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Structured Coagulation-Fragmentation Equation in the Space of Radon Measures:
Unifying Discrete and Continuous Models*

Azmy S. Ackleh®, Rainey Lyons' , and Nicolas Saintier

Abstract.

We present a structured coagulation-fragmentation model which describes the population dynamics of oceanic
phytoplankton. This model is set in the space of Radon measures equipped with the bounded Lipschitz norm and
unifies the study of the discrete and continuous coagulation-fragmentation models. We prove that the model is
well-posed and show it can reduce down to the classic discrete and continuous coagulation-fragmentation models.
To understand the interplay between the physical processes of coagulation and fragmentation and the biological
processes of growth, reproduction, and death, we establish a regularity result for the solutions and use it to show that
stationary solutions are absolutely continuous under some conditions on model parameters. We present a semi-discrete
approximation scheme which conserves mass and use it to present numerical simulations for the model.

Key words. Coagulation-Fragmentation Equations, Structured Populations, Non-negative Radon Measures, Bounded-
Lipschitz Norm, Semi-discrete Schemes, Conservation of Mass

AMS subject classifications. 35L60, 35Q92 , 92D25

1. Introduction. The discrete coagulation model in the form of a system of differential equations
was first introduced by Smoluchowski in his seminal work |54] and was later extended to a continuous
setting in the form of an integro-differential equation by Miiller [48]. In [12] Blatz and Tobolsky
added discrete fragmentation kernels to the literature which were brought into a continuous setting
by Melzak [47]. In [5] Ackleh and Fitzpartick introduced the coagulation equations in the context of
size-structured population and the fragmentation equation were added to size-structured models by
Ackleh in [1]. These models take the form of a nonlinear nonlocal first-order hyperbolic differential
equation with a nonlocal boundary condition.

Coagulation-fragmentation equations have been used in many applications in physics, chemistry
and biology. In particular, they receive much attention in the study of the population dynamics
of phytoplankton [1, 4, 5, 10, 14, 35, 36, 52|, which is a vital member of the oceanic ecosystem.
Coagulation-fragmentation equations are useful in this application as phytoplankton populations
are often modeled as a collection of particles which are held together via an organic glue. Thus,
particles can either stick together to form a cell of larger size (coagulate) or fracture off into cells of
smaller size (fragment). Coagulation-Fragmentation models are often set with either a continuous
size structure [5, 14, 36] or a discrete size structure |9, 15, 42]. In the case of the continuous models,
the growth of individual cells through biological means is naturally modeled via a structured partial
differential equation. In this work, we extend this idea by presenting a structured coagulation-
fragmentation equation in a measure setting with the aim to unify the study of the discrete and
continuous equations.
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In this paper, we consider the following structured coagulation-fragmentation equation:
Oppu+ 0z (g(t, ) + d(t, p)p = Kp] + Flul,  (t,2) € (0,T) x (0,00)

g(t, 11)(0) D (0 / B(t, w)(y)u(dy), t€[0,T].
1(0) € MF(RT),

where pu(t) belongs to MT(R™), the set of finite nonnegative Borel measures on R := [0, 4+00).
Here, given a Borel subset A C RT, ut(A) := u(t)(A) represents the number of individuals at time
t of structure (e.g. size, age) x in A, and the functions g and d represent the growth and death
rate of individuals at time t of structure x, respectively. Likewise, the function § represents the
reproduction rate of these individuals. More precisely, at time ¢ and distribution p(t), an individual
with structure x produces offspring at rate (¢, u(t))(z). Finally, Dg,1(0) denotes the Radon-
Nikodym derivative of p(t) with respect to the Lebesgue measure, dz, at the point x = 0. For
more information about size structured models in a measure setting, we direct the reader to 6, 31].
Finally, K and F are the coagulation and fragmentation terms respectively that we will precisely
define later.

The first equation in the above model describes how the number of individuals with structure
x, u(t)(z) informally, changes in time ¢ due to the combination of the transport term 0;(g(¢, 1)p)
which moves the distribution p at velocity g, the death rate which removes individuals from the
system at rate d, the coagulation term K[u] which glues individuals together and the fragmentation
term F'[pu] which breaks them. The second equation models the inflow of individuals at the boundary
due to birth. The third equation simply states the regularity of the initial condition.

Throughout the literature, there are a variety of assumptions on the coagulation kernel. Com-
mon assumptions include:the kernel being bounded by some combination of linear functions |9, 32];
some ratio of kernel and sizes of particles tending to zero [37, 49]; and, the kernel blows up for small
sizes [18]. Without some additional assumptions on either the kernel or initial condition, the above
assumptions can cause the formation of particles of infinite size. This phenomenon is known as
gelation and has been shown to happen in finite time. Since gelation is not the focus of this paper,
we will require more regularity on our coagulation kernel.

Most studies of coagulation-fragmentation equations focus on the case of binary fragmentation;
in other words, when particles only fragment into two smaller units (see [44| and the references
therein, as well as the previously mentioned works). Although the initial work [47] considers the
more general case of multiple fragmentation, where particles can fragment into more than 2 smaller
particles, it is difficult to find many results concerning this case. In the setting of density-based equa-
tions, the authors of [47, 46] work with only an assumption of bounded kernels for both coagulation
and fragmentation. Meanwhile, the work [39] allows for linear growth in the rate of fragmenta-
tion, but requires a bound on the coagulation kernel. The case where both the coagulation and
fragmentation kernels are unbounded is studied in [27, 28].

In recent years, the space of Radon measures equipped with the bounded Lipschitz norm has
been used in the study of population dynamics [16, 17, 31, 34]. While many population models
have been studied intensely in this setting, the study of coagulation-fragmentation equations in this
space is sparse. Mild measure solutions to a coagulation-diffusion equation have been obtained in
[49]. The state-space of study was the space of finite measures with absolutely continuous first
marginal and the model does not include any biological processes (i.e. growth, birth, or death).
Existence of solutions to a coagulation-fragmentation equation is obtained in [22] via probabilistic
means. However, authors in [22| only prove existence of a measure solution in the topology of
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weak convergence and also do not consider any biological processes. The authors in [19] consider
a growth-fragmentation equation with a multiple fragmentation kernel identical to that studied
in [27]. They cite well-posedness of their model as a consequence of [17] and do not consider a
coagulation term. We adopt similar assumptions on our model ingredients, but will prove well-
posedness using a fixed-point approach presented in [8]. Finally, for a structured model without
coagulation or fragmentation, [34| proves that solutions are absolutely continuous to the left of
the zero characteristic curve. Under similar assumptions, we will extend this result to structured
coagulation-fragmentation equations.

The layout of the paper is as follows. In section 2, we present notation used throughout the
paper. In section 3, we reintroduce the model and prove some useful properties of the model
ingredients and as well as show the model is indeed well-posed. In section 4, we analyze the
interplay between the biological processes (growth, death and birth) and the physical processes
(coagulation and fragmentation). In particular, we study their effects on the regularity of solutions
to the structured model. In section 5, we show that the classic density and discrete equations are
special cases of our model. In section 6, we present a semidiscrete numerical scheme which we
test against a few examples providing approximate error in the BL-norm and the numerical order.
Finally, in section 7 we will provide discussion of the results and some concluding remarks.

2. Preliminaries and Notation. In this section, we will provide some preliminary notation. The
space of finite Radon measures over R := [0, 00) is denoted by M(R") . The non-negative cone
of M(R™) will be denoted M™(R"). Unless otherwise stated, both of these spaces will always be
equipped with the Bounded-Lipschitz norm given by

- { <x>u<dw>:¢ewlm<R+>}.
Il 1,00 <1 L/RF

Here, W% (R*) is the usual Sobolev space over RT with codomain R equipped with the usual
norm ||¢||ywi.ee = ||@|loo + |¢']|co- In the literature, the BL-norm has had a few names such as the
flat norm [24, 25|, the Dudley norm [21, 23|, and the Fortet-Mourier norm [26, 40]. Another norm
commonly associated with measures is the total variation norm given by

e = @) = s { [ i gecmn}.

[[flloo<1

It should be noted that while over nonnegative measures they are equivalent, the BL-norm and
TV-norm are different on the space of signed measures. In particular, for p € M(R)

lellsr < llpllry-

We refer the reader to [30] and the references therein for more information.
We say a sequence () of Radon measures is tight if

lim sup py,([z,00)) = 0.

T—>00 g

In M*T(R"), we additionally have that the BL-norm metrizes weak convergence. That is (uy)
converges weakly to u € M1 (RY) if for every f € Cp(R™),

fd(pn —p) — 0
R+
3
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as n — oo. For more detail, see [31, 29].
It is often convenient to use the operator notation in place of integration. That is for a function

f, we say
)i= [ (e

Finally, we say the flow of a Lipschitz vector field g(t, z) is a function Tit(x) which satisfies

L19,(0) = glt, Tos(@)),  TO,(x) = .

2.1 —
( ) dt s,t

3. Structured Coagulation-Fragmentation Equation. In this section, we establish existence
and uniqueness in the space of Radon measures for the structured coagulation-fragmentation equa-
tion given by

Oupt + 0, (gt, ) + d(t, p)p = K[ + Flul, (t,) € (0,T) x (0, 00)
(3.1) 9(t, 1)(0) Dgapa(0 /ﬁtu dy), te0.7].
1(0) € MH(R™),

where
p:[0,7) — MT(RT),
(3.2 9, /3 0,7] x MF(RY) — WH2(R"),
| MFRT) — M(RY),
F: M*(Rﬂ — M(RT).

The model functions g,d, and [ are nonnegative and represent the growth, death, and birth
functions, respectively. They are assumed to be influenced by both time, ¢, and the solution to the
population model, u(t). In applications (e.g., see |2, 3, 17, 20]), it is common to choose 3, ¢g and d
to depend on a weighted mean of the population in the following form:

(@) = B (1o, [ Kaauty))

and similar expressions for g and d, for given maps B : [0,7] x Rt x R™ — Rt and Kp : R™ — R*.
Common physically motivated model functions utilize Beverton—Holt type [11]| or Ricker type [51]
nonlinearities with respect to the weighted mean of the population and of a Von Bertalanffy type
[50] model with respect to structure z.

The coagulation term is the measure given by

(3.3) /R+ /R+ (¥ 40y () (dy’)u(dy)—/[R+ k(y, @) p(dy)
= KT [p] = K~ [u],

where k(x,y) represents the rate at which individuals of size x coalesce with individuals of size y.
The first term in (3.3), KT, represents the inflow of individuals due to coagulation. The second
term in (3.3), K~ represents the number of individuals lost due to coagulation. Notice that K*[u]
are measures which can be described in a distribution sense by

(3.4) (K ul0) =5 [ [ swadola+ o) uldo) ulay).
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and

(35 (K7l 0) = [ [ wna)(o) uldy) p(d).

These terms are generalizations of the coagulation terms of the continuous coagulation equation
given by

1

(3.6) KT (u)(x)= 5 /Oz Ky, —y)u(z —yu(y)dy, K (u)(r) = u(z) /OOo (Y, T)u(y)dy.

Indeed, multiplying K (u) by a test function ¢ and integrating we see that
1 oo X 1 o oo
2 ) Ky, @ = yu(z — y)uly)dyd(z) de = 5 ; (Y, z — y)o(x)u(r — y)dz u(y)dy
y
1 oo o
—5 [ ] sroota + puta)de utgya,

which is (K*[u],¢) for u = u(y)dy. An analoguous reasonning yields K. Notice that if x is
symmetric, i.e. k(x,y) = k(y, z), then

3.) Kl o) =5 [ [ wa)iola + ) — ola) - )] ulde) uldy)

Notice by formally taking p = >, m:d,, we can arrive at the traditional Smoluchowski equations.
The fragmentation term is given by

35) FU) = [ o dalwlds) = an = Fp) = Pl

Here, a(y) represents the global fragmentation rate of individuals of size y and b(y, -) is a measure
supported on [0,y] such that b(y, A) represents the probability a particle of size y fragments to a
particle with size in the Borel set A. The positive term, F'*, represents the inflow of individuals
due to fragmentation, and the negative term, F'~, represents the number of individuals lost due to
fragmentation. Similar to the coagulation terms, F*[u] are measures given explicitely by

(FH 1)) = [ 00.).9)aly) n(ds),
where (b(y, ), ¢) = [ 6(2)b(y, ), and
(Plu¢) = [ at)otwn(a).
These terms are a generalization of the multiple fragmentation terms studied in an L' setting
(3.9) Frwe) = [ boaat) di. P 0)(@) = a@ula).

where, following [22], we allow b(y, -) = b(y, dz) to be a non-negative measure supported in [0, y].

We impose the following assumptions on the growth, death and birth functions:
5
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(A1) For any R > 0, there exists Lr > 0 such that for all ||u;||7y < R and ¢; € [0,00) (i = 1,2)
the following hold

llg(t1, 1) — g(te, p2)lloo < Lr(lt1 — to| + [[1 — p2llBL),
ld(t1, 1) — d(ta, p2)lloo < Lr(|t1 — to| + [|u1 — p2llBL),

18(t1, u1) — B(ta, u2)|loo < Lr(|t1 — ta| + ||p1 — p2llBL),

(A2) There exists ¢ > 0 such that for all "> 0

sup sup Nlg(ts ) lwne + d(ts 1) woe + G 1) lwace <
t€[0,T] peM+(RT)
(A3) For all (¢, ) € [0,00) x MT(RT),
g(t,1)(0) > 0.

We assume that the coagulation kernel x satisfies the following assumption:
(K) & is symmetric, nonnegative, bounded by a constant Cj, and globally Lipschitz with Lip-
schitz constant L.
We assume that the fragmentation kernel satisfies the following assumptions:
(F1) a € WH*°(R1) is non-negative,
(F2) for any y > 0, b(y,dx) is a measure such that
(i) b(y,dx) is non-negative and supported in [0,y] so that for all y > 0 there exist a
Cp > 0 such that b(y, RT) < Cy,
(ii) there exists Ly such that

16Cy;-) = b(@; )l BL < Loly — 9
(iii) (b(y,-),z) =y

It follows from (F2) that for any ¢, ||¢|lw1.~ < 1, the function ®[¢|(y) = (b(y, "), ®) is bounded
Lipschitz with ||®[¢](y)|ljy1.0 < Cp = max{Cy, Ly}

Given T > 0, we say a function p € C([0,T], M*T(R")) is a weak solution to (3.1) if for all
¢ € (C*N W) ([0,T] x RY), and for all ¢ € [0,T] the following holds:

ot 2)pue(d) — / 60, 2)pp(de) =
R+ R+
(3.10) /0 /R 016(5,2) + 905, 1) (2)0a (s, ) — (s, 1) (2)6 (5, )] ()

t

o [+ Pl ot D ds+ [ 605,003 ) @ (da)as.
Notice that we can also write model (3.1) with the boundary condition as a source term:
(3.11) Oep+ 0x(g(t, p)p) + d(t, p)p = Klp] + Flu] + S(8)[p]

where S(8)[u] = (5 8(t, 1) (v)i(dy) ) d.=o.

The next three propositions discuss useful properties of the source terms.
6
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185 Proposition 3.1. For every u € M(R") we have

3

5 (312) IKllrv < SCulluliy.
187 For every p,v € M(R™) with ||u||rv, |v]rv < R,
188 (3.13) IK 1] = K[V]llsr < Lirlle = v5e,
189  where IZ,@R 18 a constant depending only on Cy, L., and R.
190 Proof. To prove (3.12) notice that

1 1
191 1K Wy < / / k@, y)|ul (de)|ul(dy) < 5 CrllullFy
192 2 Jr+ Jr+ 2
193 and also
1o 1Kl < [ [ s wlul@lul@) < Cululfy.
195 R+ JR+
196 Since || K[plllrv = K [u] — K~ [plllrv < |K*[ulllzv + [ K~ [u][l7v, we obtain (3.12).
197 To prove (3.13), let ¢ € WLH°(R™) be such that ||¢||j1.0 < 1. Then
198 2(K " [u] — KT [V], 9)|

199 ‘// Ky, v )d(y + v ) u(dy) u(dy') /R+/ Ky, y") oy + y)v(dy)v(dy')

00 /R /R R 90l + 3 ) dy) (u — ()
o0 h /R (0900 + 1) u)(dw].

203 Since k is symmetric,

204 2|(K " [n] - o) =

| st )= v)an) oo+ ()
2 < [ ][ st )¢(y+y)(u—1/)(dy)'(!u!+IV|)(dy’)-

207 For a given 3 > 0, the function y — x(y,y')¢(y + ') is bounded Lipschitz with norm < Cy + L.
208 Thus

399 2/(K " [u] = KT V], 0)| < (C + L) (|ullrv + [vll7v) e = vl B
Taking the sup over all such ¢ gives

1K [u] = K*[]llBr < (C + L) (lpllrv + [vllov)lle = visL.

/R+/ iy, z)o (@) uldy) p(dz) / /R+ (y, 2)¢(x)v(dy)v(dzx)
k(y, x Yu(dy)(p — v)(dx) k(y, — v)(dy)v(dz)
R+ JR+

214 /R /R w(y, )6(2) (1 — v)(da) \/ 5y —u)(dy>||¢<x>||u|<dx>

< ((Le+Collullry + Wity max{men})nu —vllne

7

211 In the same way
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Combining these two results we see that
1K 1] — K[v]llr < Lirlle — vibe. u

Next we have the following proposition concerning the fragmentation term:

Proposition 3.2. For any u € M(R™) we have

(3.14) IEWllrv < (Cy + 1) ||allsolpllzv-
and
(3.15) | F'[u] — Flv]llsr < Caplli —vlBL-

Proof. Clearly,
I~ [plllzv < llallsllpllzv

and
[ F7 1] = F~[VlllBe < llallwrelln — vBL = Callp — V| BL.
Also,
IE*[Wllrv < llallsollpllzv @ (D)oo = Chllaflollpllv-
and

IF ] = Frlllse <l —visr  sup  [[®@[¢lallwiee = Caplln —vlibe-

H¢||W1,00§1
The following proposition is immediate from assumptions (Al) and (A2).
Proposition 3.3. S(t)[u] satisfies the following:
S(t)[u] > 0 whenever p > 0;

1S [lllrv < Cllplrv;
For any t > 0 and for any p,v with ||p||rv, ||v|rv < R,

1S@)[ul — SOWlBrL < (¢ + RLg)|lx — vibL

3.1. Well-Posedness of the structured coagulation-fragmentation equation (3.1). Here, we
aim to prove model (3.1) is well-posed. More precisely we prove that

Theorem 3.1. Assume that assumptions (A1),(A2),(A3),(K),(F1),(F2) hold. Given an initial
condition py € MT(R™), there exists a unique global solution p € C([0,00), MT(RT)) of equation
(3.1). Moreover, if uo has finite total mass in the sense that flR+ x po(dr) < oo, then for any T >0
there exists Cr > 0 such that

/ x p(dx) < Crp t € [0,T].
R+

In particular, if g = d = 3 = 0 then mass is conserved in the sense that [p, x pi(dx) = [pr  po(de)
for any t > 0.

Proof. Let
B(t, p) := F[u] + K" [p] + S(t)[1]

and

N(t,2,) = =d(t,)(e) = ala) = [ (g ().
8
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Then equation (3.1) reads

Ay + 0 (g(t, pp) = B(t, ) + N(t, -, p)p-

For any R > 0, denote Mgr(R) := { € M(R) : ||ullry < R}. Notice Mg(R) is complete
for the BL norm. According to Propositions 3.1, 3.2, and 3.3, B : Rt x M(R) - M(R) and
N : R x R x M(R) — WL>(R) are continuous and satisfy the following properties:

Blt, u] € MT(R) for any t > 0 if p € MT(R),
for any R > 0 there exists Cp g > 0 and Lp g > 0 such that for any ¢ > 0 and any u, i € Mpg(R?),

I1B(t, w)llrv < Cpr,  and  |[B(t,p) = B(t, i)l < Lp,rlln— fllBL-

for any R > 0, there exist Ly p > 0 and Cy p > 0 such that for any ¢ > 0, z € R, and any
,u,ﬁ € MR(R),

ING - mllwre <Cxp and  [N(tz,p) = N(t,2, i) < Ly glle — Allse.

It follows from standard arguments (e.g. [7, 8] and references therein) that equation (3.1) has a
unique solution p € C([0,7*), M(R™)) which is nonnegative and defined on a maximal time interval
[0, 7). Moreover, T* < oo if and only if limy_,7+ ||u¢]|7v = oo. Indeed this follows applying Banach
fixed-point Theorem to the map I' : Xp — Xp with

(3.16)  Xr—{ue C0,T], MR") : u(0) = puo, llullrv < 2lluollry vt € 0,7},
and

t
(3.17) Dl = T, 20 + /O TS N (s, 1) ds,

where N(s,p) := N(s,-, p)pu + B(s,p), and T, is the flow of the vector field (t,z) — g(t, i) ().
We can then prove that taking 7" small enough, I'(X7) C X7 and T is a strict contraction. We then
deduce that (3.1) has a unique solution y € C([0,7*), M(R™)). If moreover pp > 0 we can then
prove as [8|[Prop. 5.1 and Thm 5.2] that p; > 0 for any ¢ < T™*.

Recall that if T* < oo then it must be limy_, 7+ |||y = 0o. Thus to prove that T* = oo, it is
enough to verify that there exists C > 0 such that

(3.18) [pellrv < llpollrv exp(Ct)  for any ¢ € [0,T7).

To begin, we first note for any finite non-negative measure p,

(Kl =5 [ [ sl ndontay) <0

and

a) ) < [ (o= 1)aty) u(dy).

(PUd.1) = [0, Dato) utcy) — [

R+
Therefore, taking ¢(t,2) = 1 in (3.10), we can arrive at

(1) < (o 1) + / / [(Ch— D)aly) + B(s, ) ()] ia(dy)ds
(3.19) 0 JRT

< (po,1) + [(Cp — D[al[oc + (] /0 (115, 1) ds.
9
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265 The Gronwall inequality then gives (3.18) with C = (C, — 1)||al|« + ¢-

266 Now, assume that fooo x po(dr) < co. Let R > 0 and consider a smooth regularization of the test
267 function ¢r(z) = min{z, R} in the weak formulation (3.10). Since ¢r(x +vy) — ¢r(x) — ¢r(y) <0
268 for any x,y > 0, we have from equation (3.7) that (K[u],¢r) < 0. Moreover, ¢r(0) = 0 and
269 ¢pr > 0. We thus obtain

270 (e, &R) < (po, OR) + // 9(s, p1s) () PR(Y) ps(dy) der//]R+ (Y,°), or)a(y) us(dy)ds

271 Using (A2) and (3.18), we can bound the 2nd term on the right-hand side by Cr ¢ for t € [0,77].
272 Using that ¢r(x) <z, (b(y,dz),z) =y, and (A2), we have
t
273 (e, dr) < (po, ) + Cr ¢ +/0 /R+ ya(y) ps(dy)ds
t
274 < (uo,x)+cT,¢+\a||oo/ (10, ) ds.
0

Passing to the limit R — oo using the Monotone Convergence Theorem, we deduce

t
(11:2) < (0,2) + Cr + e [ (1) ds.
0
The Gronwall inequality then gives

(e, ) < ((po, ) + Och)eHa”oct.

275 As a consequence we can use any continuous test-function ¢ with linear growth, i.e. |¢p(z)| <
276 C'(1+|z|). In particular, we can take ¢(x) = x in equation (3.10). Since (K[w],z) = (Flu), x) = 0,
277 we obtain

278 (e, ) = (po, @ / / (s, 115)(y) s (dy) ds—/ /+wd s, j1s)(z) prs(dy)ds
R

279 In particular, if g = d = 0, we have (u, x) = (uo, x) i.e. mass is conserved for any ¢ > 0. [ |

280 Remark 3.1. In applications the smallest size will not be of size 0 but rather some xg > 0. Model
281 (3.11) and the Theorem above can be adjusted for such applications by shifting the Dirac measure at
282 0 to mg, requiring g(t, u)(xo) > 0, and requiring b(y, -) to be supported on [xo,y). In this case, the
283 mass conservation equation would be

284 (1, ) = (po, @ // 9(s, ps) (Y) s dyds—// xd(s, ps) () ps(d)ds
R+

255 w [ ot m)@matan)as.
0 JR+
286 3.2. A stability result. Let us consider a sequence of equations
O+ 0z (9" (8, pp) + d" (8, p)p = K" [p] + F*[u],  (t,z) € (0,00) x (0, 00)
s oy S ENODu0) = [ Bty t>0,

1M(0) € MHRY), /0 (14 2) 1 (0)(dz) < 00
10
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289
290
291
292
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294

(52)

(53)

(54)

295
296
297
298
299

300

301

where

::iéﬁﬁgﬁw%y%%ﬂAomwmuuw—14&m%%xmuwm

Pl = [0 )" @ntdy) "

and

Let us assume that

(S1) the functions ¢g”,d", 8", k", a",b", n € N, satisfy assumptions (Al),(A2),(A3),(K),(F1),(F2),
It then follows from Theorem 3.1 that (3.20) has a unique solution p" € C([0,00), M(R4)) such
that [ 2 u"(t)(dz) < co. Under some additional assumptions on the coefficients of (3.20) we can
extract from u™ a subsequence converging to a solution of (3.1).

Theorem 3.2. Assume that the functions g™, d", ", k™, a"™,b", n € N, satisfy assumptions (S1)
and also that
there exists C' > 0 such that |K"||co, |a"]|cc < C and there exists functions k,a such that

K" = Kk, a" = a uniformly on compact sets.

there exists C > 0 and a function b : Ry — M(Ry) such that (b"(y),1) < C for any y > 0 and
n € N, and for any ¢ € C(R™),

0" (y), 9) = (b(y), @) uniformly for y in a compact set.

there exist functions g,d,3 : [0,00) x MT(RT) — WL (R") such that for any t > 0 and any
sequence of measures m" € MT(RT) converging weakly to m € M (R™) we have

g (t,m") — g(t,m), d"(t,m") — d(t,m), B"(t,m") — B(t,m)

uniformly on compact sets of RT.
Concerning the initial condition p"(0) € M1 (Ry), we assume that [p. (1 + z)pg(dx) < C and
we — po n the BL norm for some g € M*(RT).

Denote u™ the solution of (3.20). Then, there exists p € C(RT, MT(R™)) such that, along a
subsequence, pu™ — p in C([0,T], MT(RT)) for any T > 0, and u is a solution of (3.1).

Proof. We have

(K" =—/ / ", y) i (de) i (dy) < 0

and
[(F" ], D] < /(\(b”(y% D[+ 1)|a"(y)| dpi” < Sup (lla"loo + [@" (y), D)]) (ui', 1) = C(f', 1)

Moreover, (ug,1) — (1o, 1) so that (ug,1) < C. Taking ¢ = 1 in the weak formulation of (3.20) we
thus obtain

t t
() < (0 +C [ rnds<cac [ s
0 0

It then follows from Gronwall inequality that for any T > 0,

(3.21) W 1) <Cr  te 0Tl
11
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313
314
315
316

317

As in the proof of Theorem 3.1, using ¢r(x) = min{x, R}, R > 0, as a test-function we obtain

b on) < oo+ [ [ 0" @) itds+ [ [ 0" 6w 0) i
<Cr+C [ (ux)ds.
<Cr+ /Oms 2)ds

Letting R — oo using the monotone convergence Theorem, and then applying Gronwall inequality
we obtain

(ni,r) < Cr.

In particular, it follows that (i), is tight for any ¢ € [0,7]. Moreover for 0 < s < ¢t < T, and any
¢ € WH ||¢||w1. < 1, we have using (3.21) that

t t t
(= i2s0) = [ toara)ar = [ Gideronir+ [ e, 8r o)
t
+ / (K[ur], &) + (Flur], &) dr
t
<3CCp(t—s) + / 3K ol + Clldlloc dr < Gt — s).

Thus, ||} —u?|| gL, < Cr(t—s) so that the sequence (u™),, € C([0,T], M(R™")) is uniformly equicon-
tinuous. By the Arzela-Ascoli Theorem, for any T' > 0, we therefore have a convergent subsequence
(not relabeled) of the pf* in C([0,T], M+ (R™)) which converges to some u € C([0,T], MT(RT)). A
diagonal argument gives that p™ — p in C([0,T], MT(R")) for any T > 0.
Since ¢p is bounded Lipschitz, we can pass to the limit n — oo in (u}, ¢r) < (uy,z) < Cr to
obtain (u¢, ¢r) < Cpr. Sending R — oo gives that for any 7" > 0,
(ue,x) < Crp for any t € [0, 7.

We now want to pass to the limit n — oo in the equation satisfied by u”, namely
[ ottaian) — [ o0.0)p(da) -
(3.2 [ 00006, + 57 ) 102000,2) — (o, ) )65 2) i s
[+ ot Vs + [ [ ol 005 s

0

Let ¢ € C.(RT x RT). We pass to the limit in the right-hand side using that uj* — p for any ¢t > 0.
Since k™ — k uniformly on compact sets, (u2,1) < Cr, and pu? ® pu — ps @ ps weakly, we can pass
to the limit

2K /R ) /R () = k)@ + y) — 9lx) — B(y) (o) (dy)
[ ] reela+ ) - ole) = o) oz ()
o [ )@+ )~ 60— 60) e (do)dp (dy) = 2(K ) ).
R+ JR+
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345
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Since |(K[u?], )| < C, we obtain by dominated convergence that

/ (K[, ¢) ds — / (K [j1s], 6) ds.
0 0

Similarly, we can pass to the limit in (F[u?], ) in the same way. Finally, in view of (S4), (3.21)
and since ¢ has compact support we have for any s > 0 that

/R+ d" (s, ps ) (x)d(s, z)py (dx)
= [ @) = dls,p) @, (o) + [ dls. ) @)tz (da)

R+

— . d(s, ps)(z)d(s, z)ps(dz).

Since moreover

| /R (5,1 (@) (s, ) ()| < Gl (45, 1) < O

we obtain by the Dominated Convergence Theorem that

/Ot /R+ d" (s, py)(x)p(s, x)puy (dx)ds — /Ot /R+ d(s, i) (2) (s, ) ps(da)ds.

We treat the terms with ¢” and 8" in the same way. |

4. Interplay of Growth, Coagulation, and Fragmentation. In the recent payer [34], it was
shown that the steady state solution of a size-structured population model (i.e. model (3.1) with
K = F = 0) with positive model ingredients is absolutely continuous with respect to the Lebesgue
measure. This leads naturally to studying the effect the physical processes of coagulation and
fragmentation would have on such regularity. With this in mind, we present the following theorem:

Theorem 4.1. Assume (A1)-(AS3), (K), (F1), (F2), and (B2) hold with g(t,u;) € C*(R™) tak-
ing strictly positive values, and let s be the solution to (3.1) for some some initial condition pyg.
Moreover, assume each measure b(y,-), y > 0, is absolutely continuous w.r.t. Lebesgue measure with
density b(y,x), and that the family {b(y,-) : y > 0} is uniformly equi-integrable in the sense that
for any € > 0, there exists 6 > 0 such that for any V C RT measurable with |V| < §, there holds
b(y,V) = [, by, z)dx < e. Denote ly(t) the solution to

41o(t) = g(t, u(t) (o (2)),
lo(0) = 0.

Then for any t > 0, u; is absolutely continuous on [0,1y(t)) with respect to the Lebesque measure
(’i.e. ur K da;)

For simplicity of notation, we will denote

glt.) =gt ) (z),  Bls) = /0 B ps)Wns(dy),  Toa:=Tly.
We also recall from equation (3.11) that

S(s)[ps) = 5(3)50@’:0-

Before we can prove Theorem 4.1, we first need the following useful lemma:
13
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359
360
361

362

363

364

Lemma 4.1. Since g > 0, the map ® : s — T (0) is a bijection from [0,t] to [0,1lo(t)]. Moreover

(4.1) @’(s):—g(s,o)exp{/ axg(r,TS,T(O))dT} Vs e [0,

Moreover for any 0 < s <t, Tsy :[0,1o(s)] — [0,1o(¢)] is a bijection with

(4.2) %Ts,t(:n) = exp { /: 0z g(1,Ts 7 () d’T}.

Proof. The bijection property of ® follows from the uniqueness of trajectories and the definition
of lp(t). As for (4.1), taking the derivative with respect to s in %Tsyt(O) = g(t,Ts:(0)) yields

T54(0).

d/d -
%(%Ts,t(o)) = awg(taTs,t(O))% )

Since § is C'in x,
d d bt
a0 = S L0 oo [ 05(r. Tr O},
S
Since T 4(0) = [ §(7, Ts.~(0)) dr we have LT,4(0)j—s = —§(s,0) and so we deduce (4.1).
The proof of (4.2) is identical, but with taking the derivative with respect to = in %T57t($) =
§(t, Ts4(z)) and using that LT,  (z) = 1. [ |

In particular for any bounded measurable function ¢ : [0,00) — R,

/ (Tus8S(3)[ua], 6) ds = / B(s)p(B(s)) ds
0 0
W 5(9(x)) ' i
—/0 o(x )mexp{ _/bl(:c) 3xg(T,Tq>—1(x)7T(0))d7-} dz,

so that fot Ts185(s)[us] ds = f(f T, +#B(5)d0 ds is the function

2(H—1 T t
(44) r — 1[0710@)] (x)mexp{ — A—l(x) 8369(7, T<I>*1(x),r(0>) dT}

We can now prove Theorem 4.1. The proof we propose is inspired by [55|[Lemma 3.5| and
[41][Lemma 2.6]. However the presence of the growth term adds new difficulties.

(4.3)

Proof. Recall that the solution pu was obtained as a fixed point of the map I" defined in (3.17)
namely

Ht = TtﬁMO + /0 Ts,tu(F+ [Ms] + B( )60) ds + / s tﬁ( [MS] - A(‘g? )Ms) ds

where T, is the flow of the vector field (¢,z) — g(t,z) = g(t, pe)(x), and

A(t,x) = d(t, ) (@ +/ w(z,y) e (dy) > 0.
R+
Notice due to the positivity of the model functions
t ~ ¢
(45) pe < Tito + [ Tot(F () + B0y ds + [ Tl ) ds.
0 0
14
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367
368

369

370

373

375
376
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D

Given some 0 > 0 and s € [0,t], let As be the family of subsets of [0,lp(s)) of the form

(4.6) A=T (- (T (T N(E) —2n) —2p1) ) — 11
where n € Ng, s < 81 < -+ < s, <t, 21,...,2, > 0, and E C [0,1y(t)) is a Borel subset with

|E| <. It is implicitly understood that at each step of the construction of A we take the intersection
with [0, 00). Define then

E(s) :=sup {MS(A) cAc -As}7

where we extend s to (—oo,0) by 0.
Notice that Tsfpo is supported in [lo(s),00) and that any A € A, is a subset of [0,lp(s)). It
follows that for any A € Ay of the form (4.6) we have by (4.5) that

(4.7) us(A4) < /0 (] + B(r)o) (T2 (A)) dr + /0 K (T (4)) dr

For any 0 < a < b < T and any subset B C [0,00) we have by (4.2) and assumption (A2) that

d
1B = [ AaTap)dy= [ @) LT )] de < 005,
’ R+ R+ T -

Using the translation invariance of Lebesgue measure we then have that the measure of A given by
(4.6) can be bounded by

1A| < ec((t_sn)'i‘(sn_Sn—1)+"'+(51_3))|E'| < eSt=s) 5 < C7d.

Here and in the sequel of the proof, we denote by C7r any constant depending only on T and the
constants appearing in assumptions (A1),(A2),(A3),(K),(F1),(F2). It then follows from (4.4), (A2),
(A3) that

/0 ) B()d0(TrL(A)) dr < Crd.

Moreover
Frld() = | o) (Aalu)inr () < el supbiu)(4).
R+ y>0
Since ||p-||rv < Cr, T € [0, s], we obtain

/SFWMTJ(T;;(A))MOT sup b(y)(A).
0 y>0,]A|<Cré

If we assume that the family {b(y,-)}y>0 is uniformly equi-integrable then sup,>g |4<cys 0(y)(A)
goes to 0 as d — 0. We denote o(1) any quantity going to 0 as 6 — 0 uniformly in ¢ € [0,7] and A.
Coming back to (4.7) we thus obtained so far that

S
(4.8) pe(A) < (1) + [ KT ) dr. o
0
To bound the coagulation term in the right-hand side recall the definition of K*:

2K, |(TH(A)) = /

Ly oy (2 + W)y (d2) e (dy) < [1x]oo / 1 (T2 2 (A) =y (dy).
R+ Rt

15
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389
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391
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397

Since T, }(A) — y € A we obtain

2K [u-](T53(A)) < [lkflocE(7) /R+ pir (dy)

so that
K e )(T; 5 (A)) < Cré(r).

T,S

Coming back to (4.8) we obtain

ps(A) < o(1) + Crp /OS E(r)dr.

Since this holds for any A € A, and any s < t we deduce

E(t) < o(1) + Cr /Ots(f) dr

which yields by Gronwall inequality

In particular, since E € Ay,
w(E) = o(1) VE C[0,lp(t)), |E| <.

It follows that p is absolutely continuous on [0,ly(t)) for any ¢t > 0.

This leads us to the following corollary about the regularity of a steady state solution to model
3.1.

Corollary 4.1. Let the assumptions of Theorem 4.1 hold with g,d, dependent on time only
through py (i.e. g(t,put) = g(ue) etc.) and assume p € MT(RT) be a steady state solution of
model 3.1. Then u is absolutely continuous with respect to the Lebesque measure. Furthermore, u
satisfies

[ sw@htdn) = [ wd)@ntda).
R+ R+

Proof. The proof follows from similar arguments of Proposition 2.6 in [34] with making use of

g(p)(x) > 0 for all z. Indeed, since g(u)(x) > 0 for all z we have

lim 1°(t) = oc.
t—00
Theorem 4.1 then implies a solution p; is absolutely continuous on the interval [0,1%(¢)). Thus, the

steady state solution u; = p is absolutely continuous on [0,00). The mass conservation equation
follows from Theorem 3.1. |

5. From Measure Equation to Discrete and Continuous Equations. It is often claimed that
one of the many benefits of population models set in measure spaces is the unification of the study
of discrete and continuous structure. In this section, we demonstrate this property by showing that
model (3.1) includes as special cases the discrete Smolukowski equations [54] and the continuous
Miiller model [48] .

16
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5.1. Continuous Density Model. In this subsection, we briefly recover the continuous density
equation studied in [1, 5, 14, 48] from (3.1). This follows naturally under the following assumptions:
(B1) po is absolutely continuous with respect to the Lesbesgue measure,
(B2) b(y,-) is absolutely continuous with respect to the Lesbesgue measure.
Then by undoing the derivations of (3.3) and (3.8), one arrives at the density equations (3.6) and
(3.9) covered in the aforementioned works. In particular, we can recover the binary fragmentation
kernels studied in [1, 14, 36] by taking

e —5,8)ds .:77(33,14—3:) T
(5.1) a(y)—z/o’v(y ,s)ds,  b(y,) () d

where the function 7(z,y) models the rate at which a particles of size x + y fragment into particles
of size z and y.

5.2. Discrete Equation. In this subsection, we show under certain assumptions, model (3.1)
will reduce to the discrete coagulation-fragmentation equation discussed in [9, 54]. To obtain these
equations, we set g(t,u) = B(t, ) = 0 for the remainder of this section. To this end, suppose that
the measures po and b(y, -) are supported on hN = {h, 2h, ...} for some fixed h > 0 i.e.

(C1) po = Zm?&ih where for each i, m{ € R*,
zEN

(C2 Z bil
We then have the following result:

Theorem 5.1. Let assumptions (Al1),(A2),(K),(F1),(F2), (C1), (C2), and (C3) hold. Then for
any t € [0,00), the solution p; of (3.1) is supported on hNy:

(5.2) pe =Y my(t)oun,
leN
where the my(t), | € N, satisfy the discrete coagulation-fragmentation equation

%ml( t) + d(t, ) (Lh)ma(t)

-1 00
(5.3) :% Zmi(t)ml,i(t) (th, (I —1) Z K(ih, Lh)m;(t)my(t)
; i=1

+ Z by(ih)a(ih)m;(t) — a(lh)my(t)
i>1

with initial condition my(0) = mY.

Proof. Tt is clear from Theorem 3.1 that (3.1) has a unique solution p € C([0,00), M*(R™)).
Moreover, according to the proof of Theorem 3.1, p is a fixed-point of I' defined in (3.17). Since
g =20, ng’t is the identity map. Thus I' is simply given by

Tl = o + /0 {Flva] + Klvs] + S(5)[vs] — d(s, va)vs} ds

for any v € C([0,00), M(R™)). Notice that if v, is supported in AN for any s then so is T'[v];
(concerning K notice this follows from the fact that AN + AN C hN). We can thus replace Xt in
(3.16) by

(5.4) Xr = {p € C([0,T], M(hN)) : p(0) = po, [lpllrv < 2llpollrv Vit € [0, T},
17
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and repeat the proof of Theorem 3.1 verbatim to obtain that pu; is supported in AN for any ¢ > 0.
It follows that u; can be written as in (5.2). Equation (5.3) follows from (3.10) taking a C' test-
function, ¢, constant in time and supported in (lh — h,lh + h) such that ¢(lh) = 1. [ |

6. Numerical Methods and Results. In this section, we present a semidiscrete scheme for
a coagulation-fragmentation equation based on (5.3) and Theorem 5.1 as well as provide some
numerical results based on this scheme. For the rest of this section, we assume that S(t,u) =

g(t,p) = 0.

6.1. A semi-discrete numerical scheme. We consider equation (3.1) with [p, (1+)uo(dz) <
oo and we assume that assumptions (Al),(A2),(A3),(K),(F1),(F2) hold. We present a semi-discrete
scheme inspired by [43].

Consider the grid hNg and the cell A"(i) centered at the grid point ih defined by

A" = [hi — h/2,hi +h)2),i>1,  A*0)=10,h/2).

We define the discretization of the initial condition po € MT(RT) with respect to the grid hNy by
ph = b @)on,  pg(i) = po(A"(i)).

i>0

We want to approximate the solution p; of (3.1) by measures ,u? supported in hNjy and solution
of some discretized equation. We first approximate the model coefficients &, a, b as follow. First we
define

1 / 1
h h
a; = — a(y)dy, Kii = —5 K(x,y)dxdy
n gy ™ S N
for 7,7 > 1, and
2 4
ag =3 / ay)dy, Koo =13 / k@, y)dzdy
AR(0) AR (0)x A" (0)

(with the natural modifications for /@&j and /4320, i > 1). We then let a" € WH(R*) and s €
WL(RT x R*) be the linear interpolation of the al* and m?’j respectively. Finally, we define the
measure b"(jh, ) € M*(hN) by

b (jh, ) = b(jh, A" (i))6in

i<y

and then b (z,-) € M (hNp) for > 0 as the linear interpolate between the b"(jh, ). We define
the corresponding coagulation and fragmentation operators K and F* by

(K0) =5 [ [ W na)iote + 1) = ola) — o) utde) )

FMu)() =/ b (y, )a" (y)u(dy) — a"p.

Notice that K" a" b" satisfy (K),(F1),(F2)(i),(F2)(ii), (C1),(C2),(C3). However (F2)(iii) is
only satisfied up to an error of order h, namely

|(bh(y7 )ax) - y! < Ch for any y > 0,
18
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145  where the constant C' depends only on Cj given by (F2)(i). Indeed recalling that for any j7 > 0 the
146 measure b(jh, ) is non-negative and supported in [0, jh| we have

L (6 (b, @) — 3] = |8 (G, ), ) — (b(3 \<2/ ih — o b{jh, da)

1<J

>

, < =b(jh,RT) < h.
149 -2 G ) Cb

150 The result follows recalling that for y € [jh, (j+1)h] we have b"(y, ) = £[b"((j+1)h,-)—=b"(jh, )] (y—
151 jh) +b"(jh,-).

152 It then follow from Theorem 5.1 that (3.1) with g =d = 8 =0, K = K" F = F" has a unique
153 solution p € C([0,00), MT(RT)) which is supported on hN:

154 (6.1) Z ml t)oin,

1eNg

155 where the mlh (t), I € Ny, satisfy the discrete coagulation-fragmentation equation

Zm ml z zl —1i Z’{zlm )

+me A1) ()—a?m?(t)

i>1

156 (6.2)

157 with initial condition m['(0) = mf(l). Notice that the first two terms on the right hand side of (6.2)
158  make up the discrete Smoluchowski equations and therefore these terms conserve mass. Indeed,

159  multiplying by x; := [h and summing over [ = 1,2,... we have
1 oo -1
160 B Z Z ayml(t)mh , (t)k! l ; Z Z J?l/% mit)ymp(t)
I=1 i=1 I=1 i=1

1 [e.e] [e.@] o o0

161 (6.3) =5 SO @i+ aymPemi sl = >0 wklml (t)m (t)
=175=1 I=1 i=1

163 =0.

164 However, since |(b"(y, ), ) —y| = O(h) it is clear that the fragmentation terms only conserve mass
165 up to an error of order h.
166 To study the limit of u}* as h — 0 we first state the following properties:

167 Proposition 6.1. The following holds:

166) limp o ||y — pollBL = 0 and [, (14 2)pf(dx) < C,
i(ii) a" — a, k" — K uniformly on compact sets, and a”, k" < C.
(iii) for any ¢ € WH(R) , (b*(x), ) — (b(x), ) uniformly for x in a compact set.

471 Proof. For any ¢ € WH®(RT), |41 < 1, we have
h
172 =) =3 / SRS / ih — al po(de) < pro(R").
Moreover
/ zpl (dx) Z/ ih po(dx) Z/ x po(dz) + O(h) = (po, ) + O(h)
R+ i>0 z>0
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189
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504

which proves (i).
Concerning (ii), since 0 < a,x < C, we have 0 < a", k" < C. Moreover, let x € [nh, mh] for
some n # m € Ny. Then letting y4(z) represent the characteristic function over the set A, we have

a:—ih

la" — a0 < ay; — N )+ ai — a(@)| Xin,i+1)n) (T)
< Z la(zi1) — a(x;) + a(x;) — a(x) + O(h)| Xjin,(i+1)n) ()

< llallwre2h(m — n) + O(h).

Finally for (iii) again assume = € [nh, mh], then for ¢ € W1°(R) we have

(b"(x) — b(x), ¢) = Z ( i1 — 7<Z5)( jh) + (b = b(x), ¢)] X[ih,(i+1)h) (T)
j=n =
gi > b((F + Dk, AG) ) = > b((j)h, A"(0)¢(ih) + (b} — b(x), ¢)
j=n [i<j+1 i<j

Il

[(b((F + 1)) = b(jh),®) + (b(§h) — b(z), P) + O(h)] X(in,(i+1)n) (T)-

<
Il
3

Making use of assumption (F2), we have

(b" () = b(x), ) < 2Ly[|@llwr.ochm — nl,
which completes the proof. |
It follows form this proposition that the assumption of Theorem 3.2 are satisfied. Thus, we
deduce that p” converges along a subsequence h — 0 to g solution of equation (3.1). Since this

equation has a unique solution, the whole sequence p converges to p:

Theorem 6.1. The measure pf = > >0 m(t)8;, where the ml solve (6.2) converges to the solu-
tion wy of equation (3.1) in C([0,T], M(R™)) for any T > 0.

We can thus think of the system (6.2) as a semi-discrete scheme for solving equation (3.1). One
could combine this semidiscrete scheme with any ordinary differential equation scheme (e.g. any
Runge-Kutta Method) to arrive at a fully discrete scheme. Convergence for such a scheme then
follows from a standard triangle inequality argument. In the next section we present some numerical
experiments to evaluate the quality of such a scheme.

Remark 6.1. One can easily include the case B,d > 0 as these terms do not affect the discrete
structure of the solution. Howewver, in the case of additionally assuming g > 0, it 1s not true that
the solution is discrete for all time. This result was shown for structured population models (without
coagulation and fragmentation) in [34] and with coagulation-fragmentation in Section 4.

6.2. Mass Conserving Fragmentation Term. To remedy the error generated in mass conser-

vation of the scheme discussed in the previous section, we propose a new approximation of b(y, dx)
in the form b (y,-) = > 521 @j(y)dy; for which the following holds:

Za] by, ), z).
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A natural choice of o;(y) is given by
1
W= [ alydo)
33] A}L(j)

This approximation results in a mass conserving scheme at the expense of requiring a minimum
positive size xg. We have the following result:

Proposition 6.2. Assume there is a positive minimum size xo > 0 and therefore the points x; =
xo + jh. Then
16" (y,-) — by, )lpr — 0 as h—0.

Proof. Taking ¢(x) € WH*(R) with [|¢|ly1.0 < 1 and letting ¢; := ¢(z;) we have

"y, ) - §j/ %~ pa)bly, de)

A(ih) Ti

_ @71
Z/ A(ih) b(y’d)

o), i~ o)
= Z/ rin) + b(y,dz).

T

Since 0 < g < x; the first term is bounded and making use of the Lipschitz property of ¢ we have

- di(z — ;) (Pi — P(x))zs s b;
z‘z; /A(ih) Li " Li o) = ; /A(ih)(mo +1 2b(y, dx)

()

1
210
Therefore by the same arguments in the section above, we can conclude that a scheme with this
term will converge to the solution of equation (3.1) with g =d =3 =0.
The standard kernel taken for a structure domain R* is given by b(y, dx) = %dw. For the domain
[x0,00), an example of a kernel which satisfies assumption (F2) is given by

<( +%)Cbh |

2 e~ 2
(6.4) b(y,dx) := a (a: x())q dx, 0

g=1-=—".
Y—To \Y — 2o Y

Notice, that if g = 0, then the above kernel reduces to %daj. It should be noted that it is important
to calculate a;(y) exactly when implementing the scheme. Otherwise, numerical integration error
may be introduced resulting in lack of mass conservation.

6.3. Numerical Results. In this section, we test the semidiscrete scheme against some com-
monly used examples. We begin by testing the coagulation and fragmentation portions of the
scheme separately. We implement the semidiscrete scheme using MATLAB’s ode45 function. In
each example, we present the exact solution at time T" = 1 plotted against the structure variable,
x, the absolute value difference of the numerical and exact solution, and the relative mass between
the numeric and exact solutions plotted against time. We remark that for examples with only coag-
ulation, the semi-discrete scheme (6.2) conserves mass (i.e. (6.3)); therefore, any change of mass is
due to simulating infinite domain problems over a finite interval. Where it is applicable, we provide
a table calculating the BL-norm and numerical order of the scheme. The BL-norm is approximated
by the algorithm provided in [33], while the numerical order of the scheme is calculated using the
standard calculation:

logy ([l e — p2™1BL/ e — 1t 1l BL)-
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6.3.1. Coagulation and Fragmentation Examples. In this section we presented several numer-
ical example focused on coagulation and fragmentation processes.

Ezample 1. For the first example, we take the coagulation kernel k(z,y) = 1 with po = e *dz
and all other model ingredients are set to 0. This problem has an exact solution

2 \? 2 p
= —_— e —
e 2+¢) TP\ M)

see [38] for more details. Numerical simulations for this example are presented in Figure 1 with
Az = 1/40 and the BL error and order of conference are presented in Table 1. Simulation are
performed over the finite domain z € [0, 20].

Solutions at T=1 107 100005 Relative Mass Against Exact Solution (u"/u)
2 .
— e
0.4 == Differance
1.00004
0.35 .
1.5
©
0.3 2 1.00003
=
£ 025 2
g 1T 0O 1.00002
o 02 2
]
c
0.15 8 1.00001
0.1 0.5
1
0.05
0 0 0.99998
0 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1
Size (x) Time (t)

Figure 1: For Example 1 we present on the left side the exact solution (solid line) and the absolute
value of the difference between the exact and numerical solution (dashed-line). On the right side
we present the relative mass.

Number of Points BL-Error Order
40 0.0072641 N/A
80 0.0019723 1.8809
160 0.0005119 1.9459
320 0.00013018 1.9754
640 0.000032716 | 1.9924
1280 0.0000080986 | 2.0143

Table 1: Error and numerical order of convergence calculated for Example 1.

FErample 2. Although our theory does not cover the phenomenon of gelation, we include a
numerical example showing how the semi discrete scheme handles such kernels. In this example, we
take k(z,y) = zy with pg = e™*/zdz. This has exact solution(see e.g. [38].)

B —Tx11(2$t1/2)
=

where

2t1/2 otherwise
22
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566
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568

and

Numerical simulations for this example are presented in Figure 6.3.1 with Az = 1/40 and the BL
error and order of conference are presented in Table 2. For the order of convergence, the simulations
are performed over the finite domain 2 € [1072,20].

Relative Mass Against Exact Solution (u"Iu)

Solutions at T=1

102 0.025 ——ODE45
= Exact 1.06
10" == Difference
0.02
1.05
©
8]
c
0.015 & 1.04
ES
=]
= 1.03
0.01 B
7}
[m] 1.02
0.005
1.01
0 1
12 0 0.2 0.4 0.6 0.8 1

Time (t)

Figure 2: For Example 2 we present on the left side the exact solution (solid line) and the absolute
value of the difference between the exact and numerical solution (dashed-line). On the right side
we present the relative mass.

Ezample 3. In this example we consider fragmentation. We let b(y,-) = 2dx and a(x) = 2. As

Ty
given in [53], this problem has an exact solution of
pe = (14 )% exp(—z(1 + t))dz.

Numerical simulations for this example are presented in Figure 3 with Az = 1/40 and the BL error
and order of conference are presented in Table 2. Although convergence for the mass conserving
fragmentation scheme is only shown for positive minimum mass, it still seems to preform well for
the simulations below. Solving the fragmentation terms exactly leads to an O(h?) term in the last
subinterval (where y = x; := jAz). Explicitly, we have

h  h?
Oéj(l‘j) - ;j + ?
J

However, we noticed that for this last interval truncating the second term Z—;, which is of order O(h?),

improves the scheme’s performance. We present both the performance of the original scheme and
the truncated scheme in Table 2. Simulations for Table 2 are performed over the finite domain
x € [0,20].

Ezample 4. In this example, take b(y,-) = 2dz and a(z) = z°.

= 2 Again, as given in [53], this
problem has an exact solution of

e = (1 4+ 2t 4+ 2tz) exp(—z(1 + xt))dz.

Numerical simulations are presented for this example in Figure 4 with Az = 1/40. The BL error
and order of convergence are presented in Table 3. Simulations for Table 3 are performed over the
finite domain z € [0, 20].
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Figure 3: For Example 3 we present on the top left side the exact solution (solid line) and the
absolute value of the difference between the exact and numerical solution (dashed-line). On the top
right side we present the relative mass against the exact solution. On the bottom, we present the
relative mass against the initial condition.

Original Scheme | Truncated Scheme

Number of Points | BL-Error | Order | BL-Error | Order
40 0.19243 NA 0.074275 NA

80 0.079672 1.2722 | 0.024212 1.6172

160 0.028642 1.4759 | 0.0068855 1.8141

320 0.0094434 | 1.6008 | 0.0018342 1.9084

640 0.0029433 | 1.6818 | 0.00047321 | 1.9546

1280 0.00088279 | 1.7373 | 0.00012017 | 1.9775

Table 2: Error and numerical order of convergence Example 3.

Example 5. For this example, we demonstrate the performance of the scheme for a domain where

the minimum size is positive. To this end, we truncate Example 3 above to the domain [10™3, 20]

and use the kernel given by (6.4). Since the exact solution is not known for this equation, we

compare to the solution given in Example 3. Though we do not compute any numerical orders

of convergence, we point out the numerical and exact solutions in Figure 5 are very close. This
24
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Solutions at T=1 10
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Figure 4: For Example 4 we present on the top left side the exact solution (solid line) and the
absolute value of the difference between the exact and numerical solution (dashed-line). On the top

right side we present the relative mass against the exact solution. On the bottom, we present the
realtive mass against the initial condition.

[}
0]
ot

simulation is again done with Az = %.

586 Example 6. In this example, we demonstrate what a discrete system would look like in our current
587 frame work as well as provide an example of the results show in Theorem 5.1. We also demonstrate
588 the mass conservation property of the coagulation terms of the scheme. The simulation is performed
580 over the interval [0,20] however, for clarity we zoom into the interval [0, 4].Take k(z,y) = 1 and
590 o = dp.2 + 6o.4-

I

591 7. Concluding Remarks. In summary, we have presented a size-structured coagulation-fragmentation|
592 model formulated on the space of Radon measures endowed with the BL-norm. This model uni-
593 fies the study of both the discrete and density based coagulation-fragmentation equations, both of
594  which have been used in studying the dynamics of oceanic phytoplankton populations. We have
595 shown, under biologically relevant assumptions, the model is well-posed using a fixed point approach
596 discussed in recent papers |7, 8]. We also established a regularity result that shows, under certain
597 conditions on the model parameters, the solution to the model is absolutely continuous to the left of
598 the characteristic curve emanating from the point (0,0). This allows us to prove that any stationary
599 solution of the model is absolutely continuous. This extends the result in [34] for structured popu-
600 lation models without coagulation and fragmentation. Here, our proof differs from that in |34] since
25
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Original Scheme | Truncated Scheme

Number of Points | BL-Error | Order | BL-Error | Order
40 0.1471 0.056501 NA

80 0.041762 1.8165 0.014505 1.9617

160 0.011112 1.9101 0.0036472 1.9917

320 0.0028655 | 1.9553 | 0.00091301 | 1.9981

640 0.00072752 | 1.9777 | 0.00022829 | 1.9998

1280 0.00018324 | 1.9893 | 0.000057021 | 2.0013

Table 3: Error and numerical order of convergence Example 4.

Solutions 107 Relative Mass
4 a 1.00004

= Exact = 0ODE45
= = Difference| | 3.5

1.00002

0.99998

M
Density Difference

0.99996

0 0.99994
0

Size (x) Time (t)

Relative Mass Against Inital Condition (u/u0)

1.0000000000001

1.00000000000005

0.99999999999995

0.9999899999599

0 0.2 0.4 0.6 0.8 1
Time (1)

Figure 5: For Example 5 we present on the top left side the exact solution of Example 3 (solid line)
and the absolute value of the difference between the exact and numerical solution (dashed-line).
On the top right side we present the relative mass against the exact solution. On the bottom, we
present the realtive mass against the initial condition.

it relies on the implicit fixed point representation of the measure valued solution. Furthermore,

we have shown how one obtains both the density and discrete coagulation-fragmentation equations

from model (3.1). We also provided a semidiscrete method for approximating solutions to these

equations and presented some numerical examples verifying our scheme. In these examples, we

observed the semidiscrete scheme appears to have at best a second order convergence rate in the BL
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Figure 6: For Example 6 we present on the left side the numerical solution at time 7" = 1. On the
right side we present a mesh of the solution over time. On the bottom, we present the relative mass
according to the initial condition over [0, 20].

norm. In addition to the cases covered by our convergence proof, the scheme also seems to preform
well in the case of a gelation coagulation kernel.

While the semidiscrete scheme presented in this paper is convergent and conserves mass, it does
not take into account a growth term. In the future, we plan to develop and study fully discrete
higher order schemes for the full model (3.1) that preserves solution non-negativity and mass (e.g.
[13, 45] in the space of integrable setting).
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