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Abstract We prove the SHp
1 —theory for critical equations involving the p-

Laplace operator on compact manifolds. We also prove pointwise estimates for
these equations.

Let (M, g) be a smooth compact Riemannian n-manifold, and p ∈ (1, n). We
denote by H p

1 (M) the standard Sobolev space of functions in L p which are such
that their gradient is also in L p. We let (hα)α be a sequence of C0,θ functions on
M , 0 < θ < 1, and consider equations like

(�p)gu + hαu p−1 = u p∗−1 (1)

where (�p)gu = −divg(|∇u|p−2
g ∇u) is the p-Laplacian, p∗ = np/(n − p) is the

critical Sobolev exponent for the embedding of the Sobolev space H p
1 (M) into

Lebesgue’s spaces, and u is required to be positive. By standard regularity results,
see Druet [8], Guedda-Véron [16] and Tolksdorf [24], u ∈ C1,θ (M). We let (uα)α
be a bounded sequence in H p

1 (M) of solutions of (1) in the sense that for any α,

(�p)guα + hαu p−1
α = u p∗−1

α (2)

and ‖uα‖H p
1

≤ � where � > 0 is independent of α. We also assume that the hα’s

converge in C0,θ (M) to some limiting function h∞ with the property that there
exists λ > 0 such that for any u ∈ H p

1 (M),
∫

M
(|∇u|p + h∞|u|p)dvg ≥ λ‖u‖p

H p
1

(3)
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Case 7012, 2, Place Jussieu, 75251 Paris Cedex 05, France
E-mail: saintier@math.jussieu.fr



300 N. Saintier

We concentrate in this paper on the study of the asymptotics of the uα’s. Such
asymptotics have been intensively studied in the special case where p = 2. Brézis-
Coron [2], Lions [20], Sacks-Uhlenbeck [21], and especially Struwe [23] for the
kind of equations we are concerned with developed the H2

1 -theory in the Euclidean
case. The result extends to the Riemannian case, and one gets that, up to a sub-
sequence, the uα’s express as a solution of the limit equation, plus a finite sum
of bubbles we get by rescaling fundamental solutions of the critical Euclidean
equation �u = u2∗−1, plus a rest which converges to 0 in H2

1 as α → +∞.
We extend this result of Struwe [23] to the more general equation (1) in the con-
text of Riemannian manifolds, and thus develop the H p

1 -theory for such equations
in the Riemannian context. One of the interesting and promising aspects in the
study of the p-Laplacian is that the 1-Laplacian, involved in isoperimetric prob-
lems, can be seen as the limit as p → 1 of the p-Laplacian. Such a property was
used by Druet [9], [10] when proving that sharp local isoperimetric inequalities
are controled by the scalar curvature, and when proving that the local version of
the Cartan-Hadamard conjecture is true. The H p

1 -theory in the Euclidean case was
developped by Alves [1]. However, the restrictive condition that 2 ≤ p < n was
required in [1]. Our result, Theorem 0.1 below, holds for all p. The complete C0-
theory for the asymptotics of the uα’s was developed by Druet-Hebey-Robert [13]
in the special case p = 2. The C0-estimate we prove in this article for the general
equation (1) goes back to Schoen-Zhang [22] and Druet [11] where it was proved
in specific situations (in particular when the energy is minimal). Such an estimate
has interesting applications. Among other possible references we refer to Druet
[11]. See also Druet-Hebey [12]. In what follows, we let ig be the injectivity ra-
dius of (M, g). Given δ ∈ (0, ig/2), we let ηδ be a smooth cut-off function in R

n

such that ηδ = 1 in B0(δ) and ηδ = 0 in R
n\B0(2δ). For x ∈ M , we let ηδ,x be

the smooth cut-off function in M given by

ηδ,x (y) = ηδ

(
exp−1

x (y)
)

where expx is the exponential map at x . As a remark, we regard expx as defined in
R

n . An intrinsic definition is possible if M is parallelizable. If not we let �i and
�̃i , i = 1, . . . , N , be open subsets of M such that for any i , �̃i is parallelizable
and �i ⊂ �̃i , and such that M = ∪�i . The canonical exponential map gives N
maps expx defined in �i ×R

n , and expx is, depending on the situation, one of these
maps. A property of expx that holds for any x ∈ M should then be regarded as a
property that holds for any i and any x ∈ �i . We let u be a nonnegative nontrivial
solution in D p

1 (Rn) of the Euclidean equation �pu = u p∗−1, where D p
1 (Rn) is

defined as the completion of the space of smooth functions with compact support
with respect to the norm ‖u‖ = ‖∇u‖p. Given a converging sequence (xα)α of
points in M , and a sequence (Rα)α of positive real numbers, with the property that
Rα → +∞ as α → +∞, we define a bubble as a sequence (Bα)α of functions in
M defined by the equation

Bα(x) = ηδ,xα (x)R
n−p

p
α u

(
Rα exp−1

xα
(x)

)
(4)

We refer to the xα’s as the centers of (Bα), and to the Rα’s, or R−1
α ’s, as the weights

of (Bα)α . We let also
(�p)gu + h∞u p−1 = u p∗−1 (5)
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be the limit equation we get when letting α → +∞ in (1). Our result states as
follows:

Theorem 0.1 Let (M, g) be a smooth compact Riemannian n-manifold, p ∈
(1, n), and (hα)α be a sequence of C0,θ functions on M, 0 < θ < 1, which
converge in C0,θ (M) to some limiting function h∞ for which (3) is true. Let (uα)α
be a bounded sequence in H p

1 (M) of positive solutions of (1). Then there exists a
nonnegative solution u0 ∈ H p

1 (M) of the limit equation (5), there exists k ∈ N,
and there exist k bubbles (Bi

α)α , i = 1 . . . k, such that, up to a subsequence,

uα = u0 +
k∑

i=1

Bi
α + Sα

where (Sα)α is a sequence of functions in H p
1 (M) such that Sα → 0 in H p

1 (M) as
α → +∞. Moreover there exists a constant C > 0 independant of α and x ∈ M
such that for any α and any x ∈ M,

(
min

i=1,...,k
dg

(
xi
α, x

)) n−p
p ∣∣uα(x) − u0(x)

∣∣ ≤ C

where dg is the distance with respect to the metric g, and the xi
α’s are the centers

of the bubbles (Bi
α)α .

An additional information we have on the H p
1 -decomposition in this theorem

is that the energies associated to the different terms in this decomposition split.
See equation (8) below for more details. Another additional information we have,
concerning this time the pointwise estimate, is that

lim
R→+∞ lim

α→+∞ sup
x∈M\�α(R)

Rk
α(x)

n−p
p

∣∣uα(x) − u0(x)
∣∣ = 0

where, Rk
α(x) = min

i=1,...,k
dg(xi

α, x), and, for R > 0, �α(R) = ⋃k
i=1 Bxi

α
(Rµi

α).

Positive solutions of the Euclidean equation �pu = u p∗−1 have been classified
by Ghoussoub and Yuan [15] (see also Damascelli - Pacella [5] and Damascelli -
Pacella - Ramaswamy [6]) in the special case of positive radial solutions. We have
here that a positive radial solutions u of �pu = u p∗−1 is of the form

u(x) =
(

an

(
n − p

p − 1

)p−1
) n−p

p2 (
a + |x − x0|

p
p−1

)1− n
p

for some a > 0 and x0 ∈ R
n .

We prove the H p
1 -decomposition of Theorem 0.1 in Sects. 1–3, and the C0-

estimate of Theorem 0.1 in Sect. 4.
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1 The H p
1 -decomposition

We prove the first part of the theorem, and deal with the more general notion
of Palais-Smale sequences (a perturbative extension of the notion of strong solu-
tions). We do not assume anything about the sign of the uα’s in this section. We
fix 1 < p < n and consider the functional I α

g defined on H p
1 (M) by

I α
g (u) = 1

p

∫
M

|∇u|pdvg + 1

p

∫
M

hα(x)|u|pdvg − 1

p∗

∫
M

|u|p∗
dvg

We recall that a sequence (uα)α ⊂ H p
1 (M) is said to be a Palais - Smale (P-S)

sequence for I α
g if the following holds:

1. I α
g (uα) is bounded w.r.t. α , and

2. DIg(uα) → 0 strongly in H p
1 (M)′ as α → +∞.

Given a P-S sequence (uα)α for I α
g , we claim here that there exist k ∈ N, se-

quences (Ri
α)α of positive real numbers with Ri

α → +∞ as α → +∞, converg-
ing sequences (xi

α)α of points in M , i = 1 . . . k, a solution u0 ∈ H p
1 (M) of the

limit equation
�pu + h∞|u|p−2u = |u|p∗−2u , (6)

and k nontrivial solutions ui ∈ D p
1 (Rn) of the Euclidean equation �pu =

|u|p∗−2u, i = 1 . . . k, such that up to a subsequence, the following equations hold.
Namely that

uα = u0 +
k∑

i=1

ηi
αui

α + o(1) , and (7)

I α
g (uα) = I ∞

g (u0) +
k∑

i=1

E(ui ) + o(1) (8)

where
ui

α(x) = (
Ri

α

) n
p −1

u j (Ri
α exp−1

x j
α

(x)
)

,

ηi
α = ηδ,xi

α
, ‖o(1)‖H p

1
→ 0 as α → +∞,

I ∞
g (u) = 1

p

∫
M

|∇u|pdvg + 1

p

∫
M

h∞(x)|u|pdvg − 1

p∗

∫
M

|u|p∗
dvg ,

h∞ is the limit in C0,θ (M) of the hα’s, and

E(u) = 1

p

∫
Rn

|∇u|pdx − 1

p∗

∫
Rn

|u|p∗
dx

It is easily checked that (7), (8) imply the first part of Theorem 0.1 if we prove
in addition (see Sect. 3 below) that u0 and the ui ’s have to be nonnegative
when the uα’s are nonnegative. Note here that, obviously, a bounded sequence
in H p

1 (M) of solutions of (1) is a P-S sequence for I α
g . We divide the proof
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of (7) and (8) into several steps. Step 1.1 is very classical. We state it with no
proof.

Step 1.1 Palais-Smale sequences for I α
g are bounded in H p

1 (M).
Step 1.1 easily follows from the definition of a P-S sequence. There is no

change in the proof when passing from the p = 2 case (as detailed for instance
in Druet-Hebey-Robert [13] or Struwe [23]) and the cases p = 2. See also
Brézis-Nirenberg [4]. Step 1.2 in the proof of (7) and (8) is as follows.

Step 1.2 Let (uα)α be a P-S sequence for I α
g such that uα ⇀ u0 in H p

1 (M).

Then u0 is a solution of the limit equation (6).

Proof of step 1.2. Step 1.2 is straightforward when p = 2, and a little bit more
tricky when p = 2. Thanks to step 1.1, the uα’s are bounded in H p

1 (M). Hence,
by the definition of a P-S sequence,
∫

M
|∇uα|p−2

g ∇uα∇φdvg +
∫

M
hα|uα|p−2uαφdvg −

∫
M

|uα|p∗−2uαφdvg = o(1)

(9)
for all smooth functions φ on M . Without loss of generality, up to a subsequence,
we can assume that uα → u0 almost everywhere and in L p. By standard integra-
tion theory, we easily pass to the limit in the second and third terms in the left
hand side of the equation. Then, we need to prove that

∫
M

|∇uα|p−2∇uα∇φdvg →
∫

M
|∇u0|p−2∇u0∇φdvg (10)

as α → +∞. We borrow ideas from Evans [14] and Demengel-Hebey [7]. We
denote by �α and � the vector fields |∇uα|p−2∇uα and |∇u0|p−2∇u0. Then

(�α)α is bounded in L
p

p−1 (M) and we can thus assume that (�α)α converges

weakly in L
p

p−1 (M) to some vector field � ∈ L
p

p−1 (M). Let δ > 0 be given. By
Egoroff’s theorem, there exists Eδ ⊂ M such that

∫
M\Eδ

dvg < δ

and (uα)α converges uniformly to u0 in Eδ . As a consequence, for a given ε > 0,
we can take α sufficiently large to get that |uα(x) − u0(x)| < ε/2 for all x ∈ Eδ .
We define a truncation function βε by

βε(x) =
{

x if |x | < ε
εx
|x | if |x | ≥ ε

It is easily checked that

(�α − �) .∇(βε ◦ (uα − u0)) ≥ 0

almost everywhere in M. Indeed, since p > 1, the function φ : X ∈ R
n → |X |p

is convexe and thus φ′ is nondecreasing in the sense that, for any X, Y ∈ R
n , the
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equation (|X |p−2 X − |Y |p−2Y ; X − Y ) ≥ 0 holds true. Applying this equation
to ∇uα and ∇u0, we get that (�α − �).∇(uα − u0) ≥ 0. Thus, for α sufficiently
large, we have that

∫
Eδ

(�α − �) .∇(uα − u0)dvg ≤
∫

M
(�α − �) .∇(βε ◦ (uα − u0))dvg

Now we note that βε ◦ (uα − u0) converges weakly to 0 in H p
1 (M) so that

∫
M

�.∇(βε ◦ (uα − u0))dvg → 0

We also have that for α sufficiently large,
∫

M
�α.∇(βε ◦ (uα − u0))dvg < ε

Indeed, since (βε ◦ (uα − u0)) is bounded in H p
1 (M),

DI α
g (uα)(βε ◦ (uα − u0)) = o(1)

so that ∫
M

�α∇(βε ◦ (uα − u0))dvg = o(1) + I1 + I2

where

|I1| =
∣∣∣∣
∫

M
|uα|p∗−2uα(βε ◦ (uα − u0))dvg

∣∣∣∣
≤ ε

∫
M

|uα|p∗−1dvg ≤ Cε

and, for α sufficiently large,

|I2| =
∣∣∣∣
∫

M
hα|uα|p−2uα(βε ◦ (uα − u0))dvg

∣∣∣∣
≤ ε(‖h∞‖∞ + 1)

∫
M

|uα|p−1dvg ≤ Cε

As a consequence, we get that

lim sup
α→+∞

∫
Eδ

(�α − �).∇(uα − u0)dvg ≤ Cε

Since ε > 0 is arbitrary, it follows that (�α − �).∇(uα − u0) converges to 0 in
L1(Eδ) and thus, up to a subsequence, also a.e in Eδ . We now use the fact that if
a sequence (Xα)α ⊂ R

n is such that

(|Xα|p−2 Xα − |X |p−2 X). (Xα − X) → 0

then Xα → X to obtain that ∇uα → ∇u0 a.e in Eδ . Since δ > 0 is arbitrary, this
implies that ∇uα converges to ∇u0 a.e in M and, thus, |∇uα|p−2∇uα → � a.e in



Critical equations involving the p-Laplacian 305

M. Since (|∇uα|p−2∇uα)α is bounded in L
p

p−1 (M), we get that (|∇uα|p−2∇uα)α

converges weakly to � in L
p

p−1 (M) and thus that � = �. This proves (10).
Returning to (9), letting α → +∞, we then get that

∫
M

|∇u0|p−2
g ∇u0∇φdvg +

∫
M

h∞|u0|p−2u0φdvg −
∫

M
|u0|p∗−2u0φdvg

for all smooth functions φ on M . In particular, u0 is a solution of the limit equation
(6). This proves step 1.2.

From now on, we let Ig be the functional defined for u ∈ H p
1 (M) by

Ig(u) = 1

p

∫
M

|∇u|pdvg − 1

p∗

∫
M

|u|p∗
dvg .

Given a normed vector space (E, ‖ · ‖), and p > 1, we recall that for θ > 0
sufficiently small, depending only on p,

‖‖x + y‖p−2(x + y) − ‖x‖p−2x − ‖y‖p−2 y‖
≤ C(‖x‖p−1−θ‖y‖θ + ‖x‖θ‖y‖p−1−θ )

(11)

and
∥∥ ‖x + y‖p − ‖x‖p − ‖y‖p

∥∥ ≤ C
(‖x‖p−θ‖y‖θ + ‖y‖p−θ‖x‖θ

)
(12)

for all x and y in E , where C > 0 is independent of x and y. Now step 1.3 in the
proof of (7) and (8) is as follows.

Step 1.3 Let (uα)α be a P-S sequence for I α
g such that uα ⇀ u0 in H p

1 (M), and

vα = uα − u0. Then

Ig(vα) = I α
g (uα) − I ∞

g (u0) + 0(I )

and (vα) is a P-S sequence for Ig.

Proof of step 1.3. We write that

I α
g (uα) = I α

g (u0) + Ig(vα)

+ 1

p

∫
M

(|∇(vα + u0)|p − |∇u0|p − |∇vα|p)dvg

+ 1

p

∫
M

hα(|vα + u0|p − |u0|p)dvg

− 1

p∗

∫
M

(|vα + u0|p∗ − |vα|p∗ − |u0|p∗
)dvg

(13)

Since the embedding H p
1 (M) ↪→ L p(M) is compact, we can assume that, up to a

subsequence, uα → u0 in L p(M). In particular, the second integral in (13) goes
to 0 as α → +∞. Moreover, we can prove as in Step 1.2 that |∇uα| → |∇u0| a.e.
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Theorem 1 of [3] implies then that the first and third integrals in (13) also go to 0.
We thus obtain that

I α
g (uα) = I α

g (u0) + Ig(vα) + o(1)

Noting that I ∞
g (u0) = I α

g (u0) + o(1), we actually get that

Ig(vα) = I α
g (uα) − I ∞

g (u0) + o(1)

Now we prove that (vα)α is a P-S sequence for Ig . First we write that

Ig(vα) = I α
g (uα) − I ∞

g (u0) + o(1)

= O(1) + o(1)

so that (I ∞
g (vα))α is bounded. Then it remains to prove that DIg(vα) → 0 in

H p
1 (M)

′
, namely that DIg(vα).φ = o(1)‖φ‖H p

1 (M) for all φ ∈ H p
1 (M). For a

given φ ∈ C∞(M),

DI α
g (uα).φ − DIg(vα).φ

= −
∫

M
�αφdvg +

∫
M

|∇uα|p−2∇uα∇φdvg

−
∫

M
|∇vα|p−2∇vα∇φdvg +

∫
M

hα|uα|p−2uαφdvg

−
∫

M
|u0|p∗−2u0φdvg

(14)

where

�α = |vα + u0|p∗−2(vα + u0) − |vα|p∗−2vα − |u0|p∗−2u0

We let C > 0, given by (11), be such that for any α

||vα + u0|p∗−2(vα + u0) − |vα|p∗−2vα − |u0|p∗−2u0|

≤ C(|vα|p∗−1−θ |u0|θ + |vα|θ |u0|p∗−1−θ )

Then, using Hölder’s inequality and convexity, we get that

∣∣∣∣
∫

M
�αφdvg

∣∣∣∣ ≤ C‖φ‖p∗
(

‖|vα|p∗−1−θ |u0|θ‖ p∗
p∗−1

+ ‖|u0|p∗−1−θ |vα|θ‖ p∗
p∗−1

)

By standard integration theory,

∫
M

�αφdvg = o(1)‖φ‖p∗

= o(1)‖φ‖H p
1 (M)
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Since u0 is a weak solution of the limit equation, it remains to prove that

o(1)‖φ‖H p
1

=
∫

M
|∇uα|p−2∇uα∇φdvg −

∫
M

|∇vα|p−2∇vα∇φdvg

−
∫

M
|∇u0|p−2∇u0∇φdvg

+
∫

M
hα|uα|p−2uαφdvg −

∫
M

h∞|u0|p−2u0φdvg

and thus, by Hölder’s inequality, that
∫

M
||∇uα|p−2∇uα − |∇vα|p−2∇vα − |∇u0|p−2∇u0| p

p−1 dvg = o(1) (15)

and ∫
M

|hα|uα|p−2uα − h∞|u0|p−2u0| p
p−1 dvg = o(1) (16)

The proof of (15) uses (11) as above, whereas (16) is a consequence of [3] (since

uα → u0 a.e. and (|uα|p−2uα)α is bounded in L
p

p−1 (M)). This proves Step 1.3.

In what follows, we let K (n, p) be the sharp constant K in the Euclidean
Sobolev inequality

(∫
Rn

|u|p∗
dx

)1/p∗

≤ K

(∫
Rn

|∇u|pdx

)1/p

.

The value of K (n, p) is well known and can be found, for instance, in Hebey [17].
We let also β∗ be given by

β∗ = 1

n
K (n, p)−n (17)

Step 1.4 in the proof of (7) and (8) is as follows.

Step 1.4 Let (vα)α be a P-S sequence for Ig such that vα ⇀ 0 in H p
1 (M) and

Ig(vα) → β as α → +∞. If β < β∗ then β = 0 and vα → 0 in H p
1 (M) as

α → +∞.

Proof of step 1.4. We write that

o(1) = DIg(vα).vα

=
∫

M
|∇vα|pdvg −

∫
M

|vα|p∗
dvg

and Ig(vα) = β + o(1). Combining these two equations with the definition of Ig
we get that ∫

M
|∇vα|pdvg = nβ + o(1)
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and ∫
M

|vα|p∗
dvg = nβ + o(1)

In particular β ≥ 0. Since the embedding H p
1 (M) ↪→ L p(M) is compact, we can

assume that vα → 0 in L p(M). For ε > 0, there exists a constant Bε such that for
any α,

‖vα‖p
p∗ ≤ (K (n, p)p + ε)‖∇vα‖p

p + Bε‖vα‖p
p

(see, for instance, Hebey [17]). Passing to the limit in this equation, we get that

(nβ)
p

p∗ ≤ (K (n, p)p + ε)nβ

and since ε > 0 is arbitrary, we obtain that

(nβ)
p

p∗ ≤ K (n, p)pnβ

If we assume that β is positive, then

(nβ)
p

p∗ −1 = (nβ)−
p
n ≤ K (n, p)p

and we get that

K (n, p)p = (nβ∗)−
p
n < (nβ)−

p
n ≤ K (n, p)p

which is absurd. Hence, β = 0 and
∫

M
|∇vα|pdvg = o(1)

Since vα → 0 in L p(M), this proves that vα → 0 in H p
1 (M). Step 1.4 is proved.

Another step we need in the proof of (7) and (8) is as follows. We let D p
1 (Rn)

be the Beppo-Levi space defined above. Namely the completion of C∞
c (Rn) with

respect to the norm ‖u‖ = ‖∇u‖p.

Step 1.5 Let u ∈ D p
1 (Rn) be a nontrivial solution of the critical Euclidean

equation �pu = |u|p∗−2u. Then E(u) ≥ β∗.

Proof of step 1.5. We let (un)n be a sequence of smooth functions with compact
support such that ‖un − u‖ → 0 as n → +∞. Then

∫
Rn

|∇u|p−2∇u∇undx =
∫

Rn
|u|p∗−2uundx (18)

and ∣∣∣∣
∫

Rn
|∇u|p−2∇u∇undx −

∫
Rn

|∇u|pdx

∣∣∣∣ ≤
∫

Rn
|∇u|p−1|∇(un − u)|dx

≤ ‖un − u‖.‖u‖p−1
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which goes to 0 as n → +∞. Similarly, by the Sobolev theorem for the embed-
ding D p

1 (Rn) ↪→ L p∗
(Rn),

∣∣∣∣
∫

Rn
|u|p∗−2uundx −

∫
Rn

|u|p∗
dx

∣∣∣∣ ≤
∫

Rn
|u|p∗−1|u − un|dx

≤ ‖u − un‖p∗‖u‖p∗−1
p∗

which also goes to 0 as n → +∞. Passing to the limit in (18), we then obtain that
∫

Rn
|∇u|pdx =

∫
Rn

|u|p∗
dx

The sharp Euclidean Sobolev inequality gives that
∫

Rn
|∇u|pdx =

∫
Rn

|u|p∗
dx

≤ K (n, p)p∗
(∫

Rn
|∇u|pdx

) p∗
p

and thus that ∫
Rn

|∇u|pdx ≥ K (n, p)−n

It follows that

E(u) =
(

1

p
− 1

p∗

)∫
Rn

|∇u|pdx

= 1

n

∫
Rn

|∇u|pdx

≥ 1

n
K (n, p)−n = β∗

and this proves Step 1.5.

In addition to steps 1.1–1.5, we need the following lemma in the proof of (7)
and (8). Given a converging sequence (xα)α of points in M , and a sequence (Rα)α
of positive real numbers, with the property that Rα → +∞ as α → +∞, we
define a generalized bubble as a sequence (B̂α)α of functions in M defined by the
equations

B̂α(x) = ηδ,xα (x)R
n−p

p
α v

(
Rα exp−1

xα
(x)

)
(19)

where v is a solution of the critical Euclidean equation �pu = |u|p∗−2u.

Lemma 1.1 Let (vα)α be a P-S sequence for Ig such that vα ⇀ 0 in H p
1 (M)

but not strongly. Then there exists a generalized bubble (B̂α)α such that, up to a
subsequence, (wα)α where wα = vα − B̂α is a P-S sequence for Ig, wα ⇀ 0 in
H p

1 (M), and Ig(wα) = Ig(vα) − E(v) + o(1) where v ∈ D p
1 (Rn) is the function

from which the B̂α’s are defined as in (19).
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Lemma 1.1 is the main step in the proof of (7) and (8). We postpone its proof
to the next section, and show now how we get (7) and (8) from Lemma 1.1 and
Steps 1.1–1.5.

Proof of (7) and (8). We let (uα)α be a P-S sequence for I α
g . By Step 1.1, (uα)α

is bounded in H p
1 (M). We may then assume that there exists u0 ∈ H p

1 (M) and
c ∈ R such that, up to a subsequence, uα → u0 weakly in H p

1 (M), strongly in
L p(M), and a.e, and such that I α

g (uα) → c. By Step 1.2, u0 is a solution of the

limit equation and by Step 1.3, vα = uα − u0 is a P-S sequence for Ig satisfying
that

Ig(vα) = I α
g (uα) − I ∞

g (u0) + o(1)

= c − I ∞
g (u0) + o(1)

If c − I ∞
g (u0) < β∗ then, according to Step 1.4, (vα)α converges strongly to 0 in

H p
1 (M) and we get that (7) and (8) hold with k = 0. If not, applying Lemma 1.1,

we get a new P-S sequence (v1
α)α for Ig converging weakly to 0 in H p

1 (M) and
such that

Ig
(
v1
α

) = Ig(vα) − E(v) + o(1)

where v ∈ D p
1 (Rn) is a solution of the critical Euclidean equation �pu =

|u|p∗−2u. In view of Step 1.5, E(v) ≥ β∗ and thus

Ig
(
v1
α

) ≤ Ig(vα) − β∗ + o(1)

If c − I ∞
g (u0) < 2β∗, we may again apply Step 1.4 to get that (v1

α)α converges
strongly to 0 in H p

1 (M). In particular, (7) and (8) hold with k = 1. If not, namely
if c− I ∞

g (u0) ≥ 2β∗, we apply once again Lemma 1.1 and get a new P-S sequence

(v2
α)α for Ig . Then either c − I ∞

g (u0) < 3β∗, or c − I ∞
g (u0) ≥ 3β∗. Going on

with such a process, we clearly get by finite induction that (7) and (8) hold with
some k ≥ 1.

2 Proof of Lemma 1.1

We prove Lemma 1.1 in this section. Up to a subsequence, we may assume that
Ig(vα) → β as α → +∞. We may also assume that the vα’s are smooth since,
if not, using the density of C∞(M) in H p

1 (M), there always exists vα smooth and
such that ‖vα − vα‖H p

1
→ 0 as α → +∞. Then Ig(vα) = Ig(v̄α) + o(1) and

DIg(vα)φ = DIg(v̄α)φ + o(1)‖φ‖H p
1

for any φ ∈ H p
1 (M) anf thus (vα)α is a

P-S sequence for Ig . Moreover vα ⇀ 0 in H p
1 (M) but not strongly and if the

conclusion of Lemma 1.1 holds for (vα)α , i.e. if there exists a generalized bubble
(B̂α) built from v ∈ D p

1 (Rn) as in (19) such that, up to a subsequence, w̄α =
v̄α− B̂α is a P-S sequence for Ig with Ig(w̄α) = Ig(v̄α)−E(v)+o(1), then it holds
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also for (vα)α since then wα := vα − B̂α satisfies Ig(wα) = Ig(w̄α) + o(1) and
DIg(wα)φ = DIg(w̄α)φ+o(1)‖φ‖H p

1
for any φ ∈ H p

1 (M). Since DIg(vα) → 0,

∫
M

|∇vα|pdvg = nβ + o(1) (20)

while, by Step 1.4 of Sect. 1, β ≥ β∗. For t > 0, we let

µα(t) = max
x∈M

∫
Bx (t)

|∇vα|pdvg

where Bx (t) is the geodesic ball of center x and radius t . Given t0 > 0 small, it
follows from (20) that there exist x0 ∈ M and λ0 > 0 such that, up to a subse-
quence, ∫

Bx0 (t0)
|∇vα|pdvg ≥ λ0

for all α. Then, since t → µα(t) is continuous, we get that for any λ ∈ (0, λ0),
there exists tα ∈ (0, t0) such that µα(tα) = λ. Clearly, there also exists xα ∈ M
such that

µα(tα) =
∫

Bxα (tα)

|∇vα|pdvg .

Up to a subsequence, (xα)α converges. We let r0 ∈ (0, ig/2) be such that for all
x ∈ M and all y, z ∈ R

n , if |y| ≤ r0 and |z| ≤ r0, then

dg
(
expx (y), expx (z)

) ≤ C0|z − y|
for some C0 ∈ [1, 2] independent of x , y, and z. Given Rα ≥ 1 and x ∈ R

n such
that |x | < ig Rα , we let

ṽα(x) = R
− n−p

p
α vα

(
expxα

(
R−1

α x
))

g̃α(x) = (
exp�

xα
g
) (

R−1
α x

)
.

Then, if |z| + r < ig Rα , we get that

∫
Bz(r)

|∇ṽα|pdvg̃α
=

∫
expxα

(
R−1

α Bz(r)
) |∇vα|pdvg . (21)

When |z| + r < r0 Rα ,

expxα

(
R−1

α Bz(r)
) ⊂ B

expxα

(
R−1

α z
)(C0r R−1

α

)
(22)

while

expxα

(
R−1

α B0(C0r)
) = Bxα

(
C0r R−1

α

)
. (23)
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Given r ∈ (0, r0), we fix t0 such that C0r t−1
0 ≥ 1. Then, for any λ ∈ (0, λ0), to be

fixed later on, we let Rα ≥ 1 be such that C0r R−1
α = tα . By (21) to (23), for any

z ∈ R
n such that |z| < r0 Rα − r ,

∫
Bz(r)

|∇ṽα|pdvg̃α
≤ λ , and

∫
B0(C0r)

|∇ṽα|pdvg̃α
= λ .

(24)

We let δ ∈ (0, ig) and C1 > 1 be such that for any x ∈ M , and any R ≥ 1, if
g̃x,R(y) = exp�

x g(R−1 y), then

1

C1

∫
Rn

|∇u|pdx ≤
∫

Rn
|∇u|pdvg̃x,R ≤ C1

∫
Rn

|∇u|pdx (25)

for all u ∈ D p
1 (Rn) such that supp u ⊂ B0(δR). Without loss of generality, we

also assume that

1

C1

∫
Rn

|u|dx ≤
∫

Rn
|u|dvg̃x,R ≤ C1

∫
Rn

|u|dx (26)

for all u ∈ L1(Rn) such that supp u ⊂ B0(δR). We let η̃ ∈ C∞
0 (Rn) be a cut-off

function such that 0 ≤ η̃ ≤ 1, η̃ = 1 in B0(1/4), and η̃ = 0 in R
n\B0(3/4). We

set η̃α(x) = η̃(δ−1 R−1
α x), where δ is as above. Then,

∫
Rn

|∇(η̃αṽα)|pdvg̃α
= O(1)

and it follows from (25) that the sequence (η̃αṽα)α is bounded in D p
1 (Rn). In

particular, up to a subsequence, there exists v ∈ D p
1 (Rn) such that η̃αṽα ⇀ v

weakly in D p
1 (Rn). Now we divide the proof of Lemma 1.1 into several steps. As

a first step, we claim that the following holds.

Step 2.1 For r and λ sufficiently small,

η̃αṽα → v in H p
1 (B0(C0r)) (27)

as α → +∞.

Proof of Step 2.1. We fix x0 ∈ R
n . Then by Fatou’s lemma and Fubini’s theorem

∫ 2r

r

(
lim inf
α→∞

∫
Sx0 (r)

Nξ (η̃αṽα)dvhρ

)
dρ

≤ lim inf
α→∞

∫
Bx0 (2r)

Nξ (η̃αṽα)dx ≤ C
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where hρ and ξ stand respectively for the standard metric on the sphere Sx0(ρ)

and the Euclidean metric, and where Nξ (u) = |∇u|p
ξ + |u|p. Then there exists

ρ ∈ [r, 2r ] such that up to a subsequence, and for any α,
∫

Sx0 (ρ)

Nξ (η̃αṽα)dvhρ ≤ C

Let C = C(ρ) > 0 be such that for any φ ∈ C∞(R),

Nhρ

(
φ|Sx0 (ρ)

) ≤ C Nξ (φ)

on Sx0(ρ). Then ((η̃αṽα)|Sx0 (ρ))α is bounded in H p
1 (Sx0(ρ)) and, by compactness

of the embedding H p
1 (Sx0(ρ)) ↪→ H p

p−1
p

(Sx0(ρ)), we get that a subsequence η̃αṽα

converges to v in H p
p−1

p

(Sx0(ρ)). Let A = Bx0(3r) − Bx0(ρ) and

ψα =




η̃αṽα − v in B̄x0(ρ)

zα in B̄x0(3r) − Bx0(ρ)

0 otherwise

where zα is the solution of the Dirichlet problem

�pu = 0 in A ,

u = η̃αṽα − v on Sx0(ρ) , and

u = 0 on Sx0(3r)

(28)

The existence of zα follows from Step 2.2 below. Moreover, still by Step 2.2,
ψα → 0 in H p

1 (A) and we also have that ψα ⇀ 0 in D p
1 (Rn). We fix r < δ

24 and
denote by ψ̃α ∈ H p

1 (M) the function in M obtained by rescaling ψα . Namely,

ψ̃α(x) =
{

R
n−p

p
α ψα

(
Rα exp−1

xα
(x)

)
if dg(xα, x) < 6r

0 otherwise

Then η̃(δ−1 exp−1
xα

(x)) = 1 if dg(xα, x) < 6r and, if in addition |x0| < 3r , we
have that

DIg(vα).ψ̃α = DIg(η̃αvα).ψ̃α

=
∫

Bx0 (3r)

|∇(η̃αṽα)|p−2
g̃α

< ∇(η̃αṽα); ∇ψα >g̃α
dvg̃α

−
∫

Bx0 (3r)

|η̃αṽα|p∗−2η̃αṽαψαdvg̃α

The sequence (ψα)α is bounded in D p
1 (Rn). The Sobolev inequality then gives

that (ψα)α is also bounded in H p
1 (Rn). By the definition of ψ̃α and g̃α we then get
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that (ψ̃α)α is bounded in H p
1 (M). Since (vα)α is a P-S sequence for Ig , we thus

obtain that
DIg(vα).ψ̃α = o(1) (29)

We remark that if

I =
∫

A
|∇(η̃αṽα)|p−2

g̃α
(∇(η̃αṽα).∇ψα)g̃α

dvg̃α

then I = o(1). Indeed, by Hölder’s inequality,

|I | ≤
(∫

A
|∇(η̃αṽα)|p

g̃α
dvg̃α

) p−1
p

(∫
A

|∇ψα|p
g̃α

dvg̃α

) 1
p

Up to reduce r , we may assume that supp(ψα) ⊂ Bx0(3r) ⊂ B0(δ) ⊂ B0(δRα).
Then ∫

A
|∇ψα|p

g̃α
dvg̃α

≤ C
∫

A
|∇ψα|pdx

= o(1)

Moreover, by the definition of η̃α , supp(η̃αṽα) ⊂ B0(
3δRα

4 ) ⊂ B0(δRα), and then
∫

A
|∇(η̃αṽα)|p

g̃α
dvg̃α

≤ C
∫

A
|∇(η̃αṽα)|pdx

= O(1)

We eventually get that I = o(1). Now we prove that
∫

Bx0 (3r)

|∇(η̃αṽα)|p−2
g̃α

(∇(η̃αṽα).∇ψα)g̃α
dvg̃α

=
∫

Rn
|∇ψα|p

g̃α
dvg̃α

+ o(1)

(30)

In order to prove (30) we first note that

∇(η̃αṽα) → ∇v a.e (31)

We proceed as in the proof of Step 1.2 to get that (31) holds true. If we let �α =
|∇(η̃αṽα)|p−2

ξ ∇(η̃αṽα), it suffices to prove that, for ε > 0, there exists C > 0
such that

∫
�

�α∇βε,αdx ≤ Cε where βε,α = βε ◦ (η̃αṽα − v). Now, for θ > 0
small and C > 0 given by (11) we can write that
∫

Bx0 (ρ)

∣∣∣|∇(ψα + v)|p−2
g̃α

∇(ψα + v) − |∇ψα|p−2
g̃α

∇ψα − |∇v|p−2
g̃α

∇v

∣∣∣
p

p−1
dvg̃α

≤ C
∫

Bx0 (ρ)

|∇ψα|
p(p−1−θ)

p−1

g̃α
|∇v|

pθ
p−1

g̃α
dvg̃α

+ C
∫

Bx0 (ρ)

|∇ψα|
pθ

p−1

g̃α
|∇v|

p(p−1−θ)
p−1

g̃α
dvg̃α

≤ C
∫

Bx0 (ρ)

|∇ψα|
p(p−1−θ)

p−1
ξ |∇v|

pθ
p−1
ξ dx + C

∫
Bx0 (ρ)

|∇ψα|
pθ

p−1
ξ |∇v|

p(p−1−θ)
p−1

ξ dx
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Since |∇ψα| → 0 a.e by (31), and (ψα)α is bounded in D p
1 (Rn), it follows from

standard integration theory that

∫
Bx0 (ρ)

∣∣∣∣|∇(ψα+v)|p−2
g̃α

∇(ψα+v)−|∇ψα|p−2
g̃α

∇ψα−|∇v|p−2
g̃α

∇v

∣∣∣∣
p

p−1

dvg̃α
= o(1)

By Hölder’s inequality and since (ψα)α is bounded in D p
1 (Rn), we then get that

∫
Bx0 (ρ)

|∇(ψα + v)|p−2
g̃α

(∇(ψα + v).∇ψα)g̃α

=
∫

Bx0 (ρ)

|∇ψα|p
g̃α

dvg̃α
+

∫
Bx0 (ρ)

|∇v|p−2
g̃α

(∇v.∇ψα)g̃α
|dvg̃α

+ o(1)

(32)

Using (29), (32), the fact that ψα ⇀ 0 in D p
1 (Rn) and the fact that ψα → 0 in

D p
1 (A), we eventually obtain that

∫
Bx0 (3r)

|∇(η̃αṽα)|p−2
g̃α

(∇(η̃αṽα).∇ψα)g̃α
dvg̃α

=
∫

Bx0 (ρ)

|∇(η̃αṽα)|p−2
g̃α

(∇(η̃αṽα).∇ψα)g̃α
dvg̃α

+ o(1)

=
∫

Bx0 (ρ)

|∇ψα|p
g̃α

dvg̃α
+

∫
Bx0 (ρ)

|∇v|p−2
g̃α

(∇v.∇ψα)g̃α
dvg̃α

+ o(1)

=
∫

Bx0 (ρ)

|∇ψα|p
g̃α

dvg̃α
+ o(1)

=
∫

Rn
|∇ψα|p

g̃α
dvg̃α

+ o(1)

and this proves (30). In a similar way we can prove that

∫
Bx0 (3r)

|η̃αṽα|p∗−2η̃αṽαψαdvg̃α

=
∫

Bx0 (ρ)

|ψα + v|p∗−2(ψα + v)ψαdvg̃α
+ o(1)

=
∫

Bx0 (ρ)

|ψα|p∗
dvg̃α

+
∫

Bx0 (ρ)

|v|p∗−2vψαdvg̃α
+ o(1)

=
∫

Rn
|ψα|p∗

dvg̃α
+ o(1)

Finally, by (29), and according to what we just proved, we get that

∫
Rn

|∇ψα|p
g̃α

dvg̃α
−

∫
Rn

|ψα|p∗
dvg̃α

= o(1) (33)
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Now we prove that

∫
Rn

|∇ψα|p
g̃α

dvg̃α
=

∫
Bx0 (ρ)

|∇(η̃αṽα)|p
g̃α

dvg̃α
−

∫
Bx0 (ρ)

|∇v|p
g̃α

dvg̃α
+ o(1) (34)

We fix θ > 0 small and C > 0 such that
∫

Bx0 (ρ)

∣∣∣|∇(ψα + v)|p
g̃α

− |∇v|p
g̃α

− |∇ψα|p
g̃α

∣∣∣ dvg̃α

≤ C
∫

Bx0 (ρ)

|∇ψα|p−θ

g̃α
|∇v|θg̃α

dvg̃α
+ C

∫
Bx0 (ρ)

|∇ψα|θg̃α
|∇v|p−θ

g̃α
dvg̃α

≤ C ′
∫

Bx0 (ρ)

|∇ψα|p−θ |∇v|θdx + C ′
∫

Bx0 (ρ)

|∇ψα|θ |∇v|p−θ dx

By standard integration theory, we then get that

∫
Bx0 (ρ)

|∇(ψα + v)|p
g̃α

=
∫

Bx0 (ρ)

|∇v|p
g̃α

dvg̃α
+

∫
Bx0 (ρ)

|∇ψα|p
g̃α

dvg̃α
+ o(1)

Writing that

∫
Rn

|∇ψα|p
g̃α

dvg̃α
=

∫
Bx0 (ρ)

|∇ψα|p
g̃α

dvg̃α
+ o(1)

=
∫

Bx0 (ρ)

|∇(η̃αṽα)|p
g̃α

dvg̃α
−

∫
Bx0 (ρ)

|∇v|p
g̃α

dvg̃α
+ o(1)

this proves (34). In particular, it follows from (34) that

∫
Rn

|∇ψα|p
g̃α

dvg̃α
≤

∫
Bx0 (ρ)

|∇(η̃αṽα)|p
g̃α

dvg̃α
+ o(1) (35)

From now on, we let N ∈ N be such that B0(2) is covered by N balls of radius 1
centered in B0(2). Then there exist N points x1, . . . , xN in Bx0(2r) such that

Bx0(ρ) ⊂ Bx0(2r) ⊂
N⋃

i=1

Bxi (r)

and we get with (24) and (35) that for x0 and r such that |x0| + 3r < r0,

∫
Rn

|∇ψα|p
g̃α

dvg̃α
≤ Nλ + o(1) (36)



Critical equations involving the p-Laplacian 317

For x0 and r such that |x0| + 3r < δ, with (33) and the Sobolev inequality, there
exists C > 0 such that(∫

Rn
|∇ψα|p

g̃α
dvg̃α

)p/p∗

=
(∫

Rn
|ψα|p∗

dvg̃α

)p/p∗

+ o(1)

≤ C
∫

Rn
|∇ψα|p

g̃α
dvg̃α

+ o(1)

and with (36), we get the existence of a constant C > 0 such that∫
Rn

|∇ψα|p
g̃α

dvg̃α
≤

(
Cλ

p∗
p −1 + o(1)

) ∫
Rn

|∇ψα|p
g̃α

dvg̃α
+ o(1)

Choosing λ > 0 sufficiently small such that Cλ
p∗
p −1

< 1, we get that∫
Rn

|∇ψα|p
g̃α

dvg̃α
= o(1)

and thus that ψα → 0 in D p
1 (Rn). Since r ≤ ρ, it follows that

η̃αṽα → v in H p
1 (Bx0(r)) (37)

and the convergence holds as soon as Cλ
p∗
p −1

< 1, |x0| < 3r , |x0| + 3r <
min{r0, δ} and r is sufficiently small. We fix r > 0 and λ such that the above
are satisfied. Then (37) holds for any x0 ∈ B0(2r). Since C0 ≤ 2, B0(C0r) is
covered by N balls of radius r centered in B0(2r). It follows that η̃αṽα → v in
H p

1 (B0(C0r)) and this proves Step 2.1.

Step 2.2 below was used in the proof of Step 2.1.

Step 2.2 Let � be a smooth bounded open subset of R
n, p ∈ (1, n), and p̂ be

given by p̂ = p−1
p . Let also h ∈ H p

p̂ (∂�). Then there exists a solution u ∈ H p
1 (�)

of the equation

�pu = 0 in � ,

u = h on ∂� .

Moreover, ‖u‖H p
1 (�) ≤ C‖h‖H p

p̂ (∂�) where C > 0 is independent of u and h.

Proof of Step 2.2. Following Struwe [23], see Appendix A in [23], we easily get
that there exist C1, C2 > 0 such that for any u ∈ H p

1 (�),∫
�

|u|pdx ≤ C1

∫
�

|∇u|pdx + C2

∫
∂�

|u|∂�|pdx (38)

Let h ∈ H p
p̂ (∂�) and H be the set consisting of the functions v ∈ H p

1 (�) which

are such that v − h ∈ H1,p
0 (�), where H1,p

0 (�) is the closure in H p
1 (�) of the

space of smooth functions with compact support in �. We let

λ = inf
v∈H

∫
�

|∇v|pdx
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and let (vm)m be a minimizing sequence for λ. Thanks to (38), (vm)m is then
bounded in H p

1 (�). We may therefore assume that vm ⇀ u in H p
1 (�), that vm →

u in L p(�), and that vm → u in L p(∂�). In particular, u ∈ H and
∫
�

|∇u|pdx =
λ. It follows that u is a weak solution of �pu = 0 in � and u = h on ∂�. Let H
be given by the extension operator from H p

p̂ (∂�) into H p
1 (�). Then H ∈ H p

1 (�)

and H|∂� = h. It easily follows from the equation satisfied by u that
∫

�

|∇u|p−2∇u∇vdx = 0

where v = u − H ∈ H1,p
0 (�), and hence, by Hölder’s inequality, that

∫
�

|∇u|pdx ≤
∫

�

|∇H |pdx

In particular, by the continuity of the extension operator,

‖∇u‖p ≤ C‖h‖H p
p̂ (∂�)

where C > 0 is independent of u and h. Coming back to (38), it follows that
‖u‖H p

1 (�) ≤ C‖h‖H p
p̂ (∂�) where C > 0 is independent of u and h. This ends the

proof of Step 2.2.

It easily follows from Step 2.1 that v ≡ 0. To see this we return to (24) and
write that

λ =
∫

B0(C0r)

|∇(η̃αṽα)|pdvg̃α

≤ C1

∫
B0(C0r)

|∇v|pdx + o(1)

Hence, v ≡ 0. Similarly, it also follows from Step 2.1 that Rα → +∞ as α →
+∞. Indeed, if Rα → R as α → +∞, R ≥ 1, then ṽα ⇀ 0 in H p

1 (B0(C0r))

since vα ⇀ 0 in H p
1 (M). A contradiction with Step 2.1 and the above claim that

v ≡ 0. Hence,
Rα → +∞ (39)

as α → +∞. Thanks to (39) we can then prove that for any R > 0,

ṽα → v in H p
1 (B0(R)) (40)

as α → +∞. To see this, we let R ≥ 1 be given. Since Rα → ∞, we have
that Rα > R for α large. Then (24) holds for z ∈ R

n such that |z| < r0 R − r ,
and it follows from the proof of Step 2.1 that (37) holds if |x0| < 3r(2R − 1),
|x0| + 3r < r0 R, and |x0| + 3r < δR. In particular, (37) holds if |x0| < 2r R
and thus η̃αṽα → v strongly in H p

1 (B0(2r R)). Since R ≥ 1 is arbitrary and
η̃α(x) = 1 for α large if |x | ≤ R, we obtain (40). An easy claim then is the
following.

Step 2.3 The limit v of Step 2.1 is a solution of �pu = |u|p∗−2u.
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Proof of Step 2.3. Let φ ∈ C∞
c (Rn) and R0 > 0 such that supp φ ⊂ B0(R0),

and let φ̂α ∈ C∞
c (Rn) be given by

φ̂α(x) = R
n−p

p
α φ(Rαx)

Then supp φ̂α ⊂ B0(R0 R−1
α ). For α large, we define φα ∈ C∞(M) by the equation

φ̂α = φα ◦ expxα
. Then, for α large, we get that

∫
M

|∇vα|p−2
g (∇vα.∇φα)g dvg =

∫
Rn

|∇ṽα|p−2
g̃α

(∇ṽα.∇φ)g̃α
dvg̃α

=
∫

Rn
|∇(η̃αṽα)|p−2

g̃α
(∇(η̃αṽα).∇φ)g̃α

dvg̃α

and that ∫
M

|vα|p∗−2vαφαdvg =
∫

Rn
|ṽα|p∗−2ṽαφdvg̃α

=
∫

Rn
|η̃αṽα|p∗−2η̃αṽαφdvg̃α

Moreover (φα)α is bounded in H p
1 (M). Thus

o(1) = DIg(vα).φα

=
∫

Rn
|∇(η̃αṽα)|p−2

g̃α
(∇(η̃αṽα).∇φ)g̃α

dvg̃α

−
∫

Rn
|η̃αṽα|p∗−2η̃αṽαφ dvg̃α

Since Rα → ∞, we can write that g̃α → ξ in C1(B0(R)) and thus that dvg̃α
=

εαdx where εα → 1 uniformly in B0(R). Since in addition η̃αṽα → v in D p
1 (Rn),

we get, by passing to the limit in the above equation that, for any φ ∈ D p
1 (Rn),

∫
Rn

|∇v|p−2∇v∇φdx =
∫

Rn
|v|p∗−2vφdx

In other words, v is a weak solution of �pu = |u|p∗−2u. This ends the proof of
Step 2.3.

For x ∈ M and δ̂ ∈ (0, δ
8 ), we let

Vα(x) = ηα(x)R
n−p

p
α v

(
Rα exp−1

xα
(x)

)
where ηα = η

δ̂,xα
, and set wα = vα − Vα . A last step in the proof of Lemma 1.1

is as follows.

Step 2.4 On the one hand,

wα ⇀ 0 in H p
1 (M) (41)
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as α → +∞. On the other hand,

DIg(Vα) → 0 and DIg(wα) → 0 (42)

in H p
1 (M)′ as α → +∞. At last,

Ig(wα) = Ig(vα) − E(v) + o(1) (43)

where o(1) → 0 as α → +∞.

Proof of Step 2.4. First we prove that wα ⇀ 0 in H p
1 (M). There it clearly

suffices to prove that Vα ⇀ 0 in H p
1 (M). We note that (Vα)α is bounded in

H p
1 (M) and, since H p

1 (M) ↪→ L p(M) compactly, it suffices in turn to prove
that Vα ⇀ 0 in L p(M). In what follows we let f ∈ Lq(M) where q = p

p−1 .
Given R > 0 arbitrary, we let

Bα = Bxα (R−1
α R) , Bc

α = Bxα (2δ̂)\Bxα (R−1
α R) , and gα = exp∗

xα
g

Then, we can write that∣∣∣∣
∫

Bα

f Vαdvg

∣∣∣∣
≤ R

n−p
p

α

∫
B0(R−1

α R)

∣∣ f (expxα
(x))

∣∣ |v(Rαx)| dvgα

≤ C.R
n−p

p
α

(∫
B0(R−1

α R)

|v(Rαx)|p dx

) 1
p
(∫

B0(R−1
α R)

∣∣ f (expxα
(x))

∣∣q
dvgα

) 1
q

≤ C‖ f ‖q R−1
α

(∫
B0(R)

|v|pdx

) 1
p

and, in a similar way, that
∣∣∣∣∣
∫

Bc
α

f Vαdvg

∣∣∣∣∣ ≤ C‖ f ‖q R−1
α

(∫
B0(2δ̂Rα)\B0(R)

|v|pdx

) 1
p

≤ C‖ f ‖q

(∫
B0(2δ̂Rα)\B0(R)

|v|p∗
dx

) 1
p∗

Since Rα → ∞, and R > 0 is arbitrary, we get that
∫

M
f Vαdvg = o(1)

Noting that f ∈ Lq(M) is arbitrary, this proves that Vα → 0 weakly in H p
1 (M),

and thus that (41) holds. The proof of (42) is an easy adaptation of [18]. We skip
it here and restrict ourself to prove (43). We write that

Ig(wα) = 1

p

∫
M

|∇wα|p
g dvg − 1

p∗

∫
M

|wα|p∗
dvg
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and that
∫

M
|∇wα|p

g dvg =
∫

Bα

|∇wα|p
g dvg +

∫
Bc

α

|∇wα|p
g dvg

+
∫

M\Bxα (2δ̂)

|∇wα|p
g dvg

(44)

where Bα and Bc
α are as above. On the one hand,
∫

Bα

|∇wα|p
g dvg =

∫
B0(R)

|∇ṽα − ∇v|p
g̃α

dvg̃α

≤ C
∫

B0(R)

|∇ṽα − ∇v|p dx

and since ṽα → v in H p
1 (B0(R)), we get that

∫
Bα

|∇wα|p
g dvg = o(1) (45)

On the other hand, mimicking what was done in [18], we also have that
∫

Bc
α

|∇wα|p
g dvg =

∫
Bc

α

|∇vα|p
g dvg + Br (α) + o(1) (46)

where here, and in what follows, BR(α) stands for any expression such that

lim
R→+∞ lim sup

α→+∞
BR(α) = 0

At last, by definition of η
δ̂,xα

, we can write that

∫
M\Bxα (2δ̂)

|∇wα|p
g dvg

=
∫

M
|∇vα|p

g dvg −
∫

Bα

|∇vα|p
g dvg −

∫
Bc

α

|∇vα|p
g dvg

(47)

Plugging (45), (46), and (47) into (44), we get that
∫

M
|∇wα|p

g dvg =
∫

M
|∇vα|p

g dvg −
∫

Bα

|∇vα|p
g dvg + BR(α) + o(1)

Since g̃α → ξ in C0(B0(R)) and ṽα → v in H p
1 (B0(R)),

∫
Bα

|∇vα|p
g dvg =

∫
B0(R)

|∇ṽα|p
g̃α

dvg̃α

=
∫

Rn
|∇v|pdx + BR(α) + o(1)
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and we eventually get that∫
M

|∇wα|p
g dvg =

∫
M

|∇vα|p
g dvg −

∫
Rn

|∇v|pdx + BR(α) + o(1)

In a asimilar way we can also write that∫
M

|wα|p∗
dvg =

∫
M

|vα|p∗
dvg −

∫
Rn

|v|p∗
dx + BR(α) + o(1)

and since R > 0 is arbitrary, it follows that (43) holds true. This ends the proof of
Step 2.4.

According to what we said up to now, and thanks to Steps 2.1–2.4, Lemma
1.1 holds for some δ ∈ (0,

ig
2 ). Given δ1 < δ2 in (0,

ig
2 ), we can check, using the

definition of ηδi ,xα , that ∥∥∥B̂1
α − B̂2

α

∥∥∥
H p

1

= o(1)

where B̂i
α(x) = ηδi ,xα (x)R

n−p
p

α v(Rα exp−1
xα

(x)), i = 1, 2. For instance,
∫

M

∣∣∣B̂1
α − B̂2

α

∣∣∣p∗
dvg ≤ 2

∫
B0(2δ2 Rα)−B0(δ1 Rα)

|v|p∗
dvg̃α

= o(1)

and we proceed in a similar way for the gradient term. It follows that Lemma 1.1
holds for any δ ∈ (0,

ig
2 ). This ends the proof of Lemma 1.1.

3 Positivity of the bubbles

We prove in this section that if the uα’s of Sect. 1 are nonnegative, then u0 and
the ui ’s of Sect. 1 are also nonnegative. That u0 is nonnegative is straightforward.
On what concerns the ui ’s, we proceed as follows. We fix an integer N in {1, .., k}
and prove that uN ≥ 0 by showing that ũN

α → uN a.e in R
n where

ũN
α (x) = (

µN
α

) n−p
p uα

(
expx N

α

(
µN

α x
))

(48)

We let µi
α = 1/Ri

α , vα = uα − u0 and ṽN
α and ũ0,N

α be given by

ṽN
α (x) = (

µN
α

) n−p
p vα

(
expx N

α

(
µN

α x
))

ũ0,N
α (x) = (

µN
α

) n−p
p u0( expx N

α

(
µN

α x
))

We assume for the moment that there exist an integer p and p sequences (y j
α)α

in M , and (λ
j
α) of positive real numbers, j = 1 . . . p, such that λ

j
α/µN

α → 0 as

α → +∞, the sequence consisting of the dg(x N
α , y j

α)/µN
α is bounded, and such

that for any R, R
′
> 0,∫

B
x N
α

(
RµN

α

)
\⋃p

j=1 B
y

j
α

(
R′λ j

α

)
∣∣∣vα − uN

α

∣∣∣p∗
dvg = o(1) + ε(R′) (49)
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where ε(R
′
) → 0 as R

′ → +∞.
We then get with (49) that∫

B0(R)−⋃p
j=1 B

ỹ
j
α

(
R′C λ

j
α

µN
α

)
∣∣∣ṽN

α − uN
∣∣∣p∗

dx = o(1) + ε(R′) (50)

where y j
α = expx N

α
(µN

α ỹ j
α). Noting that the ỹ j

α’s are bounded, we may assume that

ỹ j
α → ỹ j as α → ∞. Then (50) gives that

ṽN
α → uN in L p∗

loc(B0(R)\{ỹ j , j = 1, .., p})
for any R > 0, and we may thus assume that

ũN
α − ũ0,N

α → uN a.e in R
n (51)

Moreover, if g̃α(x) = ((expx N
α
)∗g)(µN

α x), we can write that for any R > 0,
∫

B0(R)

∣∣∣ũ0,N
α

∣∣∣p∗
dx ≤ C

∫
B0(R)

∣∣∣ũ0,N
α

∣∣∣p∗
dvg̃α

=
∫

B
x N
α

(
RµN

α

)
∣∣∣u0

∣∣∣p∗
dvg

which goes to 0 as α → +∞. Hence, ũ0,N
α → 0 in L p∗

(B0(R)) for all R > 0,
and we may thus also assume that ũ0,N

α → 0 a.e in R
n . By (51) we then get that

ũN
α → uN a.e in R

n . In particular, the fact that u0 and the ui ’s of Sect. 1 are
nonnegative if the uα’s are nonnegative follows from (49). Now we prove (49) as
a particular case of the following statement. Namely we claim that for any integer
N ∈ {1, .., k} and for any integer s ∈ {0, .., N − 1}, there exist an integer p and
p sequences (y j

α)α in M , and (λ
j
α) of positive real numbers, j = 1 . . . p, such

that λ
j
α/µN

α → 0 as α → +∞, the sequence consisting of the dg(x N
α , y j

α)/µN
α is

bounded, and such that for any R, R
′
> 0,

∫
B

x N
α

(
RµN

α

)
−⋃p

j=1 B
y

j
α

(
R′λ j

α

)
∣∣∣∣∣vα −

s∑
i=1

ui
α − uN

α

∣∣∣∣∣
p∗

dvg = o(1) + ε(R′) (52)

where ε(R′) → 0 as R′ → +∞ and the (ui
α)′s and (xi

α)′s are the ordered se-
quences in i that we got in the preceding section. Clearly, (49) follows from (52)
when s = 0.
In order to prove (49), we fix an integer N in {1, .., k} and prove that (52) holds
for all s by inverse induction on s. If s = N − 1, then, by (40), for any R > 0,

∫
B

x N
α

(
RµN

α

)
∣∣∣∣∣vα −

N∑
i=1

ui
α

∣∣∣∣∣
p∗

dvg = o(1)

and it follows that (52) holds with p = 0. Now we suppose that (52) holds for
some s ≤ N − 1 and we fix R, R

′
> 0. If dg(xs

α, x N
α ) → 0 as α → ∞, then,
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for R̃ > 0 given, and up to a subsequence, Bx N
α
(RµN

α )
⋂

Bxs
α
(R̃µs

α) = ∅. As a
consequence,

∫
B

x N
α

(
RµN

α

)
\⋃p

j=1 B
y

j
α

(
R′λ j

α

) |us
α|p∗

dvg ≤
∫

M\Bxs
α

(
R̃µs

α

) |us
α|p∗

dvg (53)

≤ C
∫

Rn\B0(R̃)

|us |p∗
dx

Since us ∈ L p∗
(Rn) and R̃ > 0 is arbitrary, we get that

∫
B

x N
α

(
RµN

α

)
\⋃p

j=1 B
y

j
α

(
R′λ j

α

) |us
α|p∗

dvg = o(1)

and thus that

∫
B

x N
α

(
RµN

α

)
\⋃p

j=1 B
y

j
α

(
R′λ j

α

)
∣∣∣∣∣vα −

s−1∑
i=1

ui
α − uN

α

∣∣∣∣∣
p∗

dvg

≤ C
∫

B
x N
α

(
RµN

α

)
\⋃p

j=1 B
y

j
α

(
R′λ j

α

)
∣∣∣∣∣vα −

s∑
i=1

ui
α − uN

α

∣∣∣∣∣
p∗

dvg

+ C
∫

B
x N
α

(
RµN

α

)
\⋃p

j=1 B
y

j
α

(
R′λ j

α

) |us
α|p∗

dvg

= o(1) + ε(R′)

This proves (52) for s−1. We may thus assume in what follows that dg(xs
α, x N

α ) →
0 as α → ∞. Then we need to compare carefully the respective growth of the
distances dg(xs

α, x N
α ) and the radii µs

α and µN
α . We let r0 > 0 and C ≥ 1 be such

that for all x ∈ M and all y, z ∈ R
n , if |y|, |z| ≤ r0 then

1

C
|z − y| ≤ dg(expx (y), expx (z)) ≤ C |z − y|

If x̃ s
α and ỹ j

α are such that xs
α = expx N

α
(µN

α x̃ s
α) and y j

α = expx N
α
(µN

α ỹ j
α), then

B
ỹ j
α

(
R′

C

λ
j
α

µN
α

)
⊂ 1

µN
α

exp−1
x N
α

(
B

y j
α

(
R′λ j

α

)) ⊂ B
ỹ j
α

(
R′C λ

j
α

µN
α

)
(54)

and

Bx̃s
α

(
R′

C

µs
α

µN
α

)
⊂ 1

µN
α

exp−1
x N
α

(
Bxs

α

(
R′µs

α

)) ⊂ Bx̃s
α

(
R′C µs

α

µN
α

)
(55)

Given R̃ > 0, we have by (40) that

∫
Bxs

α

(
R̃µs

α

)
∣∣∣∣∣vα −

s∑
i=1

ui
α

∣∣∣∣∣
p∗

dvg = o(1)
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Hence, by (52),

∫
(

B
x N
α

(
RµN

α

)
\⋃p

j=1 B
y

j
α

(
R′λ j

α

))⋂
Bxs

α

(
R̃µs

α

) |uN
α |p∗

dvg = o(1) + ε(R′)

and it follows from (54) and (55) that

∫
(

B0(R)\⋃p
j=1 B

ỹ
j
α

(
R′C λ

j
α

µN
α

)) ⋂
Bx̃s

α

(
R̃
C

µs
α

µN
α

) |uN |p∗
dx = o(1) + ε(R′) (56)

Now we ditinguish two cases. In the first case, we assume that dg(xs
α, x N

α )/µN
α

is such that dg(xs
α, x N

α )/µN
α → +∞ as α → ∞. Then dg(xs

α, x N
α )/µs

α → +∞
since, if not, we get by (56) with R̃ large enough that µs

α/µN
α → 0, while

dg
(
xs
α, x N

α

)
µs

α

= dg
(
xs
α, x N

α

)
µN

α

µN
α

µs
α

It follows that Bx N
α
(RµN

α )
⋂

Bxs
α
(R̃µs

α) = ∅ for R̃ > 0 and we may proceed as in

the case where dg(xs
α, x N

α ) does not converge to 0 to get that (52) holds for s-1. In
the second case, we assume that the dg(xs

α, x N
α )/µN

α ’s converge as α → +∞. By

(56), we must have that µs
α/µN

α → 0. We set y p+1
α = xs

α and λ
p+1
α = µs

α . Clearly,
by (52),

∫
B

x N
α

(
RµN

α

)
\⋃p+1

j=1 B
y

j
α

(
R′λ j

α

)
∣∣∣∣∣vα −

s∑
i=1

ui
α − uN

α

∣∣∣∣∣
p∗

dvg = o(1) + ε(R′)

while

∫
B

x N
α

(
RµN

α

)
\⋃p+1

j=1 B
y

j
α

(
R′λ j

α

) |us
α|p∗

dvg ≤
∫

M\Bxs
α

(
R′µs

α

) |us
α|p∗

dvg

= ε(R′)

It follows that

∫
B

x N
α

(
RµN

α

)
\⋃p+1

j=1 B
y

j
α

(
R′λ j

α

)
∣∣∣∣∣vα −

s−1∑
i=1

ui
α − uN

α

∣∣∣∣∣
p∗

dvg = o(1) + ε(R′)

and (52) holds for s-1. As already mentioned, this implies that (49) is true, and
thus that u0 and the ui ’s of Sect. 1 are nonnegative if the uαs are nonnegative.
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4 The C0-estimate

By the maximum principle and standard regularity results as in Druet [8], Guedda-
Véron [16], and Tolksdorf [24], u0 ∈ C1,θ (M) and either u0 > 0 everywhere, or
u0 ≡ 0. In order to prove the C0-estimate of Theorem 0.1 it suffices thus to prove
that there exists C > 0 such that for any α, and any x ,

(
min

i=1,...,k
dg

(
xi
α, x

)) n−p
p

uα(x) ≤ C (57)

where dg is the distance with respect to the metric g, and the xi
α’s are the centers

of the bubbles (Bi
α)α in Theorem 0.1. We define the function �α by

�α(x) = min
i=1,...,k

dg
(
xi
α, x

)

and the function vα by

vα(x) = �

n−p
p

α (x)uα(x)

We let yα ∈ M be such that

vα(yα) = max
x∈M

vα(x)

and assume by contradiction that vα(yα) → +∞ as α → +∞. We let µα >
0 be given by µα = uα(yα)−p/(n−p). Then µα → 0 as α → +∞. For δ ∈
(0, ig), where ig is the injectivity radius of (M, g), we define the function wα in
the Euclidean ball B0(δµ

−1
α ) of center 0 and radius δµ−1

α by

wα(x) = µ

n−p
p

α uα

(
expyα

(µαx)
)

By the definition of yα ,

lim
α→+∞

dg
(
xi
α, yα

)
µα

= +∞ (58)

for all i . For R > 0, x ∈ B0(R), and i = 1, . . . , k, we write that

dg
(
xi
α, expyα

(µαx)
) ≥ dg

(
xi
α, yα

) − dg
(
yα, expyα

(µαx)
)

≥ �α(yα) − µα|x |
≥

(
1 − Rµα

�α(yα)

)
�α(yα)

Thanks to (58), the right hand side in the above equation is positive. Then, we can
write that

wα(x) = µ

n−p
p

α vα

(
expyα

(µαx)
)

�α

(
expyα

(µαx)
) n−p

p

≤
(

1 − Rµα

�α(yα)

)− n−p
p uα(yα)−1vα(yα)

�α(yα)
n−p

p

=
(

1 − Rµα

�α(yα)

)− n−p
p
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and we get that the wα’s are uniformly bounded in any compact subset of R
n . Let

gα be the Riemannian metric on R
n given by

gα(x) = (
exp�

yα
g
)
(µαx)

Then, Eq. (2) becomes

(�p)gαwα + µp
α h̃αw p−1

α = w p�−1
α (59)

where h̃α(x) = hα(expyα
(µαx)). For any compact subset K of R

n , gα → ξ , the
Euclidean metric, in C2(K ) as α → +∞. By (59) and the De Giorgi-Nash-Moser
iterative scheme we then get the existence of C > 0, independent of α, such that
for any α,

sup
x∈B0(1)

wα(x) ≤ C

(∫
B0(2)

w p�

α dvgα

)1/p�

(60)

Independently, ∫
Byα (2µα)

u p�

α dvg =
∫

B0(2)

w p�

α dvgα (61)

while, thanks to the H p
1 -decomposition of the first part of Theorem 0.1,

∫
Byα (2µα)

u p�

α dvg =
∫

Byα (2µα)

(
u0 +

k∑
i=1

Bi
α + Rα

)p�

dvg

where u0, the Bi
α’s and the Rα’s are as in Theorem 0.1. In particular, since u0 is a

continuous function,

∫
Byα (2µα)

u p�

α dvg ≤ C
k∑

i=1

∫
Byα (2µα)

(
Bi

α

)p�

dvg + o(1) (62)

where C > 0 is independent of α, and o(1) → 0 as α → +∞. We fix i =
1, . . . , k, and let the xi

α’s and µi
α = (Ri

α)−1’s be the centers and weights of (Bi
α)α

as given by (4). We distinguish two cases: Case 1: For any R > 0, and any α,
Byα (2µα) ∩ Bxi

α
(Rµi

α) = ∅, and Case 2: There exists R > 0 such that for any α,

Byα (2µα) ∩ Bxi
α
(Rµi

α) = ∅. Up to a subsequence, we are either in case 1 or in
case 2. In case 1 we write that∫

Byα (2µα)

(
Bi

α

)p�

dvg ≤
∫

M\B
xi
α

(
Rµi

α

) (
Bi

α

)p�

dvg

and noting that

lim
R→+∞ lim

α→+∞

∫
M\B

xi
α

(
Rµi

α

) (
Bi

α

)p�

dvg = 0

we get that ∫
Byα (2µα)

(
Bi

α

)p�

dvg = o(1) (63)



328 N. Saintier

In case 2 we have that dg(xi
α, yα) ≤ 2µα + Rµi

α , and it follows from (58) that
µα = o(µi

α) and that dg(xi
α, yα) = O(µi

α). Writing that

Byα (2µα) ⊂ expxi
α

(
µi

α Bzα

(
C

2µα

µi
α

))

where

zα = 1

µi
α

exp−1
xi
α
(yα)

converges in R
n (up to a subsequence) and C > 1 is independent of α, we then

get that ∫
Byα (2µα)

(Bi
α)p�

dvg ≤
∫

Bzα

(
C 2µα

µi
α

) u p�

dvgα

where u is given by (4). Since µα = o(µi
α),

∫
Bzα

(
C Rµα

µi
α

) u p�

dvgα = o(1)

and we get here again that
∫

Byα (2µα)

(Bi
α)p�

dvg = o(1) (64)

In particular, thanks to (63) and (64), we get that, up to a subsequence,
∫

Byα (2µα)

(Bi
α)p�

dvg = o(1) (65)

for all i = 1, . . . , k. Combining (61), (62) and (65), it follows that

lim
α→+∞

∫
B0(2)

w p�

α dvgα = 0 (66)

Noting that wα(0) = 1, we then get a contradiction by combining (66) and (60).
This proves the C0-estimate of Theorem 0.1.

As a consequence of the C0-estimate, we see that the uα’s are uniformly
bounded on any compact subset of M − S where

S =
{

lim
α→∞ xi

α, i = 1, . . . , k
}

is the set of the geometrical blow-up points of the uα’s (S = ∅ if the uα’s don’t
blow-up).
Since uα → 0 in H p

1,loc(M − S), the Moser iterative scheme implies that, up to a
subsequence,

uα → 0 in C0
loc(M − S) (67)
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In order to conclude, we need to prove the remark after the theorem. Namely
that

lim
R→+∞ lim

α→+∞ sup
x∈M\�α(R)

Rk
α(x)

n−p
p

∣∣uα(x) − u0(x)
∣∣ = 0 (68)

where, Rk
α(x) = min

i=1,...,k
dg(xi

α, x), and, for R > 0

�α(R) =
k⋃

i=1

Bxi
α

(
Rµi

α

)

We prove (68) by contradiction and assume that there exists a sequence (yα)α of
points in M , and that there exists δ0 > 0 such that for any i = 1, . . . , k,

dg
(
xi
α, yα

)
µi

α

→ +∞ (69)

as α → +∞, and such that for any α,

Rk
α(yα)

n−p
p

∣∣uα(yα) − u0(yα)
∣∣ ≥ δ0 . (70)

Clearly, Rk
α(yα) → 0 as α → +∞ since if not, by (67), uα(yα) − u0(yα) → 0

as α → +∞ which contradicts (70). We let µα = uα(yα)−p/(n−p). Then we can
rewrite (70) as

Rk
α(yα)

µα

≥ δ1 , (71)

where δ
(n−p)/p
1 = δ0/2. In particular, µα → 0 as α → +∞. Given δ > 0 less

than the injectivity radius of (M, g), we define the function wα in the Euclidean
ball B0(δµ

−1
α ) by

wα(x) = µ

n−p
p

α uα

(
expyα

(µαx)
)

and let gα be the metric given by gα(x) = (exp�
yα

g)(µαx). For any compact
subset K of R

n , and if ξ stands for the Euclidean metric, we have that gα → ξ in
C2(K ) as α → +∞. By (71) we can write that if (xα) is a sequence in B0(δ1/2),
then

dg
(
xi
α, expyα

(µαxα)
) ≥ dg

(
yα, xi

α

) − dg
(
yα, expyα

(µαxα)
)

≥ δ1µα − |xα|µα

for all i and all α. In particular, dg(xi
α, expyα

(µαxα)) ≥ Cµα for some C > 0
independent of α, and up to a subsequence, we get with the C0-estimate that

wα(x) ≤ C (72)

for all x ∈ B0(δ1/2) and all α, where C > 0 is independent of α and x . Now we
may follow the arguments of the proof of the C0-estimate. On the one hand, the
wα’s are solutions of an equation like

(�p)gαwα + µp
α h̃αw p−1

α = w p∗−1
α (73)
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in B0(δ1/2), where h̃α(x) = hα(expyα (µαx)). On the other hand, they are
bounded in B0(δ1/2) by (72). We then can assume (see [19]) that, up to a sub-
sequence, wα → w in C0(B0(δ1/8)) as α → +∞ where w satisfies

�pw = w p∗−1

Moreover
w(0) = 1

since wα(0) = 1 for all α.
Let δ2 = δ1/8. We have that

∫
Byα (δ2µα)

u p∗
α dvg =

∫
B0(δ2)

w p∗
α dvgα

=
∫

B0(δ2)

w p∗
dx + o(1) ,

(74)

where o(1) → 0 as α → +∞, while, by the H p
1 -decomposition of the first part

of theorem 0.1,

∫
Byα (δ2µα)

u p∗
α dvg ≤ C

k∑
i=1

∫
Byα (δ2µα)

(
Bi

α

)p∗
dvg + o(1) , (75)

where C > 0 is independent of α. Independently, as in the proof of C0-estimate,
see equation (65), we have that

∫
Byα (δ2µα)

(
Bi

α

)p∗
dvg = o(1) (76)

for all i . We prove (76) as we prove (65) by considering the two cases where
Byα (δ2µα) ∩ Bxi

α
(Rµi

α) = ∅ for all R > 0, and Byα (δ2µα) ∩ Bxi
α
(Rµi

α) = ∅ for
some R > 0. In the second case we recover (58) thanks to (69) by noting that (71)
and the nonempty intersection give that δ1µα ≤ δ2µα + Rµi

α so that µα ≤ Cµi
α .

Then, combining (74)-(76), we get that w satisfies
∫

B0(δ2)

w p∗
dx = 0

and this is impossible since w is continuous, nonnegative, and such that w(0) = 1.
This proves Lemma 76).

References

1. Alves, C.O.: Existence of positive solutions for a problem with lack of compactness involv-
ing the p-Laplacian. Nonlinear Anal. 51(7), 1187–1206 (2002)

2. Brezis, H., Coron, J.M.: Convergence of solutions of H -systems or how to blow bubbles.
Arch. Rational Mech. Anal. 89(1), 21–56 (1985)

3. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and conver-
gence of functionals. Proc. Amer. Math. Soc. 88(3), 486–490 (1983)



Critical equations involving the p-Laplacian 331

4. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical
Sobolev exponents. Comm. Pure Appl. Math. 36(4), 437–477 (1983)

5. Damascelli, L., Pacella, F.: Monotonicity and symmetry results for p-Laplace equations and
applications. Adv. Differential Equations 5, 1179–1200 (2000)

6. Damascelli, L., Pacella, F., Ramaswamy, M.: Symmetry of ground states of p-Laplace equa-
tions via the moving plane method. Arch. Rational Mech. Anal. 148, 291–308 (1999)

7. Demengel, F., Hebey, E.: On some nonlinear equations involving the p-Laplacian with crit-
ical Sobolev growth. Adv. Differential Equations 3(4), 533–574 (1998)

8. Druet, O.: Generalized scalar curvature type equations on compact Riemannian manifolds.
Proc. Roy. Soc. Edinburgh Sect. A 130(4), 767–788 (2000)

9. Druet, O.: Isoperimetric inequalities on compact manifolds. Geom. Dedicata 90, 217–236
(2002)

10. Druet, O.: Sharp local isoperimetric inequalities involving the scalar curvature. Proc. Amer.
Math. Soc. 130(8), 2351–2361 (2002)

11. Druet, O.: The best constants problem in Sobolev inequalities. Math. Ann. 314(2), 327–346
(1999)

12. Druet, O., Hebey, E.: The AB program in geometric analysis: sharp Sobolev inequalities
and related problems. Mem. Amer. Math. Soc. 160(761), (2002)

13. Druet, O., Hebey, E., Robert, F.: A C0-theory for the blow-up of second order elliptic equa-
tions of critical Sobolev growth. Electron. Res. Announc. Amer. Math. Soc. 9, 19–25 (2003)

14. Evans, L.C.: Weak convergence methods for nonlinear partial differential equations. Con-
ference Board of the Mathematical Sciences 74 (1990)

15. Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical
Sobolev and Hardy exponents. Trans. Amer. Math. Soc. 352(12), 5703–5743 (2000)

16. Guedda, M., Veron, L.: Quasilinear elliptic equations involving critical Sobolev exponents.
Nonlinear Anal. 13(8), 879–902 (1989)

17. Hebey, E.: Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Lec-
ture Notes in Mathematics 5 (1999)

18. Hebey, E., Robert, F.: Coercivity and Struwe’s compactness for Paneitz type operators with
constant coefficients. Calc. Var. Partial Differential Equations 13(4), 491–517 (2001)

19. Ladyzhenskaya, O., Ural’tseva, N.: Linear and Quasilinear Elliptic Equations. Academic
Press (1968)

20. Lions, P.L: The concentration-compactness principle in the calculus of variations, the limit
case, parts 1 and 2. Rev. Mat. Iberoamericana 1(1/2), 145–201, 45–121 (1985)

21. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of two-spheres. Ann. of
Math. (2), 113(1), 1–24 (1981)

22. Schoen, R., Zhang, D.: Prescribed scalar curvature on the n-sphere. Calc. Var. Partial Dif-
ferential Equations 4(1), 1–25 (1996)

23. Struwe, M.: Variational methods. Applications to Nonlinear Partial Differential Equations
and Hamiltonian Systems. Third edition. Springer-Verlag (2000)

24. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ-
ential Equations 51(1), 126–150 (1984)


