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Abstract.5
We present a structured coagulation-fragmentation model which describes the population dynamics of oceanic6

phytoplankton. This model is set in the space of Radon measures equipped with the bounded Lipschitz norm and7
uni�es the study of the discrete and continuous coagulation-fragmentation models. We prove that the model is8
well-posed and show it can reduce down to the classic discrete and continuous coagulation-fragmentation models.9
To understand the interplay between the physical processes of coagulation and fragmentation and the biological10
processes of growth, reproduction, and death, we establish a regularity result for the solutions and use it to show that11
stationary solutions are absolutely continuous under some conditions on model parameters. We present a semi-discrete12
approximation scheme which conserves mass and use it to present numerical simulations for the model.13
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1. Introduction. The discrete coagulation model in the form of a system of di�erential equations17

was �rst introduced by Smoluchowski in his seminal work [54] and was later extended to a continuous18

setting in the form of an integro-di�erential equation by Müller [48]. In [12] Blatz and Tobolsky19

added discrete fragmentation kernels to the literature which were brought into a continuous setting20

by Melzak [47]. In [5] Ackleh and Fitzpartick introduced the coagulation equations in the context of21

size-structured population and the fragmentation equation were added to size-structured models by22

Ackleh in [1]. These models take the form of a nonlinear nonlocal �rst-order hyperbolic di�erential23

equation with a nonlocal boundary condition.24

Coagulation-fragmentation equations have been used in many applications in physics, chemistry25

and biology. In particular, they receive much attention in the study of the population dynamics26

of phytoplankton [1, 4, 5, 10, 14, 35, 36, 52], which is a vital member of the oceanic ecosystem.27

Coagulation-fragmentation equations are useful in this application as phytoplankton populations28

are often modeled as a collection of particles which are held together via an organic glue. Thus,29

particles can either stick together to form a cell of larger size (coagulate) or fracture o� into cells of30

smaller size (fragment). Coagulation-Fragmentation models are often set with either a continuous31

size structure [5, 14, 36] or a discrete size structure [9, 15, 42]. In the case of the continuous models,32

the growth of individual cells through biological means is naturally modeled via a structured partial33

di�erential equation. In this work, we extend this idea by presenting a structured coagulation-34

fragmentation equation in a measure setting with the aim to unify the study of the discrete and35

continuous equations.36
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In this paper, we consider the following structured coagulation-fragmentation equation:37 
∂tµ+ ∂x(g(t, µ)µ) + d(t, µ)µ = K[µ] + F [µ], (t, x) ∈ (0, T )× (0,∞)

g(t, µ)(0)Ddxµ(0) =

∫
R+

β(t, µ)(y)µ(dy), t ∈ [0, T ]

µ(0) ∈M+(R+),

.38

where µ(t) belongs to M+(R+), the set of �nite nonnegative Borel measures on R+ := [0,+∞).39

Here, given a Borel subset A ⊂ R+, µt(A) := µ(t)(A) represents the number of individuals at time40

t of structure (e.g. size, age) x in A, and the functions g and d represent the growth and death41

rate of individuals at time t of structure x, respectively. Likewise, the function β represents the42

reproduction rate of these individuals. More precisely, at time t and distribution µ(t), an individual43

with structure x produces o�spring at rate β(t, µ(t))(x). Finally, Ddxµ(0) denotes the Radon-44

Nikodym derivative of µ(t) with respect to the Lebesgue measure, dx, at the point x = 0. For45

more information about size structured models in a measure setting, we direct the reader to [6, 31].46

Finally, K and F are the coagulation and fragmentation terms respectively that we will precisely47

de�ne later.48

The �rst equation in the above model describes how the number of individuals with structure49

x, µ(t)(x) informally, changes in time t due to the combination of the transport term ∂x(g(t, µ)µ)50

which moves the distribution µ at velocity g, the death rate which removes individuals from the51

system at rate d, the coagulation term K[µ] which glues individuals together and the fragmentation52

term F [µ] which breaks them. The second equation models the in�ow of individuals at the boundary53

due to birth. The third equation simply states the regularity of the initial condition.54

Throughout the literature, there are a variety of assumptions on the coagulation kernel. Com-55

mon assumptions include:the kernel being bounded by some combination of linear functions [9, 32];56

some ratio of kernel and sizes of particles tending to zero [37, 49]; and, the kernel blows up for small57

sizes [18]. Without some additional assumptions on either the kernel or initial condition, the above58

assumptions can cause the formation of particles of in�nite size. This phenomenon is known as59

gelation and has been shown to happen in �nite time. Since gelation is not the focus of this paper,60

we will require more regularity on our coagulation kernel.61

Most studies of coagulation-fragmentation equations focus on the case of binary fragmentation;62

in other words, when particles only fragment into two smaller units (see [44] and the references63

therein, as well as the previously mentioned works). Although the initial work [47] considers the64

more general case of multiple fragmentation, where particles can fragment into more than 2 smaller65

particles, it is di�cult to �nd many results concerning this case. In the setting of density-based equa-66

tions, the authors of [47, 46] work with only an assumption of bounded kernels for both coagulation67

and fragmentation. Meanwhile, the work [39] allows for linear growth in the rate of fragmenta-68

tion, but requires a bound on the coagulation kernel. The case where both the coagulation and69

fragmentation kernels are unbounded is studied in [27, 28].70

In recent years, the space of Radon measures equipped with the bounded Lipschitz norm has71

been used in the study of population dynamics [16, 17, 31, 34]. While many population models72

have been studied intensely in this setting, the study of coagulation-fragmentation equations in this73

space is sparse. Mild measure solutions to a coagulation-di�usion equation have been obtained in74

[49]. The state-space of study was the space of �nite measures with absolutely continuous �rst75

marginal and the model does not include any biological processes (i.e. growth, birth, or death).76

Existence of solutions to a coagulation-fragmentation equation is obtained in [22] via probabilistic77

means. However, authors in [22] only prove existence of a measure solution in the topology of78
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weak convergence and also do not consider any biological processes. The authors in [19] consider79

a growth-fragmentation equation with a multiple fragmentation kernel identical to that studied80

in [27]. They cite well-posedness of their model as a consequence of [17] and do not consider a81

coagulation term. We adopt similar assumptions on our model ingredients, but will prove well-82

posedness using a �xed-point approach presented in [8]. Finally, for a structured model without83

coagulation or fragmentation, [34] proves that solutions are absolutely continuous to the left of84

the zero characteristic curve. Under similar assumptions, we will extend this result to structured85

coagulation-fragmentation equations.86

The layout of the paper is as follows. In section 2, we present notation used throughout the87

paper. In section 3, we reintroduce the model and prove some useful properties of the model88

ingredients and as well as show the model is indeed well-posed. In section 4, we analyze the89

interplay between the biological processes (growth, death and birth) and the physical processes90

(coagulation and fragmentation). In particular, we study their e�ects on the regularity of solutions91

to the structured model. In section 5, we show that the classic density and discrete equations are92

special cases of our model. In section 6, we present a semidiscrete numerical scheme which we93

test against a few examples providing approximate error in the BL-norm and the numerical order.94

Finally, in section 7 we will provide discussion of the results and some concluding remarks.95

2. Preliminaries and Notation. In this section, we will provide some preliminary notation. The96

space of �nite Radon measures over R+ := [0,∞) is denoted by M(R+) . The non-negative cone97

ofM(R+) will be denotedM+(R+). Unless otherwise stated, both of these spaces will always be98

equipped with the Bounded-Lipschitz norm given by99

‖µ‖BL := sup
‖φ‖W1,∞≤1

{∫
R+

φ(x)µ(dx) : φ ∈W 1,∞(R+)

}
.100

Here, W 1,∞(R+) is the usual Sobolev space over R+ with codomain R equipped with the usual101

norm ‖φ‖W 1,∞ := ‖φ‖∞ + ‖φ′‖∞. In the literature, the BL-norm has had a few names such as the102

�at norm [24, 25], the Dudley norm [21, 23], and the Fortet-Mourier norm [26, 40]. Another norm103

commonly associated with measures is the total variation norm given by104

‖ν‖TV = |ν|(R+) = sup
‖f‖∞≤1

{∫
R+

fdν : f ∈ Cc(R+)

}
.105

It should be noted that while over nonnegative measures they are equivalent, the BL-norm and106

TV-norm are di�erent on the space of signed measures. In particular, for µ ∈M(R)107

‖µ‖BL ≤ ‖µ‖TV .108

We refer the reader to [30] and the references therein for more information.109

We say a sequence (µn) of Radon measures is tight if110

lim
x−→∞

sup
n
µn([x,∞)) = 0.111

In M+(R+), we additionally have that the BL-norm metrizes weak convergence. That is (µn)112

converges weakly to µ ∈M+(R+) if for every f ∈ Cb(R+),113 ∫
R+

fd(µn − µ) −→ 0114
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as n −→∞. For more detail, see [31, 29].115

It is often convenient to use the operator notation in place of integration. That is for a function116

f , we say117

(µ, f) :=

∫
R+

f(x)µ(dx).118

Finally, we say the �ow of a Lipschitz vector �eld g(t, x) is a function T gs,t(x) which satis�es119

(2.1)
d

dt
T gs,t(x) = g(t, Ts,t(x)), T gs,s(x) = x.120

3. Structured Coagulation-Fragmentation Equation. In this section, we establish existence121

and uniqueness in the space of Radon measures for the structured coagulation-fragmentation equa-122

tion given by123

(3.1)


∂tµ+ ∂x(g(t, µ)µ) + d(t, µ)µ = K[µ] + F [µ], (t, x) ∈ (0, T )× (0,∞)

g(t, µ)(0)Ddxµ(0) =

∫
R+

β(t, µ)(y)µ(dy), t ∈ [0, T ]

µ(0) ∈M+(R+),

.124

where125

µ : [0, T ] −→M+(R+),

g, d, β : [0, T ]×M+(R+) −→W 1,∞(R+),

K :M+(R+) −→M(R+),

F :M+(R+) −→M(R+).

(3.2)126

The model functions g, d, and β are nonnegative and represent the growth, death, and birth
functions, respectively. They are assumed to be in�uenced by both time, t, and the solution to the
population model, µ(t). In applications (e.g., see [2, 3, 17, 20]), it is common to choose β, g and d
to depend on a weighted mean of the population in the following form:

β(t, µ)(x) = B

(
t, x,

∫
R+

KB(y)dµ(y)

)
and similar expressions for g and d, for given maps B : [0, T ]×R+×R+ → R+ and KB : R+ → R+.127

Common physically motivated model functions utilize Beverton�Holt type [11] or Ricker type [51]128

nonlinearities with respect to the weighted mean of the population and of a Von Bertalan�y type129

[50] model with respect to structure x.130

The coagulation term is the measure given by131

K[µ](·) =
1

2

∫
R+

∫
R+

κ(y, y′)δy+y′(·)µ(dy′)µ(dy)−
∫
R+

κ(y, x)µ(dy)µ

=: K+[µ]−K−[µ],

(3.3)132

where κ(x, y) represents the rate at which individuals of size x coalesce with individuals of size y.133

The �rst term in (3.3), K+, represents the in�ow of individuals due to coagulation. The second134

term in (3.3), K− represents the number of individuals lost due to coagulation. Notice that K±[µ]135

are measures which can be described in a distribution sense by136

(3.4) (K+[µ], φ) =
1

2

∫
R+

∫
R+

κ(y, x)φ(x+ y)µ(dx)µ(dy).137
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and138

(3.5) (K−[µ], φ) =

∫
R+

∫
R+

κ(y, x)φ(x)µ(dy)µ(dx).139

These terms are generalizations of the coagulation terms of the continuous coagulation equation140

given by141

(3.6) K+(u)(x) =
1

2

∫ x

0
κ(y, x− y)u(x− y)u(y)dy, K−(u)(x) = u(x)

∫ ∞
0

κ(y, x)u(y)dy.142

Indeed, multiplying K+(u) by a test function φ and integrating we see that143

1

2

∫ ∞
0

∫ x

0
κ(y, x− y)u(x− y)u(y)dyφ(x) dx =

1

2

∫ ∞
0

∫ ∞
y

κ(y, x− y)φ(x)u(x− y)dxu(y)dy144

=
1

2

∫ ∞
0

∫ ∞
0

κ(y, x)φ(x+ y)u(x)dxu(y)dy.145

which is (K+[µ], φ) for µ = u(y)dy. An analoguous reasonning yields K−. Notice that if κ is146

symmetric, i.e. κ(x, y) = κ(y, x), then147

(3.7) (K[µ], φ) =
1

2

∫
R+

∫
R+

κ(y, x)[φ(x+ y)− φ(x)− φ(y)]µ(dx)µ(dy).148

Notice by formally taking µ =
∑

i∈Nmiδxi we can arrive at the traditional Smoluchowski equations.149

The fragmentation term is given by150

(3.8) F [µ](·) =

∫
R+

b(y, ·)a(y)µ(dy)− aµ =: F+[µ]− F−[µ].151

Here, a(y) represents the global fragmentation rate of individuals of size y and b(y, ·) is a measure
supported on [0, y] such that b(y,A) represents the probability a particle of size y fragments to a
particle with size in the Borel set A. The positive term, F+, represents the in�ow of individuals
due to fragmentation, and the negative term, F−, represents the number of individuals lost due to
fragmentation. Similar to the coagulation terms, F±[µ] are measures given explicitely by

(F+[µ], φ) =

∫
R+

(b(y, ·), φ)a(y)µ(dy),

where (b(y, ·), φ) =
∫ y

0 φ(x)b(y, dx), and

(F−[µ], φ) =

∫
R+

a(y)φ(y)µ(dy).

These terms are a generalization of the multiple fragmentation terms studied in an L1 setting152

(3.9) F+(u)(x) =

∫ ∞
x

b(y, x)a(y)u(y) dy, F−(u)(x) = a(x)u(x).153

where, following [22], we allow b(y, ·) = b(y, dx) to be a non-negative measure supported in [0, y].154

We impose the following assumptions on the growth, death and birth functions:155
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(A1) For any R > 0, there exists LR > 0 such that for all ‖µi‖TV ≤ R and ti ∈ [0,∞) (i = 1, 2)156

the following hold157

‖g(t1, µ1)− g(t2, µ2)‖∞ ≤ LR(|t1 − t2|+ ‖µ1 − µ2‖BL),158

‖d(t1, µ1)− d(t2, µ2)‖∞ ≤ LR(|t1 − t2|+ ‖µ1 − µ2‖BL),159

‖β(t1, µ1)− β(t2, µ2)‖∞ ≤ LR(|t1 − t2|+ ‖µ1 − µ2‖BL),160

(A2) There exists ζ > 0 such that for all T > 0161

sup
t∈[0,T ]

sup
µ∈M+(R+)

‖g(t, µ)‖W 1,∞ + ‖d(t, µ)‖W 1,∞ + ‖β(t, µ)‖W 1,∞ < ζ,162

(A3) For all (t, µ) ∈ [0,∞)×M+(R+),163

g(t, µ)(0) > 0.164

We assume that the coagulation kernel κ satis�es the following assumption:165

(K) κ is symmetric, nonnegative, bounded by a constant Cκ, and globally Lipschitz with Lip-166

schitz constant Lκ.167

We assume that the fragmentation kernel satis�es the following assumptions:168

(F1) a ∈W 1,∞(R+) is non-negative,169

(F2) for any y ≥ 0, b(y, dx) is a measure such that170

(i) b(y, dx) is non-negative and supported in [0, y] so that for all y > 0 there exist a171

Cb > 0 such that b(y,R+) < Cb,172

(ii) there exists Lb such that173

‖b(y, ·)− b(ȳ, ·)‖BL ≤ Lb|y − ȳ|174

(iii) (b(y, ·), x) = y175

It follows from (F2) that for any φ, ‖φ‖W 1,∞ ≤ 1, the function Φ[φ](y) = (b(y, ·), φ) is bounded176

Lipschitz with ‖Φ[φ](y)‖W 1,∞ ≤ C̄b = max{Cb, Lb}.177

Given T ≥ 0, we say a function µ ∈ C([0, T ],M+(R+)) is a weak solution to (3.1) if for all178

φ ∈ (C1 ∩W 1,∞)([0, T ]× R+), and for all t ∈ [0, T ] the following holds:179 ∫
R+

φ(t, x)µt(dx)−
∫
R+

φ(0, x)µ0(dx) =∫ t

0

∫
R+

[∂tφ(s, x) + g(s, µs)(x)∂xφ(s, x)− d(s, µs)(x)φ(s, x)]µs(dx)ds

+

∫ t

0
(K[µs] + F [µs], φ(s, ·)) ds+

∫ t

0

∫
R+

φ(s, 0)β(s, µs)(x)µs(dx)ds.

(3.10)180

Notice that we can also write model (3.1) with the boundary condition as a source term:181

∂tµ+ ∂x(g(t, µ)µ) + d(t, µ)µ = K[µ] + F [µ] + S(t)[µt](3.11)182

where S(t)[µ] =
( ∫∞

0 β(t, µ)(y)µ(dy)
)
δx=0.183

The next three propositions discuss useful properties of the source terms.184
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Proposition 3.1. For every µ ∈M(R+) we have185

(3.12) ‖K[µ]‖TV ≤
3

2
Cκ‖µ‖2TV .186

For every µ, ν ∈M(R+) with ‖µ‖TV , ‖ν‖TV ≤ R,187

(3.13) ‖K[µ]−K[ν]‖BL ≤ L̄κ,R‖µ− ν‖BL,188

where L̄κ,R is a constant depending only on Cκ, Lκ, and R.189

Proof. To prove (3.12) notice that190

‖K+[µ]‖TV ≤
1

2

∫
R+

∫
R+

κ(x, y)|µ|(dx)|µ|(dy) ≤ 1

2
Cκ‖µ‖2TV191

192

and also193

‖K−[µ]‖TV ≤
∫
R+

∫
R+

κ(x, y)|µ|(dx)|µ|(dy) ≤ Cκ‖µ‖2TV .194
195

Since ‖K[µ]‖TV = ‖K+[µ]−K−[µ]‖TV ≤ ‖K+[µ]‖TV + ‖K−[µ]‖TV , we obtain (3.12).196

To prove (3.13), let φ ∈W 1,∞(R+) be such that ‖φ‖W 1,∞ ≤ 1. Then197

2|(K+[µ]−K+[ν], φ)|198

=

∣∣∣∣∫
R+

∫
R+

κ(y, y′)φ(y + y′)µ(dy)µ(dy′)−
∫
R+

∫
R+

κ(y, y′)φ(y + y′)ν(dy)ν(dy′)

∣∣∣∣199

=

∣∣∣∣∫
R+

∫
R+

κ(y, y′)φ(y + y′)µ(dy)(µ− ν)(dy′)200

+

∫
R+

∫
R+

κ(y, y′)φ(y + y′)ν(dy′)(µ− ν)(dy)

∣∣∣∣ .201
202

Since κ is symmetric,203

2|(K+[µ]−K+[ν], φ)| =
∣∣∣∣∫

R+

∫
R+

κ(y, y′)φ(y + y′)(µ− ν)(dy)(µ+ ν)(dy′)

∣∣∣∣204

≤
∫
R+

∣∣∣∣∫
R+

κ(y, y′)φ(y + y′)(µ− ν)(dy)

∣∣∣∣ (|µ|+ |ν|)(dy′).205
206

For a given y′ ≥ 0, the function y 7→ κ(y, y′)φ(y + y′) is bounded Lipschitz with norm ≤ Cκ + Lκ.207

Thus208

2|(K+[µ]−K+[ν], φ)| ≤ (Cκ + Lκ)(‖µ‖TV + ‖ν‖TV )‖µ− ν‖BL.209210

Taking the sup over all such φ gives

‖K+[µ]−K+[ν]‖BL ≤
1

2
(Cκ + Lκ)(‖µ‖TV + ‖ν‖TV )‖µ− ν‖BL.

In the same way211

|(K−[µ]−K−[ν], φ)| =
∣∣∣∣∫

R+

∫
R+

κ(y, x)φ(x)µ(dy)µ(dx)−
∫
R+

∫
R+

κ(y, x)φ(x)ν(dy)ν(dx)

∣∣∣∣212

=

∣∣∣∣∫
R+

∫
R+

κ(y, x)φ(x)µ(dy)(µ− ν)(dx) +

∫
R+

∫
R+

κ(y, x)φ(x)(µ− ν)(dy)ν(dx)

∣∣∣∣213

≤
∫
R+

∣∣∣∣∫
R+

κ(y, x)φ(x)(µ− ν)(dx)

∣∣∣∣ |µ|(dy) +

∫
R+

∣∣∣∣∫
R+

κ(y, x)(µ− ν)(dy)

∣∣∣∣ |φ(x)||ν|(dx)214

≤
(

(Lκ + Cκ)‖µ‖TV + ‖ν‖TV max{Lκ, Cκ}
)
‖µ− ν‖BL215

216
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Combining these two results we see that217

‖K[µ]−K[ν]‖BL ≤ L̄K,R‖µ− ν‖BL.218

Next we have the following proposition concerning the fragmentation term:219

Proposition 3.2. For any µ ∈M(R+) we have220

(3.14) ‖F [µ]‖TV ≤ (C̄b + 1)‖a‖∞‖µ‖TV .221

and222

(3.15) ‖F [µ]− F [ν]‖BL ≤ Ca,b‖µ− ν‖BL.223

Proof. Clearly,
‖F−[µ]‖TV ≤ ‖a‖∞‖µ‖TV

and
‖F−[µ]− F−[ν]‖BL ≤ ‖a‖W 1,∞‖µ− ν‖BL = Ca‖µ− ν‖BL.

Also,
‖F+[µ]‖TV ≤ ‖a‖∞‖µ‖TV ‖Φ(1)‖∞ = C̄b‖a‖∞‖µ‖TV .

and
‖F+[µ]− F+[ν]‖BL ≤ ‖µ− ν‖BL sup

‖φ‖W1,∞≤1

‖Φ[φ]a‖W 1,∞ = Ca,b‖µ− ν‖BL.

The following proposition is immediate from assumptions (A1) and (A2).224

Proposition 3.3. S(t)[µ] satis�es the following:225

• S(t)[µ] ≥ 0 whenever µ ≥ 0;226

• ‖S(t)[µ]‖TV ≤ ζ‖µ‖TV ;227

• For any t ≥ 0 and for any µ, ν with ‖µ‖TV , ‖ν‖TV ≤ R,228

‖S(t)[µ]− S(t)[ν]‖BL ≤ (ζ +RLR)‖µ− ν‖BL229

3.1. Well-Posedness of the structured coagulation-fragmentation equation (3.1). Here, we230

aim to prove model (3.1) is well-posed. More precisely we prove that231

Theorem 3.1. Assume that assumptions (A1),(A2),(A3),(K),(F1),(F2) hold. Given an initial232

condition µ0 ∈ M+(R+), there exists a unique global solution µ ∈ C([0,∞),M+(R+)) of equation233

(3.1). Moreover, if µ0 has �nite total mass in the sense that
∫
R+ xµ0(dx) <∞, then for any T ≥ 0234

there exists CT > 0 such that235 ∫
R+

xµt(dx) ≤ CT t ∈ [0, T ].236

In particular, if g = d = β = 0 then mass is conserved in the sense that
∫
R+ xµt(dx) =

∫
R+ xµ0(dx)237

for any t ≥ 0.238

Proof. Let239

B(t, µ) := F+[µ] +K+[µ] + S(t)[µ]240

and

N̄(t, x, µ) := −d(t, µ)(x)− a(x)−
∫
R+

κ(y, x)µ(dy).
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Then equation (3.1) reads

∂tµ+ ∂x(g(t, µ)µ) = B(t, µ) + N̄(t, ·, µ)µ.

For any R > 0, denote MR(R) := {µ ∈ M(R) : ‖µ‖TV ≤ R}. Notice MR(R) is complete241

for the BL norm. According to Propositions 3.1, 3.2, and 3.3, B : R+ × M(R) → M(R) and242

N̄ : R+ × R×M(R)→W 1,∞(R) are continuous and satisfy the following properties:243

(B1) B[t, µ] ∈M+(R) for any t ≥ 0 if µ ∈M+(R),244

(B2) for any R > 0 there exists CB,R > 0 and LB,R > 0 such that for any t ≥ 0 and any µ, µ̃ ∈MR(Rd),

‖B(t, µ)‖TV ≤ CB,R, and ‖B(t, µ)−B(t, µ̃)‖BL ≤ LB,R‖µ− µ̃‖BL.

(N1) for any R > 0, there exist LN̄,R > 0 and CN̄,R > 0 such that for any t ≥ 0, x ∈ R, and any
µ, µ̃ ∈MR(R),

‖N̄(t, ·, µ)‖W 1,∞ ≤ CN̄,R and |N̄(t, x, µ)− N̄(t, x, µ̃)| ≤ LN̄,R‖µ− µ̃‖BL.

It follows from standard arguments (e.g. [7, 8] and references therein) that equation (3.1) has a245

unique solution µ ∈ C([0, T ∗),M(R+)) which is nonnegative and de�ned on a maximal time interval246

[0, T ∗). Moreover, T ∗ <∞ if and only if limt→T ∗ ‖µt‖TV =∞. Indeed this follows applying Banach247

�xed-point Theorem to the map Γ : XT → XT with248

(3.16) XT = {µ ∈ C([0, T ],M(R+)) : µ(0) = µ0, ‖µ‖TV ≤ 2‖µ0‖TV ∀ t ∈ [0, T ]},249

and250

(3.17) Γ[µ]t = T g0,t]µ0 +

∫ t

0
T gs,t]N(s, µ) ds,251

where N(s, µ) := N̄(s, ·, µ)µ + B(s, µ), and T gs,t is the �ow of the vector �eld (t, x) → g(t, µt)(x).252

We can then prove that taking T small enough, Γ(XT ) ⊂ XT and Γ is a strict contraction. We then253

deduce that (3.1) has a unique solution µ ∈ C([0, T ∗),M(R+)). If moreover µ0 ≥ 0 we can then254

prove as [8][Prop. 5.1 and Thm 5.2] that µt ≥ 0 for any t < T ∗.255

Recall that if T ∗ <∞ then it must be limt→T ∗ ‖µt‖TV =∞. Thus to prove that T ∗ =∞, it is256

enough to verify that there exists C > 0 such that257

(3.18) ‖µt‖TV ≤ ‖µ0‖TV exp(Ct) for any t ∈ [0, T ∗).258

To begin, we �rst note for any �nite non-negative measure µ,259

(K[µ], 1) = −1

2

∫
R+

∫
R+

κ(x, y)µ(dx)µ(dy) ≤ 0260

and261

(F [µ], 1) =

∫
R+

(b(y, ·), 1)a(y)µ(dy)−
∫
R+

a(y)µ(dy) ≤
∫
R+

(Cb − 1)a(y)µ(dy).262

Therefore, taking φ(t, x) ≡ 1 in (3.10), we can arrive at263

(µt, 1) ≤ (µ0, 1) +

∫ t

0

∫
R+

[(Cb − 1)a(y) + β(s, µs)(y)]µs(dy)ds

≤ (µ0, 1) + [(Cb − 1)‖a‖∞ + ζ]

∫ t

0
(µs, 1) ds.

(3.19)264
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The Gronwall inequality then gives (3.18) with C = (Cb − 1)‖a‖∞ + ζ.265

Now, assume that
∫∞

0 xµ0(dx) <∞. Let R > 0 and consider a smooth regularization of the test266

function φR(x) = min{x,R} in the weak formulation (3.10). Since φR(x+ y)− φR(x)− φR(y) ≤ 0267

for any x, y ≥ 0, we have from equation (3.7) that (K[µt], φR) ≤ 0. Moreover, φR(0) = 0 and268

φR ≥ 0. We thus obtain269

(µt, φR) ≤ (µ0, φR) +

∫ t

0

∫
R+

g(s, µs)(y)φ′R(y)µs(dy)ds+

∫ t

0

∫
R+

(b(y, ·), φR)a(y)µs(dy)ds.270

Using (A2) and (3.18), we can bound the 2nd term on the right-hand side by CT,ζ for t ∈ [0, T ].271

Using that φR(x) ≤ x, (b(y, dx), x) = y, and (A2), we have272

(µt, φR) ≤ (µ0, x) + CT,ζ +

∫ t

0

∫
R+

ya(y)µs(dy)ds273

≤ (µ0, x) + CT,ζ + ‖a‖∞
∫ t

0
(µs, x) ds.274

Passing to the limit R→∞ using the Monotone Convergence Theorem, we deduce

(µt, x) ≤ (µ0, x) + CT,ζ + ‖a‖∞
∫ t

0
(µs, x) ds.

The Gronwall inequality then gives

(µt, x) ≤ ((µ0, x) + CT,ζ)e
‖a‖∞t.

As a consequence we can use any continuous test-function φ with linear growth, i.e. |φ(x)| ≤275

C(1+ |x|). In particular, we can take φ(x) = x in equation (3.10). Since (K[µt], x) = (F [µt], x) = 0,276

we obtain277

(µt, x) = (µ0, x) +

∫ t

0

∫
R+

g(s, µs)(y)µs(dy)ds−
∫ t

0

∫
R+

xd(s, µs)(x)µs(dy)ds278

In particular, if g = d = 0, we have (µt, x) = (µ0, x) i.e. mass is conserved for any t ≥ 0.279

Remark 3.1. In applications the smallest size will not be of size 0 but rather some x0 > 0. Model280

(3.11) and the Theorem above can be adjusted for such applications by shifting the Dirac measure at281

0 to x0, requiring g(t, µt)(x0) > 0, and requiring b(y, ·) to be supported on [x0, y). In this case, the282

mass conservation equation would be283

(µt, x) = (µ0, x) +

∫ t

0

∫
R+

g(s, µs)(y)µs(dy)ds−
∫ t

0

∫
R+

xd(s, µs)(x)µs(dx)ds284

+

∫ t

0

∫
R+

x0β(s, µs)(x)µs(dx)ds.285

3.2. A stability result. Let us consider a sequence of equations286

(3.20)



∂tµ+ ∂x(gn(t, µ)µ) + dn(t, µ)µ = Kn[µ] + Fn[µ], (t, x) ∈ (0,∞)× (0,∞)

gn(t, µ)(0)Ddxµ(0) =

∫
R+

βn(t, µ)(y)µ(dy), t ≥ 0,

µn(0) ∈M+(R+),

∫ ∞
0

(1 + x)µn(0)(dx) <∞,

.287
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where

Kn[µ](·) =
1

2

∫
R+

∫
R+

κn(y, y′)δy+y′(·)µ(dy′)µ(dy)−
∫
R+

κn(y, x)µ(dy)µ,

and

F [µ](·) =

∫
R+

bn(y, ·)an(y)µ(dy)− anµ.

Let us assume that288

(S1) the functions gn, dn, βn, κn, an, bn, n ∈ N, satisfy assumptions (A1),(A2),(A3),(K),(F1),(F2),289

It then follows from Theorem 3.1 that (3.20) has a unique solution µn ∈ C([0,∞),M(R+)) such290

that
∫∞

0 xµn(t)(dx) <∞. Under some additional assumptions on the coe�cients of (3.20) we can291

extract from µn a subsequence converging to a solution of (3.1).292

Theorem 3.2. Assume that the functions gn, dn, βn, κn, an, bn, n ∈ N, satisfy assumptions (S1)293

and also that294

(S2) there exists C > 0 such that ‖κn‖∞, ‖an‖∞ ≤ C and there exists functions κ, a such that

κn → κ, an → a uniformly on compact sets.

(S3) there exists C > 0 and a function b : R+ → M(R+) such that (bn(y), 1) ≤ C for any y ≥ 0 and
n ∈ N, and for any φ ∈ C∞c (R+),

(bn(y), φ)→ (b(y), φ) uniformly for y in a compact set.

(S4) there exist functions g, d, β : [0,∞) ×M+(R+) −→ W 1,∞(R+) such that for any t ≥ 0 and any
sequence of measures mn ∈M+(R+) converging weakly to m ∈M+(R+) we have

gn(t,mn)→ g(t,m), dn(t,mn)→ d(t,m), βn(t,mn)→ β(t,m)

uniformly on compact sets of R+.295

Concerning the initial condition µn(0) ∈ M+(R+), we assume that
∫
R+(1 + x)µn0 (dx) ≤ C and296

µn0 −→ µ0 in the BL norm for some µ0 ∈M+(R+).297

Denote µn the solution of (3.20). Then, there exists µ ∈ C(R+,M+(R+)) such that, along a298

subsequence, µn → µ in C([0, T ],M+(R+)) for any T > 0, and µ is a solution of (3.1).299

Proof. We have

(K[µn], 1) = −1

2

∫ ∞
0

∫ ∞
0

κn(x, y)µnt (dx)µnt (dy) ≤ 0

and

|(Fn[µnt ], 1)| ≤
∫

(|(bn(y), 1)|+ 1)|an(y)| dµnt ≤ sup
y,n

(‖an‖∞ + |(bn(y), 1)|) (µnt , 1) = C(µnt , 1).

Moreover, (µn0 , 1)→ (µ0, 1) so that (µn0 , 1) ≤ C. Taking φ = 1 in the weak formulation of (3.20) we
thus obtain

(µnt , 1) ≤ (µn0 , 1) + C

∫ t

0
(µns , 1) ds ≤ C + C

∫ t

0
(µns , 1) ds.

It then follows from Gronwall inequality that for any T > 0,300

(3.21) (µnt , 1) ≤ CT t ∈ [0, T ].301
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As in the proof of Theorem 3.1, using φR(x) = min{x,R}, R > 0, as a test-function we obtain302

(µnt , φR) ≤ (µn0 , φR) +

∫ t

0

∫
R+

gn(s, µns )(y)φ′R(y)µns (dy)ds+

∫ t

0

∫
R+

(bn(y, ·), φR)an(y)µns (dy)ds303

≤ CT + C

∫ t

0
(µns , x)ds.304

Letting R→∞ using the monotone convergence Theorem, and then applying Gronwall inequality305

we obtain306

(µnt , x) ≤ CT .307

In particular, it follows that (µnt )n is tight for any t ∈ [0, T ]. Moreover for 0 ≤ s < t ≤ T , and any308

φ ∈W 1,∞, ‖φ‖W 1,∞ ≤ 1, we have using (3.21) that309

(µnt − µns , φ) =

∫ t

s
(µnτ , g(τ, µnτ )φ′)dτ −

∫ t

s
(µnτ , d(τ, µnτ )φ)dτ +

∫ t

s
(µnτ , β(τ, µnτ ))φ(0)dτ310

+

∫ t

s
(K[µnτ ], φ) + (F [µnτ ], φ) dτ311

≤ 3ζCT (t− s) +

∫ t

s
3‖kn‖∞‖φ‖∞ + C‖φ‖∞ dτ ≤ C̄T (t− s).312

Thus, ‖µnt −µns ‖BL ≤ C̄T (t−s) so that the sequence (µn)n ⊂ C([0, T ],M(R+)) is uniformly equicon-313

tinuous. By the Arzela-Ascoli Theorem, for any T > 0, we therefore have a convergent subsequence314

(not relabeled) of the µnt in C([0, T ],M+(R+)) which converges to some µ ∈ C([0, T ],M+(R+)). A315

diagonal argument gives that µn → µ in C([0, T ],M+(R+)) for any T > 0.316

Since φR is bounded Lipschitz, we can pass to the limit n → ∞ in (µnt , φR) ≤ (µnt , x) ≤ CT to
obtain (µt, φR) ≤ CT . Sending R→∞ gives that for any T > 0,

(µt, x) ≤ CT for any t ∈ [0, T ].

We now want to pass to the limit n→∞ in the equation satis�ed by µn, namely317 ∫
R+

φ(t, x)µnt (dx)−
∫
R+

φ(0, x)µn0 (dx) =∫ t

0

∫
R+

[∂tφ(s, x) + gn(s, µns )(x)∂xφ(s, x)− dn(s, µns )(x)φ(s, x)]µns (dx)ds

+

∫ t

0
(Kn[µns ] + Fn[µns ], φ(s, ·)) ds+

∫ t

0

∫
R+

φ(s, 0)βn(s, µns )(x)µns (dx)ds.

(3.22)318

Let φ ∈ Cc(R+×R+). We pass to the limit in the right-hand side using that µnt → µt for any t ≥ 0.319

Since kn → k uniformly on compact sets, (µns , 1) ≤ CT , and µns ⊗µns → µs⊗µs weakly, we can pass320

to the limit321

2(K[µns ], φ) =

∫
R+

∫
R+

(kn(x, y)− κ(x, y))(φ(x+ y)− φ(x)− φ(y))µns (dx)µns (dy)322

+

∫
R+

∫
R+

κ(x, y)(φ(x+ y)− φ(x)− φ(y))µns (dx)µns (dy)323

→
∫
R+

∫
R+

κ(x, y)(φ(x+ y)− φ(x)− φ(y))µs(dx)dµs(dy) = 2(K[µs], φ).324
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Since |(K[µns ], φ)| ≤ C, we obtain by dominated convergence that∫ t

0
(K[µns ], φ) ds→

∫ t

0
(K[µs], φ) ds.

Similarly, we can pass to the limit in (F [µns ], φ) in the same way. Finally, in view of (S4), (3.21)325

and since φ has compact support we have for any s ≥ 0 that326 ∫
R+

dn(s, µns )(x)φ(s, x)µns (dx)327

=

∫
R+

[dn(s, µns )(x)− d(s, µs)(x)]φ(s, x)µns (dx) +

∫
R+

d(s, µs)(x)φ(s, x)µns (dx)328

→
∫
R+

d(s, µs)(x)φ(s, x)µs(dx).329
330

Since moreover ∣∣∣ ∫
R+

dn(s, µns )(x)φ(s, x)µns (dx)
∣∣∣ ≤ ζ‖φ‖∞(µns , 1) ≤ CT

we obtain by the Dominated Convergence Theorem that∫ t

0

∫
R+

dn(s, µns )(x)φ(s, x)µns (dx)ds→
∫ t

0

∫
R+

d(s, µs)(x)φ(s, x)µs(dx)ds.

We treat the terms with gn and βn in the same way.331

4. Interplay of Growth, Coagulation, and Fragmentation. In the recent payer [34], it was332

shown that the steady state solution of a size-structured population model (i.e. model (3.1) with333

K ≡ F ≡ 0) with positive model ingredients is absolutely continuous with respect to the Lebesgue334

measure. This leads naturally to studying the e�ect the physical processes of coagulation and335

fragmentation would have on such regularity. With this in mind, we present the following theorem:336

Theorem 4.1. Assume (A1)-(A3), (K), (F1), (F2), and (B2) hold with g(t, µt) ∈ C1(R+) tak-337

ing strictly positive values, and let µt be the solution to (3.1) for some some initial condition µ0.338

Moreover, assume each measure b(y, ·), y ≥ 0, is absolutely continuous w.r.t. Lebesgue measure with339

density b(y, x), and that the family {b(y, ·) : y ≥ 0} is uniformly equi-integrable in the sense that340

for any ε > 0, there exists δ > 0 such that for any V ⊂ R+ measurable with |V | < δ, there holds341

b(y, V ) =
∫
V b(y, x)dx < ε. Denote l0(t) the solution to342 {

d
dt l0(t) = g(t, µ(t))(l0(t)),

l0(0) = 0.
343

Then for any t > 0, µt is absolutely continuous on [0, l0(t)) with respect to the Lebesgue measure344

(i.e. µt � dx).345

For simplicity of notation, we will denote

g̃(t, x) := g(t, µt)(x), β̃(s) :=

∫ ∞
0

β(s, µs)(y)µs(dy), Ts,t := T g̃s,t.

We also recall from equation (3.11) that

S(s)[µs] = β̃(s)δx=0.

Before we can prove Theorem 4.1, we �rst need the following useful lemma:346
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Lemma 4.1. Since g̃ > 0, the map Φ : s 7→ Ts,t(0) is a bijection from [0, t] to [0, l0(t)]. Moreover347

(4.1) Φ′(s) = −g̃(s, 0) exp
{∫ t

s
∂xg̃(τ, Ts,τ (0)) dτ

}
∀ s ∈ [0, t].348

Moreover for any 0 < s ≤ t, Ts,t : [0, l0(s)]→ [0, l0(t)] is a bijection with349

(4.2)
d

dx
Ts,t(x) = exp

{∫ t

s
∂xg̃(τ, Ts,τ (x)) dτ

}
.350

Proof. The bijection property of Φ follows from the uniqueness of trajectories and the de�nition
of l0(t). As for (4.1), taking the derivative with respect to s in d

dtTs,t(0) = g̃(t, Ts,t(0)) yields

d

dt

( d
ds
Ts,t(0)

)
= ∂xg̃(t, Ts,t(0))

d

ds
Ts,t(0).

Since g̃ is C1 in x,
d

ds
Ts,t(0) =

d

ds
Ts,t(0)|t=sexp

{∫ t

s
∂xg̃(τ, Ts,τ (0))dτ

}
.

Since Ts,t(0) =
∫ t
s g̃(τ, Ts,τ (0)) dτ we have d

dsTs,t(0)|t=s = −g̃(s, 0) and so we deduce (4.1).351

The proof of (4.2) is identical, but with taking the derivative with respect to x in d
dtTs,t(x) =352

g̃(t, Ts,t(x)) and using that d
dxTs,s(x) = 1.353

In particular for any bounded measurable function φ : [0,∞)→ R,354 ∫ t

0
(Ts,t]S(s)[µs], φ) ds =

∫ t

0
β̃(s)φ(Φ(s)) ds

=

∫ l0(t)

0
φ(x)

β̃(Φ−1(x))

g̃(Φ−1(x), 0)
exp
{
−
∫ t

Φ−1(x)
∂xg̃(τ, TΦ−1(x),τ (0)) dτ

}
dx,

(4.3)355

so that
∫ t

0 Ts,t]S(s)[µs] ds =
∫ t

0 Ts,t]β̃(s)δ0 ds is the function356

(4.4) x→ 1[0,l0(t)](x)
β̃(Φ−1(x))

g̃(Φ−1(x), 0)
exp
{
−
∫ t

Φ−1(x)
∂xg̃(τ, TΦ−1(x),τ (0)) dτ

}
.357

We can now prove Theorem 4.1. The proof we propose is inspired by [55][Lemma 3.5] and358

[41][Lemma 2.6]. However the presence of the growth term adds new di�culties.359

Proof. Recall that the solution µ was obtained as a �xed point of the map Γ de�ned in (3.17)360

namely361

µt = Tt]µ0 +

∫ t

0
Ts,t](F

+[µs] + β̃(s)δ0) ds+

∫ t

0
Ts,t](K

+[µs]− Ã(s, ·)µs) ds362

where Ts,t is the �ow of the vector �eld (t, x)→ g̃(t, x) := g(t, µt)(x), and

Ã(t, x) = d(t, µt)(x) + a(x) +

∫
R+

κ(x, y)µt(dy) ≥ 0.

Notice due to the positivity of the model functions363

(4.5) µt ≤ Tt]µ0 +

∫ t

0
Ts,t](F

+[µs] + β̃(s)δ0) ds+

∫ t

0
Ts,t]K

+[µs] ds.364
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Given some δ > 0 and s ∈ [0, t], let As be the family of subsets of [0, l0(s)) of the form365

(4.6) A = T−1
s,s1(· · · (T−1

sn−1,sn(T−1
sn,t(E)− xn)− xn−1) · · · )− x1366

where n ∈ N0, s ≤ s1 ≤ · · · ≤ sn ≤ t, x1, . . . , xn ≥ 0, and E ⊂ [0, l0(t)) is a Borel subset with
|E| < δ. It is implicitly understood that at each step of the construction of A we take the intersection
with [0,∞). De�ne then

E(s) := sup
{
µs(A) : A ∈ As

}
,

where we extend µs to (−∞, 0) by 0.367

Notice that Ts]µ0 is supported in [l0(s),∞) and that any A ∈ As is a subset of [0, l0(s)). It368

follows that for any A ∈ As of the form (4.6) we have by (4.5) that369

(4.7) µs(A) ≤
∫ s

0
(F+[µτ ] + β̃(τ)δ0)(T−1

τ,s (A)) dτ +

∫ s

0
K+[µτ ](T−1

τ,s (A)) dτ.370

For any 0 ≤ a ≤ b ≤ T and any subset B ⊂ [0,∞) we have by (4.2) and assumption (A2) that371

|T−1
a,b (B)| =

∫
R+

1B(Ta,b(y)) dy =

∫
R+

1B(x)| d
dx
T−1
a,b (x)| dx ≤ eζ(b−a)|B|.372

Using the translation invariance of Lebesgue measure we then have that the measure of A given by
(4.6) can be bounded by

|A| ≤ eζ((t−sn)+(sn−sn−1)+···+(s1−s))|E| ≤ eζ(t−s)δ ≤ CT δ.

Here and in the sequel of the proof, we denote by CT any constant depending only on T and the
constants appearing in assumptions (A1),(A2),(A3),(K),(F1),(F2). It then follows from (4.4), (A2),
(A3) that ∫ s

0
β̃(τ)δ0(T−1

τ,s (A)) dτ ≤ CT δ.

Moreover373

F+[µτ ](A) =

∫
R+

b(y)(A)a(y)µτ (dy) ≤ ‖a‖∞‖µτ‖TV sup
y≥0

b(y)(A).374

Since ‖µτ‖TV ≤ CT , τ ∈ [0, s], we obtain∫ s

0
F+[µτ ](T−1

τ,s (A)) dτ ≤ CT sup
y≥0, |A|≤CT δ

b(y)(A).

If we assume that the family {b(y, ·)}y≥0 is uniformly equi-integrable then supy≥0, |A|≤CT δ b(y)(A)375

goes to 0 as δ → 0. We denote o(1) any quantity going to 0 as δ → 0 uniformly in t ∈ [0, T ] and A.376

Coming back to (4.7) we thus obtained so far that377

(4.8) µs(A) ≤ o(1) +

∫ s

0
K+[µτ ](T−1

τ,s (A)) dτ.378

To bound the coagulation term in the right-hand side recall the de�nition of K+:

2K+[µτ ](T−1
τ,s (A)) =

∫
R+

1T−1
τ,s (A)(z + y)κ(x, y)µτ (dz)µτ (dy) ≤ ‖κ‖∞

∫
R+

µτ (T−1
τ,s (A)− y)µτ (dy).
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Since T−1
τ,s (A)− y ∈ Aτ we obtain

2K+[µτ ](T−1
s,t (A)) ≤ ‖κ‖∞E(τ)

∫
R+

µτ (dy)

so that

K+[µτ ](T−1
τ,s (A)) ≤ CTE(τ).

Coming back to (4.8) we obtain

µs(A) ≤ o(1) + CT

∫ s

0
E(τ) dτ.

Since this holds for any A ∈ As and any s ≤ t we deduce

E(t) ≤ o(1) + CT

∫ t

0
E(τ) dτ

which yields by Gronwall inequality

E(t) = o(1).

In particular, since E ∈ At,

µt(E) = o(1) ∀E ⊂ [0, l0(t)), |E| < δ.

It follows that µt is absolutely continuous on [0, l0(t)) for any t > 0.379

This leads us to the following corollary about the regularity of a steady state solution to model380

3.1.381

Corollary 4.1. Let the assumptions of Theorem 4.1 hold with g, d, β dependent on time only382

through µt (i.e. g(t, µt) = g(µt) etc.) and assume µ ∈ M+(R+) be a steady state solution of383

model 3.1. Then µ is absolutely continuous with respect to the Lebesgue measure. Furthermore, µ384

satis�es385 ∫
R+

g(µ)(x)µ(dx) =

∫
R+

xd(µ)(x)µ(dx).386

Proof. The proof follows from similar arguments of Proposition 2.6 in [34] with making use of387

g(µ)(x) > 0 for all x. Indeed, since g(µ)(x) > 0 for all x we have388

lim
t−→∞

l0(t) =∞.389

Theorem 4.1 then implies a solution µt is absolutely continuous on the interval [0, l0(t)). Thus, the390

steady state solution µt = µ is absolutely continuous on [0,∞). The mass conservation equation391

follows from Theorem 3.1.392

5. From Measure Equation to Discrete and Continuous Equations. It is often claimed that393

one of the many bene�ts of population models set in measure spaces is the uni�cation of the study394

of discrete and continuous structure. In this section, we demonstrate this property by showing that395

model (3.1) includes as special cases the discrete Smolukowski equations [54] and the continuous396

Müller model [48] .397
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5.1. Continuous Density Model. In this subsection, we brie�y recover the continuous density398

equation studied in [1, 5, 14, 48] from (3.1). This follows naturally under the following assumptions:399

(B1) µ0 is absolutely continuous with respect to the Lesbesgue measure,400

(B2) b(y, ·) is absolutely continuous with respect to the Lesbesgue measure.401

Then by undoing the derivations of (3.3) and (3.8), one arrives at the density equations (3.6) and402

(3.9) covered in the aforementioned works. In particular, we can recover the binary fragmentation403

kernels studied in [1, 14, 36] by taking404

(5.1) a(y) =
1

2

∫ y

0
γ(y − s, s) ds, b(y, ·) =

γ(x, y − x)

a(y)
dx405

where the function γ(x, y) models the rate at which a particles of size x+ y fragment into particles406

of size x and y.407

5.2. Discrete Equation. In this subsection, we show under certain assumptions, model (3.1)408

will reduce to the discrete coagulation-fragmentation equation discussed in [9, 54]. To obtain these409

equations, we set g(t, µ) = β(t, µ) ≡ 0 for the remainder of this section. To this end, suppose that410

the measures µ0 and b(y, ·) are supported on hN = {h, 2h, ...} for some �xed h > 0 i.e.411

(C1) µ0 =
∑
i∈N

m0
i δih where for each i, m0

i ∈ R+,412

(C2) b(y, ·) =
∑
i∈N

bi(y)δih.413

We then have the following result:414

Theorem 5.1. Let assumptions (A1),(A2),(K),(F1),(F2), (C1), (C2), and (C3) hold. Then for415

any t ∈ [0,∞), the solution µt of (3.1) is supported on hN0:416

(5.2) µt =
∑
l∈N

ml(t)δlh,417

where the ml(t), l ∈ N, satisfy the discrete coagulation-fragmentation equation418

d

dt
ml(t) + d(t, µt)(lh)ml(t)

=
1

2

l−1∑
i=1

mi(t)ml−i(t)κ(ih, (l − i)h)−
∞∑
i=1

κ(ih, lh)mi(t)ml(t)

+
∑
i≥l

bl(ih)a(ih)mi(t)− a(lh)ml(t)

(5.3)419

with initial condition ml(0) = m0
l .420

Proof. It is clear from Theorem 3.1 that (3.1) has a unique solution µ ∈ C([0,∞),M+(R+)).
Moreover, according to the proof of Theorem 3.1, µ is a �xed-point of Γ de�ned in (3.17). Since
g = 0, T gs,t is the identity map. Thus Γ is simply given by

Γ[ν]t = µ0 +

∫ t

0
{F [νs] +K[νs] + S(s)[νs]− d(s, νs)νs} ds

for any ν ∈ C([0,∞),M(R+)). Notice that if νt is supported in hN for any s then so is Γ[ν]t421

(concerning K+ notice this follows from the fact that hN + hN ⊂ hN). We can thus replace XT in422

(3.16) by423

(5.4) XT = {µ ∈ C([0, T ],M(hN)) : µ(0) = µ0, ‖µ‖TV ≤ 2‖µ0‖TV ∀ t ∈ [0, T ]},424
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and repeat the proof of Theorem 3.1 verbatim to obtain that µt is supported in hN for any t ≥ 0.425

It follows that µt can be written as in (5.2). Equation (5.3) follows from (3.10) taking a C1 test-426

function, φ, constant in time and supported in (lh− h, lh+ h) such that φ(lh) = 1.427

6. Numerical Methods and Results. In this section, we present a semidiscrete scheme for428

a coagulation-fragmentation equation based on (5.3) and Theorem 5.1 as well as provide some429

numerical results based on this scheme. For the rest of this section, we assume that β(t, µ) =430

g(t, µ) ≡ 0.431

6.1. A semi-discrete numerical scheme. We consider equation (3.1) with
∫
R+(1 + x)µ0(dx) <432

∞ and we assume that assumptions (A1),(A2),(A3),(K),(F1),(F2) hold. We present a semi-discrete433

scheme inspired by [43].434

Consider the grid hN0 and the cell Λh(i) centered at the grid point ih de�ned by

Λh(i) := [hi− h/2, hi+ h/2), i ≥ 1, Λh(0) = [0, h/2).

We de�ne the discretization of the initial condition µ0 ∈M+(R+) with respect to the grid hN0 by

µh0 =
∑
i≥0

µh0(i)δhi, µh0(i) = µ0(Λh(i)).

We want to approximate the solution µt of (3.1) by measures µht supported in hN0 and solution435

of some discretized equation. We �rst approximate the model coe�cients κ, a, b as follow. First we436

de�ne437

ahi =
1

h

∫
Λh(i)

a(y)dy, κhi,j =
1

h2

∫
Λh(i)×Λh(j)

κ(x, y)dxdy438

for i, j ≥ 1, and439

ah0 =
2

h

∫
Λh(0)

a(y)dy, κh0,0 =
4

h2

∫
Λh(0)×Λh(0)

κ(x, y)dxdy440

(with the natural modi�cations for κh0,j and κhi,0, i ≥ 1). We then let ah ∈ W 1,∞(R+) and κh ∈441

W 1,∞(R+ × R+) be the linear interpolation of the ahi and κhi,j respectively. Finally, we de�ne the442

measure bh(jh, ·) ∈M+(hN) by443

bh(jh, ·) =
∑
i≤j

b(jh,Λh(i))δih444

and then bh(x, ·) ∈ M+(hN0) for x ≥ 0 as the linear interpolate between the bh(jh, ·). We de�ne
the corresponding coagulation and fragmentation operators Kh and F h by

(Kh[µ], φ) =
1

2

∫
R+

∫
R+

κh(y, x)[φ(x+ y)− φ(x)− φ(y)]µ(dx)µ(dy),

F h[µ](·) =

∫
R+

bh(y, ·)ah(y)µ(dy)− ahµ.

Notice that Kh, ah, bh satisfy (K),(F1),(F2)(i),(F2)(ii), (C1),(C2),(C3). However (F2)(iii) is
only satis�ed up to an error of order h, namely

|(bh(y, ·), x)− y| ≤ Ch for any y ≥ 0,

18

This manuscript is for review purposes only.



where the constant C depends only on Cb given by (F2)(i). Indeed recalling that for any j ≥ 0 the445

measure b(jh, ·) is non-negative and supported in [0, jh] we have446

|(bh(jh, ·), x)− jh| = |(bh(jh, ·), x)− (b(jh, ·), x)| ≤
∑
i≤j

∫
Λh(i)

|ih− x| b(jh, dx)447

≤ h

2
b(jh,R+) ≤ 1

2
Cbh.448

449

The result follows recalling that for y ∈ [jh, (j+1)h] we have bh(y, ·) = 1
h [bh((j+1)h, ·)−bh(jh, ·)](y−450

jh) + bh(jh, ·).451

It then follow from Theorem 5.1 that (3.1) with g = d = β = 0, K = Kh, F = F h has a unique452

solution µ ∈ C([0,∞),M+(R+)) which is supported on hN:453

(6.1) µht =
∑
l∈N0

mh
l (t)δlh,454

where the mh
l (t), l ∈ N0, satisfy the discrete coagulation-fragmentation equation455

d

dt
mh
l (t) =

1

2

l−1∑
i=1

mh
i (t)mh

l−i(t)κ
h
i,l−i −

∞∑
i=1

κhi,lm
h
i (t)mh

l (t)

+
∑
i≥l

b(ih,Λh(l))ahim
h
i (t)− ahlmh

l (t)

(6.2)456

with initial condition mh
l (0) = mh

0(l). Notice that the �rst two terms on the right hand side of (6.2)457

make up the discrete Smoluchowski equations and therefore these terms conserve mass. Indeed,458

multiplying by xl := lh and summing over l = 1, 2, . . . we have459

1

2

∞∑
l=1

l−1∑
i=1

xlm
h
i (t)mh

l−i(t)κ
h
i,l−i −

∞∑
l=1

∞∑
i=1

xlκ
h
i,lm

h
i (t)mh

l (t)460

=
1

2

∞∑
i=1

∞∑
j=1

(xi + xj)m
h
i (t)mh

j (t)κhi,j −
∞∑
l=1

∞∑
i=1

xlκ
h
i,lm

h
i (t)mh

l (t)(6.3)461

= 0.462463

However, since |(bh(y, ·), x)− y| = O(h) it is clear that the fragmentation terms only conserve mass464

up to an error of order h.465

To study the limit of µht as h→ 0 we �rst state the following properties:466

Proposition 6.1. The following holds:467

(i) limh→0 ‖µh0 − µ0‖BL = 0 and
∫
R+(1 + x)µh0(dx) ≤ C,468

(ii) ah → a, κh → κ uniformly on compact sets, and ah, κh ≤ C.469

(iii) for any φ ∈W 1,∞(R) , (bh(x), φ)→ (b(x), φ) uniformly for x in a compact set.470

Proof. For any φ ∈W 1,∞(R+), ‖φ‖W 1,∞ ≤ 1, we have471

(µht − µt, φ) =
∑
i≥0

∫
Λi(h)

φ(ih)− φ(x)µ0(dx) ≤
∑
i≥0

∫
Λi(h)

|ih− x|µ0(dx) ≤ h

2
µ0(R+).472

Moreover∫
R+

xµh0(dx) =
∑
i≥0

∫
Λh(i)

ih µ0(dx) =
∑
i≥0

∫
Λh(i)

xµ0(dx) +O(h) = (µ0, x) +O(h)
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which proves (i).473

Concerning (ii), since 0 ≤ a, κ ≤ C, we have 0 ≤ ah, κh ≤ C. Moreover, let x ∈ [nh,mh] for474

some n 6= m ∈ N0. Then letting χA(x) represent the characteristic function over the set A, we have475

‖ah − a‖∞ ≤
m∑
i=n

∣∣∣∣(ahi+1 − ahi )(
x− ih
h

) + ai − a(x)

∣∣∣∣χ[ih,(i+1)h)(x)476

≤
m∑
i=n

|a(xi+1)− a(xi) + a(xi)− a(x) +O(h)|χ[ih,(i+1)h)(x)477

≤ ‖a‖W 1,∞2h(m− n) +O(h).478479

Finally for (iii) again assume x ∈ [nh,mh], then for φ ∈W 1,∞(R) we have480

(bh(x)− b(x), φ) =
m∑
j=n

[
(bhj+1 − bhj , φ)(

x− jh
h

) + (bhj − b(x), φ)

]
χ[ih,(i+1)h)(x)481

≤
m∑
j=n

 ∑
i≤j+1

b((j + 1)h,Λh(i))φ(ih)−
∑
i≤j

b((j)h,Λh(i))φ(ih) + (bhj − b(x), φ)

482

=
m∑
j=n

[(b((j + 1)h)− b(jh), φ) + (b(jh)− b(x), φ) +O(h)]χ[ih,(i+1)h)(x).483

484

Making use of assumption (F2), we have485

(bh(x)− b(x), φ) ≤ 2Lb‖φ‖W 1,∞h|m− n|,486

which completes the proof.487

It follows form this proposition that the assumption of Theorem 3.2 are satis�ed. Thus, we488

deduce that µh converges along a subsequence h → 0 to µ solution of equation (3.1). Since this489

equation has a unique solution, the whole sequence µh converges to µ:490

Theorem 6.1. The measure µht =
∑

i≥0m
h
i (t)δih where the mh

i solve (6.2) converges to the solu-491

tion µt of equation (3.1) in C([0, T ],M(R+)) for any T > 0.492

We can thus think of the system (6.2) as a semi-discrete scheme for solving equation (3.1). One493

could combine this semidiscrete scheme with any ordinary di�erential equation scheme (e.g. any494

Runge-Kutta Method) to arrive at a fully discrete scheme. Convergence for such a scheme then495

follows from a standard triangle inequality argument. In the next section we present some numerical496

experiments to evaluate the quality of such a scheme.497

Remark 6.1. One can easily include the case β, d > 0 as these terms do not a�ect the discrete498

structure of the solution. However, in the case of additionally assuming g > 0, it is not true that499

the solution is discrete for all time. This result was shown for structured population models (without500

coagulation and fragmentation) in [34] and with coagulation-fragmentation in Section 4.501

6.2. Mass Conserving Fragmentation Term. To remedy the error generated in mass conser-502

vation of the scheme discussed in the previous section, we propose a new approximation of b(y, dx)503

in the form bh(y, ·) =
∑∞

j=1 αj(y)δxj for which the following holds:504

∞∑
j=1

αj(y)xj = (b(y, ·), x).505
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A natural choice of αj(y) is given by506

αj(y) =
1

xj

∫
Λh(j)

xb(y, dx).507

This approximation results in a mass conserving scheme at the expense of requiring a minimum508

positive size x0. We have the following result:509

Proposition 6.2. Assume there is a positive minimum size x0 > 0 and therefore the points xj =510

x0 + jh. Then511

‖bh(y, ·)− b(y, ·)‖BL −→ 0 as h −→ 0.512

Proof. Taking φ(x) ∈W 1,∞(R) with ‖φ‖W 1,∞ ≤ 1 and letting φj := φ(xj) we have513

(bh(y, ·)− b(y, ·), φ) =
∞∑
i=1

∫
Λ(ih)

φi
xi
x− φ(x)b(y, dx)514

=
∞∑
i=1

∫
Λ(ih)

φix− φ(x)xi
xi

b(y, dx)515

=
∞∑
i=1

∫
Λ(ih)

φi(x− xi)
xi

+
(φi − φ(x))xi

xi
b(y, dx).516

517

Since 0 < x0 ≤ xi the �rst term is bounded and making use of the Lipschitz property of φ we have518

∞∑
i=1

∫
Λ(ih)

φi(x− xi)
xi

+
(φi − φ(x))xi

xi
b(y, dx) ≤

∞∑
i=1

∫
Λ(ih)

(
φi
x0

+ 1)
h

2
b(y, dx)519

≤ (
1

2x0
+

1

2
)Cbh520

521

Therefore by the same arguments in the section above, we can conclude that a scheme with this522

term will converge to the solution of equation (3.1) with g = d = β = 0.523

The standard kernel taken for a structure domain R+ is given by b(y, dx) = 2
ydx. For the domain524

[x0,∞), an example of a kernel which satis�es assumption (F2) is given by525

(6.4) b(y, dx) :=
2q

y − x0

(x− x0

y − x0

)q−1
dx, q = 1− 2x0

y
.526

Notice, that if x0 = 0, then the above kernel reduces to 2
ydx. It should be noted that it is important527

to calculate αj(y) exactly when implementing the scheme. Otherwise, numerical integration error528

may be introduced resulting in lack of mass conservation.529

6.3. Numerical Results. In this section, we test the semidiscrete scheme against some com-530

monly used examples. We begin by testing the coagulation and fragmentation portions of the531

scheme separately. We implement the semidiscrete scheme using MATLAB's ode45 function. In532

each example, we present the exact solution at time T = 1 plotted against the structure variable,533

x, the absolute value di�erence of the numerical and exact solution, and the relative mass between534

the numeric and exact solutions plotted against time. We remark that for examples with only coag-535

ulation, the semi-discrete scheme (6.2) conserves mass (i.e. (6.3)); therefore, any change of mass is536

due to simulating in�nite domain problems over a �nite interval. Where it is applicable, we provide537

a table calculating the BL-norm and numerical order of the scheme. The BL-norm is approximated538

by the algorithm provided in [33], while the numerical order of the scheme is calculated using the539

standard calculation:540

log2(‖µt − µ2h
t ‖BL/‖µt − µht ‖BL).541
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6.3.1. Coagulation and Fragmentation Examples. In this section we presented several numer-542

ical example focused on coagulation and fragmentation processes.543

Example 1. For the �rst example, we take the coagulation kernel κ(x, y) ≡ 1 with µ0 = e−xdx544

and all other model ingredients are set to 0. This problem has an exact solution545

µt =

(
2

2 + t

)2

exp

(
− 2

2 + t
x

)
dx546

see [38] for more details. Numerical simulations for this example are presented in Figure 1 with547

∆x = 1/40 and the BL error and order of conference are presented in Table 1. Simulation are548

performed over the �nite domain x ∈ [0, 20].549

Figure 1: For Example 1 we present on the left side the exact solution (solid line) and the absolute
value of the di�erence between the exact and numerical solution (dashed-line). On the right side
we present the relative mass.

Number of Points BL-Error Order

40 0.0072641 N/A

80 0.0019723 1.8809

160 0.0005119 1.9459

320 0.00013018 1.9754

640 0.000032716 1.9924

1280 0.0000080986 2.0143

Table 1: Error and numerical order of convergence calculated for Example 1.

Example 2. Although our theory does not cover the phenomenon of gelation, we include a550

numerical example showing how the semi discrete scheme handles such kernels. In this example, we551

take κ(x, y) = xy with µ0 = e−x/xdx. This has exact solution(see e.g. [38].)552

µt = e−Tx
I1(2xt1/2)

x2t1/2
dx,553

where554

T =

{
1 + t t ≤ 1

2t1/2 otherwise
555
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and556

I1(x) =
1

π

∫ π

0
ex cos(θ)dθ.557

Numerical simulations for this example are presented in Figure 6.3.1 with ∆x = 1/40 and the BL558

error and order of conference are presented in Table 2. For the order of convergence, the simulations559

are performed over the �nite domain x ∈ [10−2, 20].560

Figure 2: For Example 2 we present on the left side the exact solution (solid line) and the absolute
value of the di�erence between the exact and numerical solution (dashed-line). On the right side
we present the relative mass.

Example 3. In this example we consider fragmentation. We let b(y, ·) = 2
ydx and a(x) = x. As561

given in [53], this problem has an exact solution of562

µt = (1 + t)2 exp(−x(1 + t))dx.563

Numerical simulations for this example are presented in Figure 3 with ∆x = 1/40 and the BL error564

and order of conference are presented in Table 2. Although convergence for the mass conserving565

fragmentation scheme is only shown for positive minimum mass, it still seems to preform well for566

the simulations below. Solving the fragmentation terms exactly leads to an O(h2) term in the last567

subinterval (where y = xj := j∆x). Explicitly, we have568

αj(xj) =
h

xj
+
h2

x2
j

.569

However, we noticed that for this last interval truncating the second term h2

x2j
, which is of order O(h2),570

improves the scheme's performance. We present both the performance of the original scheme and571

the truncated scheme in Table 2. Simulations for Table 2 are performed over the �nite domain572

x ∈ [0, 20].573

Example 4. In this example, take b(y, ·) = 2
ydx and a(x) = x2. Again, as given in [53], this574

problem has an exact solution of575

µt = (1 + 2t+ 2tx) exp(−x(1 + xt))dx.576

Numerical simulations are presented for this example in Figure 4 with ∆x = 1/40. The BL error577

and order of convergence are presented in Table 3. Simulations for Table 3 are performed over the578

�nite domain x ∈ [0, 20].579

23

This manuscript is for review purposes only.



Figure 3: For Example 3 we present on the top left side the exact solution (solid line) and the
absolute value of the di�erence between the exact and numerical solution (dashed-line). On the top
right side we present the relative mass against the exact solution. On the bottom, we present the
relative mass against the initial condition.

Original Scheme Truncated Scheme

Number of Points BL-Error Order BL-Error Order

40 0.19243 NA 0.074275 NA

80 0.079672 1.2722 0.024212 1.6172

160 0.028642 1.4759 0.0068855 1.8141

320 0.0094434 1.6008 0.0018342 1.9084

640 0.0029433 1.6818 0.00047321 1.9546

1280 0.00088279 1.7373 0.00012017 1.9775

Table 2: Error and numerical order of convergence Example 3.

Example 5. For this example, we demonstrate the performance of the scheme for a domain where580

the minimum size is positive. To this end, we truncate Example 3 above to the domain [10−3, 20]581

and use the kernel given by (6.4). Since the exact solution is not known for this equation, we582

compare to the solution given in Example 3. Though we do not compute any numerical orders583

of convergence, we point out the numerical and exact solutions in Figure 5 are very close. This584
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Figure 4: For Example 4 we present on the top left side the exact solution (solid line) and the
absolute value of the di�erence between the exact and numerical solution (dashed-line). On the top
right side we present the relative mass against the exact solution. On the bottom, we present the
realtive mass against the initial condition.

simulation is again done with ∆x = 1
40 .585

Example 6. In this example, we demonstrate what a discrete system would look like in our current586

frame work as well as provide an example of the results show in Theorem 5.1. We also demonstrate587

the mass conservation property of the coagulation terms of the scheme. The simulation is performed588

over the interval [0, 20] however, for clarity we zoom into the interval [0, 4].Take k(x, y) ≡ 1 and589

µ0 = δ0.2 + δ0.4.590

7. Concluding Remarks. In summary, we have presented a size-structured coagulation-fragmentation591

model formulated on the space of Radon measures endowed with the BL-norm. This model uni-592

�es the study of both the discrete and density based coagulation-fragmentation equations, both of593

which have been used in studying the dynamics of oceanic phytoplankton populations. We have594

shown, under biologically relevant assumptions, the model is well-posed using a �xed point approach595

discussed in recent papers [7, 8]. We also established a regularity result that shows, under certain596

conditions on the model parameters, the solution to the model is absolutely continuous to the left of597

the characteristic curve emanating from the point (0, 0). This allows us to prove that any stationary598

solution of the model is absolutely continuous. This extends the result in [34] for structured popu-599

lation models without coagulation and fragmentation. Here, our proof di�ers from that in [34] since600
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Original Scheme Truncated Scheme

Number of Points BL-Error Order BL-Error Order

40 0.1471 0.056501 NA

80 0.041762 1.8165 0.014505 1.9617

160 0.011112 1.9101 0.0036472 1.9917

320 0.0028655 1.9553 0.00091301 1.9981

640 0.00072752 1.9777 0.00022829 1.9998

1280 0.00018324 1.9893 0.000057021 2.0013

Table 3: Error and numerical order of convergence Example 4.

Figure 5: For Example 5 we present on the top left side the exact solution of Example 3 (solid line)
and the absolute value of the di�erence between the exact and numerical solution (dashed-line).
On the top right side we present the relative mass against the exact solution. On the bottom, we
present the realtive mass against the initial condition.

it relies on the implicit �xed point representation of the measure valued solution. Furthermore,601

we have shown how one obtains both the density and discrete coagulation-fragmentation equations602

from model (3.1). We also provided a semidiscrete method for approximating solutions to these603

equations and presented some numerical examples verifying our scheme. In these examples, we604

observed the semidiscrete scheme appears to have at best a second order convergence rate in the BL605
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Figure 6: For Example 6 we present on the left side the numerical solution at time T = 1. On the
right side we present a mesh of the solution over time. On the bottom, we present the relative mass
according to the initial condition over [0, 20].

norm. In addition to the cases covered by our convergence proof, the scheme also seems to preform606

well in the case of a gelation coagulation kernel.607

While the semidiscrete scheme presented in this paper is convergent and conserves mass, it does608

not take into account a growth term. In the future, we plan to develop and study fully discrete609

higher order schemes for the full model (3.1) that preserves solution non-negativity and mass (e.g.610

[13, 45] in the space of integrable setting).611
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