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Abstract

Let Zνt,z be a R
d-valued jump diffusion controlled by ν with initial condition Zνt,z(t) = z. The

aim of this paper is to characterize the set V (t) of initial conditions z such that Zνt,z can
be driven into a given target at a given time by proving that the function u(, z) = 1 − 1V (t)

satisfies, in the viscosity sense, the equation (2) below. As an application, we study the problem
of hedging in a financial market with a large investor.

1 Introduction and statement of the results

Let Zνt,z be a R
d-valued process controlled by ν with initial condition Zνt,z(t) = z. Given an

horizon time T > 0, an initial time t ≥ 0 and a target C ⊂ R
d, the general stochastic target

problem consists in finding the set V (t) of initial condition z such that there exists a control
process ν, belonging to a well-defined set of admissible controls, for which Zνt,z(T ) ∈ C. The
study of the set V (t) is usually carried out by proving that the characteristic function u(., z)
of its complement, i.e u(t, z) = 1−1V (t)(z), satisfies a partial differential equation (only in the
viscosity sense since u is not even continuous).

Motivated by applications in finance, namely the super-replication problem, stochastic target
problems were first considered by H.M. Soner and N. Touzi [13], [14] assuming the controlled
process Zνt,z follows a diffusion. Their proof relies on a direct dynamic programming principle
(see theorem 3 below) that enables them to derive an equation for u similar to equation (2)
below. Their result was then extended to the jump diffusion case by B. Bouchard [6] assuming
the target is the epigraph of some function. The purpose of this paper is to extend both results
to the jump diffusion case with an arbitrary target. Our proof follows the line of [13] by using
tricks introduced by Bouchard to deal with jump process. The result obtained is then applied
to a financial market with a large trader i.e. a financial market where the price of the risky
asset depends on the strategy of some trader, a case that cannot be covered by Bouchard’
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result and that seems difficult to handle by forward-backward SDE or duality tecnics as was
done up to now (see Cvitanic-Ma [10] or Bank-Baum [2]).

We now describe the model. Let T > 0 be a finite time horizon, C ⊂ R
d a borel subset

of R
d (the ”target”), Σ a compact measurable space, called the mark space, and v(dt, dσ) =

(

v1(dt, dσ), . . . , vd(dt, dσ)
)

be a vector of d independant integer-valued Σ-marked right conti-
nuous point processes defined on a complete probability space (Ω,F , P ) (see Bremaud [7] for a
detailed account on point-process). Let W = (Wt) be a R

d-valued standard Brownian motion
defined on (Ω,F , P ) such that W and v are independant. We denote by F = (Ft)0≤t≤T the P -
completed filtration generated byW and v(., dσ). We further assume that F0 is trivial and that
v(dt, dσ) has a predictable (P,F)-intensity kernel of the form λ(dσ)dt satisfying

∫

Σ λ(dσ) <∞
(this assumption could probably be weaken by assuming that λ(dσ) is a σ-finite measure such
that

∫

Σ(1 ∧ |σ|2)λ(dσ) < ∞, see [8]). We then denote by ṽ(dt, dσ) = v(dt, dσ) − λ(dσ)dt the
associated compensated measure. Since P [v([0, T ] × (Σ − supp λ)) > 0] = 0, we can also
assume that supp λ = Σ. Eventually, we let U be a compact subset of R

d and denote by U the
set of all F-predictable process ν = (νt)0≤t≤T valued in U ; U is the set of admissible control.
Given a control process ν ∈ U and initial condition (t, z) ∈ [0, T ]×R

d, we define the controlled
process Zνt,z as the solution on [t, T ] of the following stochastic differential equation:

{

dZ(s) = µ (s, Z(s), νs) ds+ α (s, Z(s), νs) dWs +
∫

Σ
β (s, Z(s−), νs, σ) v(ds, dσ)

Z(t) = z
(1)

where µ : [0, T ]× R
d × U → R

d, α : [0, T ] × R
d × U → Md(R) (where Md(R) is the set d× d

real matrices) and β : [0, T ]×R
d ×U ×Σ → R

d are assumed to be continuous with respect to
(s, ν, σ), lipschitz in t, lipschitz and linearly growing in z uniformly in (s, ν, σ) and bounded
with respect to σ. This guarantees existence and uniqueness of a strong solution Zνt,z for each
control process ν ∈ U (see Protter [12]).
Let Lν be the Dynkin operator associated to the controlled diffusion part of (1):

Lνφ(t, z) = ∂tφ(t, z) +t ∇φ(t, z).µ(t, z, ν) +
1

2
tr

(

tα(t, z, ν).∇2φ(t, z).α(t, z, ν)
)

,

where ∇φ and ∇2φ are respectively the gradient and the hessian of φ with respect to z. Let
also V (t) be the reachability set defined by

V (t) =
{

z ∈ R
d such that ∃ν ∈ U , Zνt,z(T ) ∈ C P-ps

}

.

We denote by u(t, z) the characteristic function of the complement of V (t):

u(t, z) = 1cV (t) = 1 − 1V (t)(z).

The choice of using the characteristic function of the complement of V (t) and not the one of
V (t) itself is only tecnical.

The main purpose of the paper is to prove that u satisfies in the viscosity sense the following
equation

sup
ν∈N (t,z,∇u(t,z))

min

{

−Lνu(t, z); inf
σ∈Σ

−Gν,σu(t, z)
}

= 0, (2)

where
Gν,σu(t, z) = u (t, z + β(t, z, ν, σ)) − u(t, z)
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is the jump of u at (t, z), and

N (t, z, p) = {ν ∈ U such that tp.α(t, z, ν) = 0}, (t, z, p) ∈ [0, T ]× R
d × R

d.

The set N appears naturally when one wants to control the brownian part of the diffusion.
We make the two following assumptions on N :
(H1) for all (t, z, p) ∈ [0, T ]× R

d × R
d, N (t, z, p) 6= ∅, and

(H2) (existence of a continuous selection) for any (t0, z0, p0) ∈ [0, T ] × R
d × R

d and any
ν0 ∈ N (t0, z0, p0), there exists a continuous function ν̂ : [0, T ] × R

d × R
d → U locally

lipschitz on {(t, z, p), p 6= 0} satisfying ν̂(t0, z0, p0) = ν0 and ν̂(t, z, p) ∈ N (t, z, p) for all
(t, z, p) ∈ [0, T ]× R

d × R
d.

Our result is the following:

Theorem 1. If N satisfies (H1) and (H2), then u satisfies (2) in the viscosity sense in
(0, T )×R

d, i.e. the upper- and lower-semicontinuous envelopes u∗ and u∗ of u are respectively
sub- and supersolution of (2) in the viscosity sense in (0, T ) × R

d.

We refer to Crandall-Ishii-Lions [9] or Barles [3] for the notion of viscosity solutions.

We now turn our attention to the terminal conditions satisfied by u. According to the definition
of V (T ), we obviously have u(T, z) = 1cC(z). However, u may be discontinuous at time T and
we are thus led to introduce the functions G,G : R

d → {0, 1} defined by

G(z) = lim inf
t↑T, z̃→z

u(t, z̃) and G(z) = lim sup
t↑T, z̃→z

u(t, z̃).

Given φ : [0, T ]× R
d → R

d, let Mφ be defined by

Mφ(t, z) = sup
ν∈N (t,z,∇φ(t,z))

inf
σ∈Σ

−Gν,σφ(t, z).

The result is then the following:

Theorem 2. G is a viscosity supersolution of

min {φ− 1cC ,Mφ(T, z)} = 0, (3)

G is a viscosity subsolution of

min {φ− 1cC ,Mφ(T, z)} = 0. (4)

Remark 1.1. 1cC = (1cC)∗ and 1cC = (1cC)∗.

The following section gives an application of these theorems to the hedging problem in a
financial market with a large investor. Sections 2 and 3 are devoted to the proof of theorem 1
and 2 respectively.

2 Application to a large investor problem

In this section, we apply theorems 1 and 2 to a large investor problem. We consider a financial
market consisting of one bank account and one risky asset and assume the existence of a large
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investor i.e. a trader whose trading strategy ν(t) influences significatively the evolution of the
price process S(t) of the risky asset (but not the price of the bank account). We indeed assume
that S(t) follows a diffusion with jump whose coefficients not only depend on (t, S(t)) but also
on the strategy ν(t) of the large investor:

dS(t)

S(t)
= µ(t, S(t), ν(t))dt + α(t, S(t), ν(t))dW (t) + β(t, S(t−), ν(t))v(dt), (5)

where µ, α, and β are as in equation (1). We moreover assume that β > −1, which implies, in
view of the properties of the exponential (see Protter [12]), that S(t) > 0 as soon as S(0) > 0.
Up to discounting, we can assume that the price of the bank account is constant equal to 1.
The dynamic of the wealth process X(t) of the large investor is then given by

dX(t)

X(t)
= ν(t)

dS(t)

S(t)
, (6)

where ν(t) ∈ [−l, u], l, u > 0, denotes the proportion of his wealth the large investor invests in
the risky asset. We assume, as in the previous section, that the process (ν(t)) is predictable
with respect to the augmented filtration generated by (W (t))0≤t≤T and v(dt, dσ). We denote
by Sνt,s andXν

t,s,x the solution of (5) and (6) respectively such that Sνt,s(t) = s andXν
t,s,x(t) = x.

Given a contingent claim whose maturity price may depend on S(t) and thus on the behaviour
of the large investor, the problem for him is to find the set V (t) of initial values (s, t) such
that he is able to hedge or super-replicate the claim at the maturity date. Such problems of
hedging and super-replication in financial market with a large investor were investigated by
Cvitanic-Ma [10] in the case of a diffusion by the study of forward-backward SDE, and by
Bank-Baum [2] in the general case by means of duality technics. We refer more generally to
Platen-Schweizer [11] for the study of the feedback effects of hedging strategy over the price
of the underlying asset.

We apply here the results stated above to solve these problems. Given a target C ⊂ R
2 (e.g.

the epigraph of a function g : R → R) and a horizon time T > 0 (e.g. the maturity date of
some claim of price g(Sνt,s(T )) the large investor wants to hedge), we consider the reachability
set V (t) defined by

V (t) =
{

(s, x) ∈ R
2 s.t. (Sνt,s(T ), Xν

t,s,x(T )) ∈ C for some strategy ν
}

,

and the function u(t, (s, x)) = 1 − 1V (t)(s, x). We also define as previously

Gν,σu(t, (s, x)) = u (t, s+ sβ(t, s, ν, σ), x+ xνβ(t, s, ν, σ)) − u(t, (s, x)),

N (t, (s, x), p) = {ν ∈ [−l, u] s.t. (sps + xνpx)α(t, (s, x), ν) = 0}, p = (ps, px) ∈ R
2,

and for φ ∈ C2
(

[0, T ]× R
2
)

,

Lνφ(t, (s, x)) = ∂tφ+ (s∂sφ+ xν∂xφ)µ

+
1

2
α2(s2∂2

ssφ+ x2ν2∂2
xxφ+ 2sxν∂2

xsφ))(t, (s, x), ν).

Concerning the definition of Lν , just remark that the brownian motion appearing in (5) and
(6) are identic and thus are correlated. According to theorem 1, u is then a viscosity solution
of

sup
ν∈N (t,(s,x),∇u(t,(s,x)))

min

{

−Lνu(t, (s, x)); inf
σ∈Σ

−Gν,σu(t, (s, x))
}

= 0 (7)

satisfying the terminal conditions given by theorem 2.
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3 Proof of theorem 1

The proof of theorem 1 relies mainly on the following direct dynamic programming principle
proved by Soner-Touzi [13, proposition 6.1]:

Theorem 3. Let t ∈ [0, T ]. Then for any stopping time θ valued in [t, T ],

V (t) =
{

z ∈ R
d such that ∃ν ∈ U , Zνt,z(θ) ∈ V (θ) a.s.

}

.

We also quote two lemmas which will be used in the proof of theorem 1. Their proofs rely on
standard technics and can be found in Bouchard [6, lemmas 15, 16]. The first one is

Lemma 3.1. Fix initial condition (t, z) ∈ [0, T ] × R
d and a sequence (νn) ⊂ U of admissible

controls. Then, for any sequence (tn, t̃n, zn) ⊂ [0, T ] × [0, T ] × R
d such that tn ≤ t̃nand

(tn, t̃n, zn) → (t, t, z), we have

sup
tn≤s≤t̃n

∣

∣Zνn

tn,zn
(s) − z

∣

∣ → 0 in L2.

The second one states as follow:

Lemma 3.2. Let ψ : [0, T ] × R
d × U × Σ → R be locally lipschitz in (t, z) uniformly in

(ν, σ) ∈ U × Σ. Then for any sequence (tn, zn, hn) → (t0, z0, 0) and (νn) ⊂ U ,

1

hn

∫ tn+hn

tn

∫

Σ

∣

∣ψ(s, Zνn

zn,tn
(s), νn(s), σ) − ψ(t0, z0, νn(s), σ)

∣

∣ λ(dσ)ds → 0

a.s. up to a subsequence.

3.1 Proof of the viscosity supersolution property

We need to prove that the lower-semicontinuous envelope u∗ of u is a viscosity supersolution
of (2). We thus fix a function φ ∈ C∞([0, T ],Rd) and a point (t0, z0) ∈ (0, T )× R

d such that

min
[0,T ]×Rd

(u∗ − φ) = (u∗ − φ)(t0, z0) = 0,

and are going to prove that

sup
ν∈N (t0,z0,∇φ(t0,z0))

min

{

−Lνφ(t0, z0); inf
σ∈Σ

−Gν,σφ(t0, z0)

}

≥ 0. (8)

Let us first assume that u∗(t0, z0) = 1. Then φ(t0, z0) = 1. Since φ ≤ u∗ ≤ 1 on [0, T ] × R
d,

we deduce that φ has a maximum at (t0, z0) and thus that ∂tφ(t0, z0) = ∇φ(t0, z0) = 0 and
∇2φ(t0, z0) ≤ 0. Therefore −Lνφ(t0, z0) ≥ 0 for any ν ∈ U . On the other hand, ν ∈ U and
σ ∈ Σ being given, one has

−Gν,σφ(t0, z0) = φ(t0, z0) − φ(t0, z0 + β(t0, z0, ν, σ))

= 1 − φ(t0, z0 + β(t0, z0, ν, σ))

≥ 0.

Thus infσ∈Σ −Gν,σφ(t0, z0) ≥ 0 for any ν ∈ U . This proves (8). We are thus left with the case
u∗(t0, z0) = 0. We split the proof of this case into several steps.
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Step 1. Let (tn, zn) ⊂ (0, T ) × R
d be such that (tn, zn) → (t0, z0) and u(tn, zn) = 0 for any n

i.e. zn ∈ V (tn). Let also θn be a [tn, T ]-valued stopping time that we shall specify later. The
dynamic programming principle (cf theorem 3) gives the existence for any n of an admissible
control νn ∈ U such that Zn(θn) ∈ V (θn) i.e. u (θn, Zn(θn)) = 0 for any n. We let Zn = Zνn

tn,zn

and βn = φ(tn, zn). Itô’s lemma gives

0 ≤− βn −
∫ θn

tn

Lνnφ(s, Zn(s))dx −
∫ θn

tn

t∇φ(s, Zn(s)).α(s, Zn(s), νn(s)) dWs

−
∫ θn

tn

∫

Σ

Gνn(s),σφ(s, Zn(s
−)) v(ds, dσ).

(9)

We now specify θn. Let η ∈ (0, T − t0) and γ be the largest jump of Zn in the ball B(t0,z0)(η) ⊂
R
d+1:

γ = sup
(t,z,ν,σ)∈B(t0 ,z0)(η)×U×Σ

|β(t, z, ν, σ)|.

The assumptions made on β implies that γ is finite. Let τn be the first exit time of (s, Zn(s))
of the ball B(t0,z0)(η + 2γ):

τn = inf
{

s ≥ tn such that (s, Zn(s)) 6∈ B(t0,z0)(η + 2γ)
}

.

Then τn > tn by definition of γ and lemma 3.1 gives

lim inf
n→+∞

(τn − tn) > 0 ps. (10)

We define a sequence of positive real hn → 0 such that βn

hn
→ 0 by:

(i) if the set {n ∈ N;βn = 0} is finite then, up to a subsequence, we can assume that βn 6= 0
for any n and we let hn =

√

|βn|;
(ii) if not, we can assume, up to a subsequence, that βn = 0 for any n and we then define
hn = 1/n.
Let θn = τn ∧ (tn + hn). Thanks to (10), θn = tn + hn for n large enough.

Step 2. We now define a family of equivalent probability measures (Qkn)n≥0,k≥1 which will be
used in the next step. For (ν, σ) ∈ U × Σ, let

χ(ν, σ) = 1{−Gν,σφ(t0,z0)<0}.

Given integers n ≥ 0 and k ≥ 1, we define as in Bouchard [6] a probability measure Qkn on
(Ω,F) equivalent to P by Qkn = Mk

n(T )P where

Mk
n(t) = E(k

∫ t∧θn

tn

t∇φ(s, Zn(s), νn(s)).α(s, Zn(s), νn(s)) dWs

+

∫

Σ

(kχ(νn(s), σ) + k−1 − 1)ṽ(ds, dσ)),

and E denotes the Doleans-Dade exponential (see Protter [12]). Girsanov theorem (cf Bremaud
[7]) then asserts that, under Qkn, v(dt×dσ) has (kχ(νn(t), σ)+k−1)λ(dσ)dt as intensity kernel,
and that

∫ .∧θn

tn

dWs − kt∇φ(s, Zn(s), νn(s)).α(s, Zn(s), νn(s))ds
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is a stopped brownian motion. Moreover (see Bouchard [6]),

lim
n→+∞

Mk
n(T ) → 1 in L2(P ) (11)

for any k. We denote by Ekn the Ftn -conditionnal expectation operator under Qkn.

Etape 3. Applying Ekn to (9) yields

0 ≤− βn − Ekn

∫ θn

tn

Lνnφ(s, Zn(s))dx− kEkn

∫ θn

tn

|t∇φ(s, Zn(s)).α(s, Zn(s), νn(s))|2ds

− Ekn

∫ θn

tn

∫

Σ

(

kχ(νn(s), σ) + k−1
)

Gνn(s),σφ(s, Zn(s−)) λ(dσ)ds.

Dividing the inequality by hn and passing to the limit n → +∞ using (11), the dominated
convergence theorem and the right-continuity of the filtration, we get (see Soner-Touzi [13] for
details),

0 ≤ lim inf
n→+∞

{

−h−1
n

∫ θn

tn

Lνnφ(s, Zn(s))dx − kh−1
n

∫ θn

tn

|t∇φ(s, Zn(s)).α(s, Zn(s), νn(s))|2ds

− h−1
n

∫ θn

tn

∫

Σ

(

kχ(νn(s), σ) + k−1
)

Gνn(s),σφ(s, Zn(s−)) λ(dσ)ds
}

.

We deduce from this inequality and lemma 3.2 that

0 ≤ lim inf
n→+∞

h−1
n

∫ tn+hn

tn

Hk(t0, z0, νn(s))ds, (12)

where

Hk(t0, z0, ν) = − Lνφ(t0, z0) − k|t∇φ(t0, z0).α(t0, z0, ν)|2

−
∫

Σ

(

kχ(ν, σ) + k−1
)

Gν,σφ(t0, z0)λ(dσ).

Therefore
sup
ν∈U

Hk(t0, z0, ν) ≥ 0.

According to the compacity of U and the continuity of Hk in ν, this sup is attained for each
k by some νk ∈ U :

0 ≤ sup
ν∈U

Hk(t0, z0, ν) = Hk(t0, z0, νk).

We can moreover assume that, up to a subsequence, νk → ν̂ ∈ U . Passing to the limit in the
previous inequality then gives

−Lν̂φ(t0, z0) ≥ 0,

t∇φ(t0, z0).α(t0, z0, ν̂) = 0 i.e ν̂ ∈ N (t0, z0,∇φ(t0, z0)), and

−Gν̂,σφ(t0, z0) ≥ 0 λ(dσ) − ps.

The function σ → −φ(t0, z0 +β(t0, z0, ν̂, σ)) being continuous and Σ = supp λ, this proves (8).
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3.2 Proof of the viscosity subsolution property

Let φ ∈ C∞(Rd+1) and (t0, z0) ∈ (0, T ) × R
d be such that (t0, z0) is a strict maximum point

of u∗ − φ with (u∗ − φ)(t0, z0) = 0. We need to prove that

sup
ν∈N (t0,z0,∇φ(t0,z0))

min

{

−Lνφ(t0, z0); inf
σ∈Σ

−Gν,σφ(t0, z0)

}

≤ 0. (13)

Let us first assume that u∗(t0, z0) = 0. Then u ≡ 0 in a neighborhood V of (t0, z0) and thus
φ ≥ 0 in V . Since φ(t0, z0) = u∗(t0, z0) = 0, (t0, z0) is a local minimum point of φ and therefore
∂tφ(t0, z0) = ∇φ(t0, z0) = 0 and ∇2φ(t0, z0) ≥ 0. Hence −Lνφ(t0, z0) ≤ 0 for any ν ∈ U . This
proves (13).
We now assume that u∗(t0, z0) = 1 and ∇φ(t0, z0) 6= 0, and prove (13) by contradiction. We
thus suppose that there exists ν0 ∈ N (t0, z0,∇φ(t0, z0)) such that

−Lν0φ(t0, z0) > 0, and

inf
σ∈Σ

−Gν0,σφ(t0, z0) > 0.

Since ∇φ(t, z) 6= 0 in a neighborhood of (t0, z0) and according to assumption (H2), the function
ν̃(t, z) := ν̂(t, z,∇φ(t, z)), where ν̂ is given by (H2), is continuous in a neighborhood of (t0, z0).
There thus exists δ > 0 such that

∇φ(t, z) 6= 0,

− Lν̃(t,z)φ(t, z) > 0, and (14)

inf
σ∈Σ

−Gν̃(t,z),σφ(t, z) > 0 (15)

in Uδ := B̄z0(δ)× [t0, t0 + δ]. Independently, since u∗ − φ has a strict maximum at (t0, z0), we
can also assume that there exists β > 0 such that

u∗(t, z) < φ(t, z) − β (16)

on the parabolic boundary ∂pUδ := (∂Bz0(δ) × [t0, t0 + δ)) ∪ (B̄z0(δ) × {t0 + δ}) of Uδ. Let
(tn, zn) ∈ [0, T ] × R

d be such that (tn, zn) → (t0, z0) and u(tn, zn) → u∗(t0, z0). Since
∇φ(t, z) 6= 0 in a neighborhood of (t0, z0), ν̃ is lipschitz in this neighborhood. Therefore,
there exists a process Zn solution of
{

dZn(s) = µ (s, Zn(s), νn(s)) ds+ α (s, Zn(s), νn(s)) dWs +
∫

Σ
β (s, Zn(s), νn(s), σ) v(ds, dσ)

Zn(tn) = zn

for |s− tn| small, and where νn(s) := ν̃(s, Zn(s)). We define stopping times θjn and τn by

θjn = T ∧ inf {s > tn,∆Zn(s) 6= 0} ,

τn = T ∧ inf {s > tn, (s, Zn(s)) 6∈ Uδ} , and

θn = θjn ∧ τn,
i.e. θjn are τn respectively the first jump time and exit time of Uδ of Zn. Let Jn =

{

τn < θjn
}

and denote by Zcn the continuous part of Zn. On Jn, Zn = Zcn is continuous on [tn, τn] = [tn, θn]
and thus (θn, Zn(θn)) ∈ ∂pUδ. According to (16), we get

u (θn, Zn(θn)) ≤ φ (θn, Zn(θn)) − β on Jn. (17)
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On the other hand, on cJn, we have by Itô’s lemma

φ(θjn, Zn(θ
j
n)) = φ(tn, zn) +

∫ θj−
n

tn

Lνnφ(s, Zn(s))ds

+

∫ θj−
n

tn

t∇φ(s, Zn(s)).α(s, Zn(s), νn(s))dWs

+

∫

Σ

Gνn(θj−
n ),σφ

(

θj−n , Zn(θ
j−
n )

)

v({θjn}, dσ).

Since θjn ≤ τn, (s, Zn(s)) ∈ Uδ for any tn ≤ s ≤ θj−n and thus, by (14), (15) and recalling that
νn(s) ∈ N (s, Zn(s),∇φ(s, Zn(s))), there exists ε > 0 such that

φ(θjn, Zn(θ
j
n)) ≤ φ(tn, zn) − ε on cJn. (18)

We deduce from (17) and (18) the existence of η > 0 such that for any n,

u(θn, Zn(θn)) ≤ φ(θn, Zn(θn)) ≤ φ(tn, zn) − η a.e.

Since φ(tn, zn) = φ(t0, z0) + o(1) = 1 + o(1), we get for n large enough that u(θn, Zn(θn)) = 0
i.e. u(tn, zn) = 0 according to the dynamic programming principle. Hence

1 = u∗(t0, z0) = lim
n→+∞

u(tn, zn) = 0

which is the desired contradiction.
We eventually assume that u∗(t0, z0) = 1 and ∇φ(t0, z0) = 0. This time, ν̂ being not a
priori locally lipschitz, the process Zn defined above may not exist and the previous method
doesn’t work. We treat this case following Soner-Touzi [13] by proving that if (13) is false,
then ∇2φ(t0, z0) has a negative eigenvalue which allows us to construct a perturbation φǫ of
φ for which the previous case applies. Passing then to the limit gives the conclusion. We only
sketch the proof of the existence of a negative eigenvalue for ∇2φ(t0, z0) and refer the reader
to Soner-Touzi [13] for more details.
Assuming (13) false, we get ν0 ∈ N (t0, z0,∇φ(t0, z0)) = N (t0, z0, 0) such that

− Lν0φ(t0, z0) > 0, and (19)

inf
σ∈Σ

−Gν0,σφ(t0, z0) > 0.

According to (H2), there exists a continuous map ν̂ : [0, T ]× R
d × R

d → U such that

d−t p.µ(t, z, ν̂(t, z, p)) − 1

2
tr

(

tα(t, z, ν̂(t, z, p)).B.α(t, z, ν̂(t, z, p))
)

> 0, (20)

inf
σ∈Σ

−Gν̃(t,z,p),σφ(t, z) > 0 (21)

for (d, t, z, p, B) in a neighborhood of (−∂tφ(t0, z0), t0, z0, 0,∇2φ(t0, z0)). Let us assume by
contradiction that, in some orthonormal basis of R

n,

∇2φ(t0, z0) = diag(λ1, . . . , λn), with λi ≥ 0 ∀ i : 1 . . . n. (22)
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Choose for each i a real mi > λi/2 and consider the function

Ψ(z) =
∑

i

mi(z
i − zi0)

2, z = (z1, . . . , zn) ∈ R
n.

Given δ > 0, we define Bδ = {z ∈ R
n s.t. Ψ(z) < δ} and denote by B̄δ the closure of Bδ. We

are going to prove that u ≡ 0 in Q = (t0, t0 + δ) × (Bδ − Bǫ). Since ǫ > 0 is arbitrary, this
will imply u∗(t0, z0) = 0, which is a contradiction. We thus fix (t̃, z̃) ∈ Q such that Ψ(z̃) ≥ 4ǫ,
and consider ν̃(t, z) = ν̂(t, z,∇Ψ(t, z)), (t, z) ∈ Q. Since ∇Ψ(z) 6= 0 in Bδ − Bǫ, ν̃ is locally
lipshitz in Q and there thus exists Z̃ = Z ν̃

t̃,z̃
solution of (1) with initial conditions Z̃(t̃) = z̃.

We can assume that Z̃ exists on [t̃, t0 + δ]. Let τ , θj and θ be the stopping times defined by

τ = inf
{

t ≥ t̃ s.t. (t, Z̃(t)) 6∈ Q
}

,

θj = inf
{

t ≥ t̃ s.t. ∆Z̃(t) 6= 0
}

and

θ = τ ∧ θj .
The same proof as in Soner-Touzi [13] gives that u∗(θ, Z̃(θ)) = 0 a.e. on {τ < θj} for ǫ > 0
small enough. In that case, Z̃(τ) belongs to the parabolic boundary of Q. The result then
follows by using two estimates. The first one is based on the remark that (19) and (22) imply
the existence of b > 0 such that ∂tφ(t0, z0) < −b. Taylor’ formula then gives

φ(t, z) ≤ φ̃(t, z) := 1 − b(t− t0) + Ψ(z)

on (t0, t0 + δ] × B̄δ with some small δ > 0. The other estimate is a minoration of
√

Ψ(Z̃(t)).

On the other hand, on {θj ≤ τ}, Itô’s lemma yields

u∗(θj , Z̃(θj)) ≤ φ(θj , Z̃(θj))

= φ(t̃, z̃) +

∫ θj−

t̃

Lν̃(t)φ(t, Z̃(t))dt

+

∫

Σ

Gν̃(θj−),σφ
(

θj−, Z̃(θj−)
)

v({θj}, dσ).

For t ∈ [t̃, θj−] ⊂ [t̃, τ), (t, Z̃(t)) ∈ Q. Therefore, according to (20) and (21), and up to reduce
δ, there exists some η > 0 such that

u∗(θj , Z̃(θj)) ≤ φ(t̃, z̃) − η.

Since φ(t̃, z̃) → 1 as ǫ → 0 and η is independent of ǫ, we deduce that, for ǫ small enough,
u∗(θj , Z̃(θj)) = 0 a.e. on {θj ≤ τ}. Hence, for small ǫ, u∗(θ, Z̃(θ)) = 0 a.e., and thus, by the
dynamic programmming principle, u∗(t̃, z̃) = 0. As explained above, this ends the proof of the
subsolution property.

4 Proof of theorem 2

4.1 Terminal conditions for G

We first prove that G ≥ 1cC . Let z0 ∈ R
d be such that G(z0) = 0. Consider a sequence

(tn, zn) → (T, z0) satisfying, for any n, u(tn, zn) = 0 i.e. zn ∈ V (tn). There thus exists νn ∈ U
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such that Zνn

tn,zn
(T ) ∈ C a.e. for any n. We can show as in the proof of lemme 3.1 that

lim
n→+∞

Zνn

tn,zn
(T ) = z0

a.e. up to a subsequence. Hence z0 ∈ C i.e. 1cC(z0) = 0.
Let φ ∈ C2(Rd) and z0 ∈ R

d be such that

(G− φ)(z0) = min
z∈Rd

(G− φ)(z) = 0.

We extend φ to [0, T ] × R
d by φ(t, z) = φ(z). Let (sn, ξn) be a sequence in (0, T ) × R

d such
that

(sn, ξn) → (T, z0) and u∗(sn, ξn) → G(z0),

and φkn be the function defined on (sn, T ] × R
d for n ∈ N, k > 0, by

φkn(t, z) = φ(z) − k

2
|z − z0|2 + k

T − t

T − sn
.

Since β is bounded in σ and continuous in (t, z, ν) with U compact, we see that, for a given
constant C > 0,

η := sup {|β(t, z, ν, σ)|, σ ∈ Σ, ν ∈ U, |t− t0| + |z − z0| ≤ C} <∞.

Let B := Bz0(C + η) and B̄ denote the closure of B. We have

lim
k→0

lim sup
n→+∞

sup
(t,z)∈[sn,T ]×B̄

|φkn(t, z) − φ(z)| = 0, and (23)

lim
k→0

lim sup
n→+∞

sup
(t,z)∈[sn,T ]×B̄

|∇φkn(t, z) −∇φ(z)| = 0. (24)

Let (tkn, z
k
n) be a minimum point of u∗ − φkn on [sn, T ] × B̄. We can prove as in Bouchard [6]

that
for all k > 0, (tkn, z

k
n) → (T, z0), (25)

for all k > 0, tkn < T for sufficiently large n, (26)

lim
k→0

lim sup
n→+∞

u∗(t
k
n, z

k
n) → G(x0). (27)

Thanks to (25), we can assume that xkn ∈ B for all n, k. By (26), theorem 1 then gives

Mφk
n
(tkn, z

k
n) ≥ 0. (28)

For ψ ∈ C([0, T ] × R
d), define

Fψ(t, z, ν) = inf
σ∈Σ

−Gν,σψ(t, z), (t, z, ν) ∈ [0, T ]× R
d × U.

By Berge maximum theorem (see Berge [4], Aubin-Ekeland [1] or Border [5]), Fψ is continuous
on [0, T ] × R

d × U . Fix ǫ > 0. By (28), there exists νkn(ǫ) ∈ N (tkn, z
k
n,∇φkn(tkn, z

k
n)) ⊂ U such

that
Fφkn(tkn, z

k
n, ν

k
n(ǫ)) ≥ −ǫ. (29)
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Since U is compact, we can assume that

ν(ǫ) := lim
k→0

lim
n→+∞

νkn(ǫ) ∈ U. (30)

Moreover, by (24) and (25),
ν(ǫ) ∈ N (T, z0,∇φ(T, z0)). (31)

We eventually have according to (23) that, for a given δ > 0, there exist k0 small and n0 large
such that for k ≤ k0 and n ≥ n0,

∣

∣Fφkn(t, z, ν) −Fφ(t, z, ν)
∣

∣ ≤ δ (32)

for any ν ∈ U and (t, z) ∈ [sn, T ]× B̄. Since (tkn, z
k
n) ∈ [sn, T ] × B̄, we deduce from (25), (29)

- (32) and the continuity of Fφ that

Mφ(T, z0) ≥ Fφ(T, z0, ν(ǫ)) ≥ −ǫ

for any ǫ > 0. Therefore
Mφ(T, z0) ≥ 0,

what we wanted to prove.

4.2 Terminal conditions for G

Let φ ∈ C2(Rd) and z0 ∈ R
d be such that

(G− φ)(z0) = max
z∈Rd

(G− φ)(z) = 0.

Suppose that (4) does not hold i.e. that there exists ǫ > 0 satisfying

sup
ν∈N (T,z0,∇φ(z0))

inf
σ∈Σ

−Gν,σφ(z0) > ǫ, and (33)

G(z0) = φ(z0) > 1cC(z0). (34)

Consider the map ψ : R × R
d → R defined for η > 0 by

ψη(t, z) = φ(z) + η|z − z0|2 +
√
T − t.

Then limt↑T ∂tψη(t, z) = −∞ uniformly in η and z. Let C > 0. By continuity of α, µ and φ,

lim
t↑T

Lνψη(t, z) = −∞

uniformly in ν ∈ U , z ∈ B̄z0(C) and η > 0 in a bounded subset of (0,+∞). There thus exists
η > 0 such that

− Lνψη(t, z) > 0 (35)

for any t ∈ (T − η, T ), ν ∈ U , and z ∈ B̄z0(C). Consider a sequence (sn, ξn) ∈ (T −
η, T ) × B̄z0(C) satisfying (sn, ξn) → (T, z0) and u∗(sn, ξn) → G(z0), and denote by (tn, zn) ∈
[sn, T ] × B̄z0(C) a maximum point on [sn, T ] × B̄z0(C) of u∗ − ψη. Using (34), we can show
as in Bouchard [6] that, up to a subsequence,

(tn, zn) → (T, z0), tn < T et u∗(tn, zn) → G(z0). (36)
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Theorem 1 gives for any n that

sup
ν∈N (tn,zn,∇ψη(tn,zn))

min

{

−Lνψη(tn, zn); inf
σ∈Σ

−Gν,σψη(tn, zn)
}

≤ 0.

Then, by (35),
sup

ν∈N (tn,zn,∇ψη(tn,zn))

inf
σ∈Σ

−Gν,σψη(tn, zn) ≤ 0 (37)

for all n. Consider the function Φ : [0, T ]× R
d → R defined by

Φ(t, z) = sup
ν∈N (t,z,∇ψη(t,z))

inf
σ∈Σ

−Gν,σψη(t, z).

Then

Φ(T, z0) = sup
ν∈N (T,z0,∇φ(z0))

inf
σ∈Σ

{

−Gν,σφ(z0) − η|β(T, z0, ν, σ)|2
}

> ǫ− η inf
ν∈N (T,z0,∇φ(z0))

sup
σ∈Σ

|β(T, z0, ν, σ)|2.

Since β is bounded in σ, we can thus assume, up to reduce η, that

Φ(T, z0) >
ǫ

2
. (38)

Independently, U being compact and α being continuous in (t, z, p), the correspondance
(t, z, p) → N (t, z, p) is continuous. Since ∇ψη is continuous, the correspondance (t, z) →
N (t, z,∇ψη(t, z)) is in particular lower semicontinuous. We then deduce from the continuity
of the map (t, z, ν) → infσ∈Σ −Gν,σφη(t, z) and [4] that Φ is lower semicontinuous. Therefore,
by (38),

Φ(t, z) = sup
ν∈N (t,z,∇ψη(t,z))

inf
σ∈Σ

−Gν,σψη(t, z) >
ǫ

4

for all (t, z) close enough to (T, z0). For n large enough, this contradicts (37).
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