing Limit and the Long Time Behavior of ft

Let us study the asymptotic behaviour of the solutions to the Boltzmann equation

(1.1) when h→ 0.

By using a Taylor expansion and by denoting φ′, φ′′ the derivatives of the test
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function, we have, formally,

d

dt

∫
φdft '

∫
E(x′ − x)φ′(x) dft(x)dft(x∗) +

1

2

∫
E[(x′ − x)2]φ′′(x) dft(x)dft(x∗)

= h

∫
(1− 2Φσ(x− x∗))φ′(x) dft(x)dft(x∗) +

h2

2

∫
φ′′(x) dft(x)

= h

∫
(Ψσ ∗ ft)(x)φ′(x) dft(x) +

h2

2

∫
φ′′(x) dft(x)

where Ψ = 1 − 2Φσ. We rescale time considering τ := ht and ghτ := fht . Thus, we

expect the long-time evolution of fht to be well-approximated by gτ , the solution to

Eq. (1.2), namely

d

dτ

∫
φdgτ =

∫
(Ψσ ∗ gτ )(x)φ′(x) dgτ (x).

Let us recall that this is the weak formulation of the first order mean field equation

(1.3)

∂τgτ + ∂x

(
(Ψσ ∗ gτ )gτ

)
= 0.

We are ready to prove Theorem 1.2.

5.1. Proof of Theorem 1.2

Before the proof of this result we first recall a useful result of Gabetta, Toscani and

Wennberg.24

We denote by ρ(µ, ν) the Prokhorov distance between µ, ν ∈ P(R). Following

Ref. 24[Eq. (5.6)], we also consider

‖µ‖∗ := sup
{∫

R
φdµ : ‖φ‖2 := sup

x∈R
|φ′(x)|+ |φ′′(x)| ≤ 1

}

and

d(µ, ν) := ‖µ− ν‖∗. (5.1)

Notice that since µ and ν have same mass, d(µ, ν) does not change if we add a

constant to the test-function φ. In particular we can assume that φ(0) = 0 i.e. we

consider

‖µ‖∗ := sup
{∫

R
φdµ : ‖φ‖2 := sup

x∈R
|φ′(x)|+ |φ′′(x)| ≤ 1, φ(0) = 0

}
. (5.2)

According to Lemma 5.3 and Corollary 5.5 in Ref. 24, d defines a distance that

metrizes the weak-* convergence (that is, the convergence against functions in

Cb(R)). Moreover, Corollary 5.5 in Ref. 24 reads as

ρ(µ, ν) ≤ max {C(d(µ, ν)1/3; d(µ, ν)} for any µ, ν ∈ P(R).

Since P(R) is complete for ρ we deduce that it is also complete for d.
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Proof. [Proof of Theorem 1.2.]

The rescaled measure ghτ := fht , where τ = ht, solves the Boltzmann equation

d

dτ

∫
φ ghτ =

1

h

∫
E[φ(x′)− φ(x)] dghτ (x)dghτ (x∗) (5.3)

for any test function φ. By performing a first order Taylor expansion we obtain

d

dτ

∫
φ ghτ =

1

h

∫ {
E[x′ − x]φ′(x) +

1

2
E[(x′ − x)2]φ′′(x̃)

}
dghτ (x)dghτ (x∗)

=
1

h

∫ {
hΨσ(x− x∗)φ′(x) +

h2

2
φ′′(x̃)

}
dghτ (x)dghτ (x∗)

where x̃ = x + θh for some θ ∈ (−1, 1) is an intermediate point between x and x′.
Then

d

dτ

∫
φ ghτ =

∫
(Ψσ ∗ ghτ )(x)φ′(x) dghτ (x) +Rhτ

where

Rhτ :=
h

2

∫
φ′′(x̃) dghτ (x).

Integrating the above expression between τ ′ and τ , we obtain
∫
φd(ghτ − ghτ ′) =

∫ τ

τ ′

∫
(Ψσ ∗ ghs )(x)φ′(x) dghs (x)ds+

∫ τ

τ ′
Rhs ds. (5.4)

Since ‖Ψσ‖∞ ≤ 1, also ‖Ψσ ∗ ghs ‖∞ ≤ 1, and |Rhτ | ≤ h
2 ‖φ′′‖∞. Therefore, we get

∣∣∣
∫
φd(ghτ − ghτ ′)

∣∣∣ ≤ (‖φ′‖∞ +
h

2
‖φ′′‖∞)|τ − τ ′|. (5.5)

Taking the supremum over φ we obtain

d(ghτ , g
h
τ ′) ≤ |τ − τ ′| for any τ, τ ′ ≥ 0 and any h < 1,

where the distance d is defined in (5.1). This means that the sequence of con-

tinuous probability measure valued functions gh : [0,+∞) → P(K) is uniformly

equi-continuous. Moreover for any fixed τ , the sequence (ghτ )h is bounded since for

any admissible φ in the definition of ‖.‖∗,
∣∣∣
∫
φdghτ

∣∣∣ ≤
∫
|x| dghτ ≤ τ +

∫
|x| df0.

To prove the second inequality we use |x| as a test function in (5.3), and we get

d

dτ

∫
|x| dghτ =

1

h

∫
E[|x′| − |x|] dghτ (x)dghτ (x∗)

=
1

h

∫
(|x+ h| − |x|)(1− Φσ(x− x∗)) dghτ (x)dghτ (x∗)

+
1

h

∫
(|x− h| − |x|)Φσ(x− x∗) dghτ (x)dghτ (x∗)

≤ 1

h

∫
((|x|+ h)− |x|) dghτ (x)dghτ (x∗)

= 1.
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Thus, Arzela-Ascoli theorem, together with a diagonal argument, ensure the exis-

tence of g ∈ C([0,+∞);P(R)) and a subsequence (hn)n converging to 0 such that

ghn → g in C([0, T ];P(R)) for any T > 0, which implies that

lim
h→0

(
max

0≤s≤T
max

Lip(φ)≤1
|(ghs − gs, φ)|

)
= 0. (5.6)

It remains to pass to the limit in (5.4) with τ ′ = 0 and a given φ, we get
∫
φdghτ −

∫
φdf0 =

∫ τ

0

∫
(Ψσ ∗ ghs )(x)φ′(x) dghs (x)ds+

∫ τ

0

Rhsds

=

∫ τ

0

∫
(Ψσ ∗ ghs )(x)φ′(x) dghs (x)ds+O(h).

(5.7)

Now,
∫ τ

0

∫
(Ψσ ∗ ghs )(x)φ′(x) dghs (x)ds−

∫ τ

0

∫
(Ψσ ∗ gs)(x)φ′(x) dgs(x)ds

=
(∫ τ

0

∫
(Ψσ ∗ ghs )(x)φ′(x) dghs (x)ds−

∫ τ

0

∫
(Ψσ ∗ ghs )(x)φ′(x) dgs(x)ds

)

+
(∫ τ

0

∫
(Ψσ ∗ ghs )(x)φ′(x) dgs(x)ds−

∫ τ

0

∫
(Ψσ ∗ gs)(x)φ′(x) dgs(x)ds

)

=: Ah +Bh.

(5.8)

For any x ∈ R the function x∗ → Ψσ(x − x∗) has Lipschitz constant less than

Lip(Ψσ) <∞. It follows from (5.6) that, for any s and x, we have (Ψσ ∗ ghs )(x)→
(Ψσ∗gs)(x). Moreover, |(Ψσ∗ghs )(x)| ≤ ‖Ψσ‖ ≤ 1 for any x. We deduce that Bh → 0

by Lebesgue’s Dominated Convergence Theorem.

We also deduce that (Ψσ ∗ ghs )φ′ has Lipchitz constant bounded uniformly in h.

Hence, it follows from (5.6) that limh→0 |(ghs − gs, (Ψσ ∗ ghs )φ′)| = 0 uniformly in

s ∈ [0, τ ]. We deduce that Ah → 0. We can thus pass to the limit h→ 0 in (5.7) to

obtain for any τ > 0 and any φ that
∫
φdgτ −

∫
φdf0 =

∫ τ

0

∫
(Ψσ ∗ gs)(x)φ′(x) dgs(x)ds,

which implies the weak formulation (1.2).

Notice eventually that it is well-known that equations like (1.3) has a unique

solution so that the whole sequence (gh)h converges to the solution g. The theorem

is proved.

As for fht , it is easily seen that

E[gτ ] = E[f0] t ≥ 0.

We can thus assume without loss of generality that f0 has zero mean (by shifting

all opinions if necessary), and thus gτ has zero mean for any τ ≥ 0. It is then also
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easily seen from (1.2) that

d

dt
V ar[gτ ] = 2

∫
x(Ψσ ∗ gτ )(x) dgτ (x) = 2Jσ(gτ ).

Since by Prop. 4.3, Jσ(gτ ) ≤ 0 with equality if and only if V ar[gτ ] = 0, we obtain

that V ar[gτ ] decreases to 0 with time, so that

gτ → δ0.

This proves Theorem 1.3.

5.2. Proof of Theorem 1.4

We can prove now an estimate on the rate of convergence of gτ .

We keep on assuming that Y is a symmetric and we also assume that Y has a

density fY ∈ C1(R) such that f ′Y is bounded and F (x) > F (0) for x > 0.

In order to prove Theorem 1.4 we need some auxiliary results and notations. Let

us call

αR,σ = sup
{∫ +∞

0

xΨσ(x) dg(x) : g ∈ P(R), supp(g) ⊂ [−R,R],

g symmetric, E[g] = 0, V ar[g] = 1
}
,

and

α∞,σ = sup

{∫ +∞

0

xΨσ(x) dg(x) : g ∈ P(R), g symmetric, E[g] = 0, V ar[g] = 1

}
.

Proposition 5.1. There hold that αR,σ < 0 increases as R ↑ +∞ to α∞,σ = 0.

Moreover
∣∣∣αR,σ +

1

σ
fY(0)

∣∣∣ ≤ R

2σ2
‖f ′Y‖∞ (5.9)

if R ≥ 1, and

∣∣∣αR,σ +
1

σ
fY(0)

∣∣∣ ≤ R3

2σ2
‖f ′Y‖∞ (5.10)

if R < 1.

Proof. Since Ψσ(x) ≤ 0 if x ≥ 0 we have αR,σ, α∞,σ ≤ 0.

Consider the probability measures gn = 1
2n2 (δn + δ−n) + (1 − 1

2n2 )δ0, n ∈ N.

Notice that E[gn] = 0 and V ar[gn] =
∫
x2 dgn(x) = 1

2n2 (n2 + (−n)2) = 1. Then

0 ≥ α∞,σ ≥
∫ +∞

0

xΨσ(x) dgn(x) = nΨσ(n)
1

2n2
=

1

2n
Ψσ(n)

which goes to 0 as n→ +∞.
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On the other hand, given R > 0, take a minimizing sequence (gn)n for αR,σ.

Since [−R,R] is compact, a subsequence of the gn converges in C([−R,R])′ to some

g. Then g ∈ P(R) is admissible since

E[g] =

∫
x dg(x) =

∫ R

−R
x dg(x) = lim

n

∫ R

−R
x dgn(x) = 0

and in the same way V ar[g] = limV ar[gn] = 1. Then αR,σ =
∫ +∞

0
xΨσ(x) dg(x).

Since Ψσ(x) < 0 if x > 0, we have αR,σ = 0 iff g is supported in (−∞, 0] i.e. g = δ0
since E[g] = 0, but this contradicts V ar[g] = 1. Thus αR,σ < 0.

To prove (5.9) we just write for an admissible g that
∫ +∞

0

xΨσ(x) dg(x) =

∫ +∞

0

x
(

Ψ′σ(0)x+
1

2
Ψ′′σ(θ(x)x2)

)
dg(x)

= − 2

σ
fY(0)

∫ +∞

0

x2 dg(x) +
1

2

∫ +∞

0

Ψ′′σ(θ(x)x)x3 dg(x)

where θ(x) ∈ [0, 1]. Notice that
∫ +∞

0

x2 dg(x) =
1

2
V ar[g] =

1

2

since g is symmetric and E[g] = 0. Moreover, since Ψ′′σ(x) = − 2
σ2 f

′
Y(x/σ) with f ′Y

bounded, and g is supported in [−R,R],

∣∣∣
∫ +∞

0

Ψ′′σ(θ(x)x)x3 dg(x)
∣∣∣ ≤ 2

σ2
‖f ′Y‖∞R

∫ +∞

0

x2 dg(x) =
R

σ2
‖f ′Y‖∞

if R ≥ 1, which proves (5.9), and

∣∣∣
∫ +∞

0

Ψ′′σ(θ(x)x)x3 dg(x)
∣∣∣ ≤ 2

σ2
‖f ′Y‖∞R3

∫ +∞

0

dg(x) =
R3

σ2
‖f ′Y‖∞

if R < 1, which proves (5.10). The proof is now complete.

Remark 5.1. Let us note that this bound can be improved for particular density

functions. In the particular case when Y ∼ N(0, 1), we obtain

∣∣∣αR,σ +
1

σ
√

2π

∣∣∣ ≤ e−1/2R

2
√

2πσ2
1{R ≥ 1}+

e−R
2/2R3

2
√

2πσ2
1{R < 1}. (5.11)

since fY(0) = 1/
√

2π and ‖f ′Y‖∞ = |f ′Y(±1)| = e−1/2
√

2π
, and, for R < 1, the maximum

of |f ′Y| in [0, R] is reached in x = R.

The quantity αR,σ is an useful tool to estimate Jσ(f):

Lemma 5.1. For any R > 0 and σ > 0, let us define

AR,σ := sup {Jσ(f) : f ∈ P(R), supp(f) ⊂ [−R,R], E[f ] = 0, V ar[f ] = 1}.
Then,

AR,σ ≤
√

2α√2R,σ/
√

2 = −2fY(0)

σ
+ C(R, σ), |C(R, σ)| ≤ 2‖f ′Y‖∞

R

σ2
.
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Remark 5.2. When Y ∼ N(0, σ2) we obtain

AR,σ ≤ −
√

2

σ
√
π

+ C(R, σ),

where

|C(R, σ)| ≤
√

2√
πσ2

(
Re−1/21{R ≥ 1}+ e−R

2/2R31{R < 1}
)
.

Proof. Let f ∈ P(R) be admissible in the definition of AR,σ. We can assume by

density that f ∈ L1(R). Then, by (4.5),

Jσ(f) =

∫

{x,y∈R: x−y>0}
(x− y)Ψσ(x− y)f(x)f(y) dxdy

=

∫ +∞

0

uΨσ(u)

∫
f(v)f(v − u) dv du

where we have changed variables u = x− y, v = x.

Let f̌(x) := f(−x) and g̃ := f ∗ f̌ . Then,

Jσ(f) =

∫ +∞

0

uΨσ(u)g̃(u) du. (5.12)

Notice that g̃ ∈ P(R) is symmetric and supported in [−2R, 2R] with E[g̃] = 0 and

V ar[g̃] = 2V ar[f ] = 2. In fact g̃ is the distribution of the random variable X + Y

where X and Y are independent and have distribution f and f̌ respectively. Thus,

A ≤ sup
{∫ +∞

0

xΨσ(x) dg̃(x) : g̃ ∈ P(R),

supp(g̃) ⊂ [−2R, 2R], g̃ symmetric, E[g̃] = 0, V ar[g̃] = 2
}
.

Next, let us consider g(t) =
√

2g̃(
√

2t) i.e. g is the distribution of the random

variable 1√
2
X if X has distribution g̃. Then g ∈ P(R) is symmetric, supported in

[−R
√

2, R
√

2], E[g] = 0 and V ar[g] = 1. Since
∫ +∞

0

xΨσ(x) dg̃(x) =
√

2

∫ +∞

0

xΨσ(
√

2x) dg(x)

=
√

2

∫ +∞

0

xΨσ/
√

2(x) dg(x)

we obtain the result and the Lemma is proved.

We can now prove Theorem 1.4:

Proof. [Proof of Theorem 1.4.] For ease of notation we write the time variable t

instead of τ . Denote by Xt the generalized inverse of the cumulative distribution

function of gt. Then

∂tXt(r) = (Ψ ∗ gt)(Xt(r)) t > 0, r ∈ [0, 1].
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Then gt is supported in [Xt(0
+), Xt(1

−)]. Notice that for any t, the set

{y ∈ [Xt(0
+), Xt(1

−)] : y > Xt(0
+)}

has positive measure for gt unless Xt(0
+) = Xt(1

−), i. e., unless gt is a Dirac mass.

Thus,

Xt(0
+) = X0(0+) +

∫ t

0

∫

[Xt(0+),Xt(1−)]

Ψσ(Xs(0
+)− y) dgs(y) ds

is strictly increasing while V ar[gt] > 0. In the same way Xt(1
−) strictly decreases.

We can thus find Rt ↘ 0 such that gt is supported in [−Rt, Rt].
By using the scaling relation (4.6) and denoting by Yt a random variable with

distribution gt, we have

d

dt
V ar[gt] = 2Jσ(Yt)

= 2
√
V ar[gt]Jσ/

√
V ar[gt]

( Yt√
V ar[gt]

)
.

Let us note that the variable
Yt√
V ar[gt]

has variance equal to 1 and it is supported

in the interval [−Rt/
√
V ar[gt], Rt/

√
V ar[gt]]. Thus, Lemma 5.1 gives

d

dt
V ar[gt] ≤ 2

√
V ar[gt]

(
− 2fY(0)

σ

√
V ar[gt] + 2‖f ′Y‖∞

√
V ar[gt]

Rt
σ2

)

=
4V ar[gt]

σ

(
− fY(0) +

Rt
σ
‖f ′Y‖∞

)

Using that Rt ≤ R0 we obtain

V ar[gt] ≤ V ar[g0] exp
{4t

σ

(
− fY(0) +

R0

σ
‖f ′Y‖∞

)}

We can obtain a better estimate in the long-run. Fix some ε > 0. Since Rt ↘ 0 we

can find a time tε > 0 such that 4Rt
σ2 ‖f ′Y‖∞ ≤ ε for t ≥ tε. Then for t ≥ tε,

d

dt
V ar[gt] ≤

(
− 4fY(0)

σ
+ ε
)
V ar[gt]

which gives

d

dt
V ar[gt] ≤ Cεexp

{(
− 4fY(0)

σ
+ ε
)
t
}

t ≥ tε.

The proof is finished.

If fY ∈ C1 is non-increasing in (0,+∞), we can prove a lower bound for V ar[gt]

as mentioned in Remark 1.1. Let us observe that Ψ′′ = −2f ′, and then
∫ +∞

0

Ψ′′σ(θ(u)u)u3 dg̃t(u) ≥ 0.
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We call ǧt(x) := gt(−x) and g̃t := gt ∗ ǧt as before, and recall that g̃t ∈ P(R) is

symmetric with E[g̃t] = 0 and V ar[g̃t] = 2V ar[gt].

Hence, putting together all of this and recalling (5.12) we get

d

dt
V ar[gt] =2Jσ(Yt)

=2

∫ +∞

0

uΨσ(u) dg̃t(u)

=2

∫ +∞

0

u
(

Ψ′σ(0)u+
1

2
Ψ′′σ(θ(u)u)u2

)
dg̃t(u)

=− 4

σ
fY(0)

∫ +∞

0

u2 dg̃t(u) +

∫ +∞

0

Ψ′′σ(θ(u)u)u3 dg̃t(u)

≥− 4

σ
fY(0)

∫ +∞

0

u2 dg̃t(u)

=− 4

σ
fY(0)V ar[gt].

where we used in the last equality that
∫ +∞

0
u2 dg̃t(u) = 1

2V ar[g̃t] = V ar[gt].

Thus, the asymptotic upper bound obtained in Theorem 1.4 is optimal if fY ∈ C1

is non-increasing in (0,+∞). In the examples in the next section we will see that

the simulations when Y ∼ N(0, 1) are close to this lower bound.

6. Examples and Simulations

In this section we present some numerical agent-based simulations to illustrate the

convergence results stated in Theorem 1.3 and in Theorem 1.4. We will consider a

finite populations of N agents interacting following the interaction rules presented

before. Notice that we have obtained the limit nonlocal equation (1.3) from the

Boltzmann equation (1.1) which assumed implicitly an infinite population. Since

we will consider a large but finite population of N agents in the simulations, we first

need to find the correct time scaling relating N and h. We will do so by obtaining the

nonlocal equation (1.3) with an informal argument based on the Master Equation

where the time scaling will be apparent (see (6.2) below). We will then proceed with

the numerical experiments.

6.1. The master equation and the time scaling

We consider a large population of N agents, N � 1. The opinion of an agent is

a random variable of the form x + σY where x ∈ R and the random variable Y is

symmetric and has variance 1. The mean x of the opinion varies from an agent to

another whereas σ is the same for all agent. We denote by xi the mean opinion of

the i-th. agent.

We want to write the Master Equation giving the evolution of the distribution

of agents and deduce from it the equation obtained in Theorem 1.2. The derivation

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in M3AS

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

IO
W

A
 o

n 
11

/2
5/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



October 31, 2019 9:32 WSPC/INSTRUCTION FILE lpjppns-fin

Measure valued opinion dynamics 27

we present is informal since we are mainly interested in obtaining the right scaling

relation (see (6.2) below) between the number of agents N and the step h to compare

the simulations for different values of h. A rigorous study of the system from a

probabilistic point of view shoud be possible following Kipnis and Landim,33 but it

is out of the scope of the present paper.

So, we fix some small parameter h, and we assume that the possible mean

opinions x are of the form hj with j ∈ Z. We get a partition of R into small

intervals Ij = [(j − 1/2)h, (j + 1/2)h] of lengths h, centered at jh. We denote

s(j, t) =
#{i|xi ∈ Ij}

N

the proportion of agents with mean opinion jh.

We assume that interactions follow a Poisson process of rate 1, and that only

the first agent in the interaction updates his mean xi. Then, the Master Equation

reads

s(j, t+ dt) = s(j, t) +
1

N

(
G(j, t)− L(j, t)

)
dt, (6.1)

where G and L are the gain and loss function given by

G(j, t) = s(j − 1, t)
∑

k∈Z
s(k, t)P (hk + σY ≥ (j − 1/2)h)

+s(j + 1, t)
∑

k∈Z
s(k, t)P (hk + σY ≤ (j + 1/2)h)

= s(j − 1, t)
∑

k∈Z
s(k, t)(1− Fσ((j − k − 1/2)h))

+s(j + 1, t)
∑

k∈Z
s(k, t)Fσ((j − k + 1/2)h)

and

L(j, t) = s(j, t)
∑

k∈Z
s(k, t)

(
P (kh+ σY ≥ h(j + 1/2)) + P (kh+ σY ≤ h(j − 1/2))

)

= s(j, t)
∑

k∈Z
s(k, j)[1− Fσ(h(j − k + 1/2)) + Fσ(h(j − k − 1/2))].

These expressions follow noticing that P (hk + σY ≥ (j − 1/2)h) is the probability

that an agent whose mean opinion belongs to Ik emits an opinion lying on the right

of Ij .

If ft(x) is the distribution of agents means, we can approximate

s(j, t) ≈
∫ (j+1/2)h

(j−1/2)h

ft(x) dx ≈ hft(jh),

s(j ± 1, t) ≈ hft(jh± h) ≈ hft(jh)± h2∂xft(jh),
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so that

G(j, t)− L(j, t) ≈ 2h2ft(jh)
∑

k∈Z
ft(kh)[Fσ(j − k + 1/2)h)− Fσ(j − k − 1/2)h)]

+h3∂xft(jh)
∑

k∈Z
ft(kh)[Fσ((j − k + 1/2)h) + Fσ((j − k − 1/2)h)− 1].

Thus, approximating the sum by Riemann integrals, using a Taylor expansion of

F , and discarding the lower order term, we get

1

h2
(G(j, t)− L(j, t)) ≈ 2ft(jh)(f ∗ F ′σ)(jh) + ∂xft(jh)(f ∗ (2Fσ − 1))(jh)

≈ ∂x

(
ft(fT ∗ (2Fσ − 1))

)∣∣∣
x=jh

.

Coming back to (6.1) we obtain

N

h

f(jh, t+ ∆t)− f(jh, t)

∆t
≈ ∂x

(
f(f ∗ (2Fσ − 1))

)∣∣∣
x=jh

.

It follows that the correct time scale is

τ =
h

N
t, (6.2)

since then

∂τgτ + ∂x

((
gτ ∗ (1− 2Fσ)

)
gτ

)
= 0.

6.2. Simulations

We present here some agent based simulations of the dynamics performed in Python.

We consider a list of agents indexed from 1 to N . Each one has a Normal distri-

bution with variance σ2 = 1 and their means xi are initially uniformly distributed

on [−1/2, 1/2]. In each time step we update all the agents. We take one of them

following the index order, and we match this agent i with a different one, j, selected

independently using a random uniform distribution among the other agents. Agent

j generates an opinion mj at random following her/his normal N(xj , σ
2), and agent

i updates his/her mean following the interaction rule (3.1), namely

x′i = xi + sign(mj − xi)× h.

Different values of N where considered. We present here only the simulations for

N = 103, the ones for N = 104 and N = 105 are similar. The time scale considered

is τ = ht/N which is the natural time scale in view of (6.2). This means that time

step ∆τ corresponds to N/h interactions.

As observed in the figures in Table 1, with h = 10−3, the distributions of means

converges to some quasi-consensus value, and fluctuate around this value due to the

step h.
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Table 1. Evolution of the distribution of agents means x1, .., xN during one simulation with N =

1000 and h = 10−3. From left to right and top to bottom, τ = 0, .., 6. Axis scales are different in

each figure.
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Remark 6.1. Let us remark that different simulations for the same parameters

show a distribution of quasi-consensus values which resembles a Normal distribu-

tion (see Figure 1 which displays the histogram of the final quasi-consensus value

corresponding to 100 simulations starting with the same initial condition). We con-

jecture that some Central Limit Theorem is valid here, since the quasi-consensus

value of the means is obtained in the random process defined by the random selec-

tion of opinions in each interaction, and, when h→ 0, the average in the Boltzmann

equation implies the convergence to the expected value of this distribution proved

in Theorem 1.3.

In Figures 2, 3, and Figure 4 we analyze the time to quasi-consensus for different

values of h. We considered the cases h = 10−2, 10−3, 10−4. These curves were

obtained averaging over 100 simulations for each value of h.

We first plot in Figure 2 the time-evolution of Rτ , introduced at the beginning

of the proof of Theorem 1.4, such that Rτ ↓ 0 and the distribution of agents means

at time τ is supported in [−Rτ , Rτ ].

We then plot in Figure 3 and Figure 4 the time evolution of the variance (Figure

3) and of the logarithm of the variance (Figure 4) of the distribution of agents means

at time τ . The dotted, dashed, and dash-dotted curves (blue, red, and yellow in the

online version) correspond to h = 10−2, h = 10−3, and h = 10−3. The solid curves

(green and magenta in the online version) in Figures 3 represents the theoretical

bounds obtained in Theorem 1.4 and Remark 1.1 for the case of Normal opinions

considered here. Recall that in the simulations σ = 1 and the initial distribution of

means {xi}Ni=1, is uniform in [−1/2, 1/2] so that R0 = 1/2 and the initial variance

is V ar(Unif(−1/2, 1/2)) = 1/12).
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Fig. 1. Histogram of the quasi-consensus value corresponding to 100 simulation with uniform

Unif(−1/2, 12) initial distribution of x’s (N = 1000 agents, h = 10−3).

0.02 0.01 0.00 0.01 0.02
0

10

20

30

40

Fig. 2. Time evolution of Rτ defined such that the distribution of agents means at time τ is

sopported in [−Rτ , Rτ ].
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We distinguish between the upper bound proved in Theorem 1.4 and given by

V ar[gt] ≤ V ar[g0] exp
{ 2
√

2

σ
√
π

(
− 1 + e−1/2R0

σ

)
t
}

=
1

12
exp

{2
√

2√
π

(
− 1 +

1

2
e−1/2

)
t
}

t ≥ 0,

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in M3AS

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

IO
W

A
 o

n 
11

/2
5/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



October 31, 2019 9:32 WSPC/INSTRUCTION FILE lpjppns-fin

Measure valued opinion dynamics 31

Fig. 3. Time evolution of the variance of the distribution of agents means xi, i = 1, .., n = 1000

for different values of h (h = 10−2 dotted in blue, h = 10−3 dashed in red, h = 10−4 dot-dashed

in yellow. We also plot the theoretical bounds obtained in Theorem 1.4 and Remark 1.1 in solid
lines (see text for more details).
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Fig. 4. Time evolution of the logarithm of the variance of the distribution of agents means xi,
i = 1, .., n = 1000 for different values of h (h = 10−2 dotted in blue, h = 10−3 dashed in red,

h = 10−4 dot-dashed in yellow. We also plot the theoretical bounds obtained in Theorem 1.4 and

Remark 1.1 in solid lines (see text for more details).
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and the lower bound in Remark 1.1 given by

V ar[gt] ≤ V ar[g0] exp
{
− 2
√

2

σ
√
π
t
}

=
1

12
exp

{
− 2
√

2√
π
t
} (6.3)
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We can observe a very good agreement between agent based simulations and

the theoretical results. All the curves deviate from the theoretical estimates when

the support of the means are small enough, of order O(h).

Remark 6.2. Let us observe that in the simulations only one opinion is changed

in each interaction, but the results are similar if both agents update their means.

The only difference in this case is that the convergence time is reduced by a factor

of 2.

7. Final Remarks

7.1. A comparison with DeGroot model

As mentioned in the introduction, DeGroot introduced the first behavioral model

considered in the aggregation of experts opinions. The procedure was different,

since each agent i assigns a weight wj to agent j, and then updates his probability

measure as a mean of the other ones. In the case of Normal distributions with the

same variance, agent i obtain a new Normal distribution with different mean and

variance, N(xi, σ
2) is changed to

N∑

j=1

wjN(xj , σ
2) = N




N∑

j=1

wjxj ,
( N∑

j=1

w2
j

)
σ2


 .

In particular, if all the agents assign the same weight wj = 1
N to another agent,

they reach a consensus in the probability measure δx̄ where

x̄ =
∑

xi/N,

while in our case the agents goes to the Normal distribution N( 1
N

∑N
i=1 xi, σ

2).

Observe that in this example the variance of the consensus opinion is smaller

than the original one. It is possible to show examples where the variance increases

in DeGroot’s model.

For instance, let us assume that N agents have a Dirac Delta concentrated at

xi, for each 1 ≤ i ≤ N , and they assign the same weights wj = 1
N to other experts.

Hence, they reach a consensus at the probability measure defined by

1

N

N∑

i=1

wiδxi ,

which has positive variance except that xi = xj for each pair i, j.

However, since agent i can only emit the opinion xi with probability one, the

updating dynamics introduced in this work is the same as the one studied in,39 and

the agents reach a consensus at the probability measure δx̄, with

x̄ =
∑

xi/N.
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7.2. Possible extensions and future works

We can extend our model to non-homogeneous population in the following ways:

• each agent has its own value of σ, either positive or 0,

• each agent has individual rates of persuasion and conviction, as in Ref. 38.

We can model the first situation assuming that the population is characterized

at time t by the distribution of (x, σ) via a probability measures ft. In that case

ft is a probability measure over the (x, σ) space R × [0,+∞). Assuming that the

parameter σ of an agent is not modified during an interaction, the evolution of ft
is then given by the Boltzmann-like equation

d

dt

∫
φ(x, σ) dft(x, σ) =

∫
E[φ(x′, σ)− φ(x, σ)] dft(x, σ)dft(x∗, σ∗).

It is then easily seen that as h → 0 this equation is well-approximated, at least

formally, by the transport equation

∂tft + ∂x

((∫
Ψσ∗(x− x∗) dft(x∗, σ∗)

)
ft

)
= 0.

which reduces to (1.3) when there is only one possible value of σ. For instance if there

are only a finite number of positive values for σ, namely σ = 0 and σ1, .., σN > 0,

then we can write ft as

ft = α0f
0
t +

N∑

i=1

αNf
i
t

where α0, α1, .., αN ∈ [0, 1] are the proportion of agents with variance σ = 0, σ = σ1,

.., σ = σN , and f0, . . . , fN are the distribution of x in the subpopulations with

σ = 0, σ = σ1, .., σ = σN respectively. We then obtain the Boltzmann equation

d

dt

∫
φ(x) df it (x) =

N∑

j=0

αi

∫
E[φ(x′)− φ(x)] df it (x)df jt (x∗)

and its approximation

∂tf
i
t + ∂x

((∑

j

αj

∫
Ψj(x− x∗) df jt (x∗)

)
f it

)
= 0

The case of heterogeneous agents with different rates of persuasion and convic-

tion will be studied in a future work.
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