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Abstract. In this paper we find estimates for the optimal constant in
the critical Sobolev trace inequality S‖u‖p

Lp∗ (∂Ω) ≤ ‖u‖p

W1,p(Ω)
that are

independent of Ω. This estimates generalized those of [3] for general p.
Here p∗ := p(N − 1)/(N − p) is the critical exponent for the immersion
and N is the space dimension.

Then we apply our results first to prove existence of positive solutions
to a nonlinear elliptic problem with a nonlinear boundary condition with
critical growth on the boundary, generalizing the results of [16]. Finally,
we study an optimal design problem with critical exponent.

1. Introduction

Sobolev inequalities are relevant for the study of boundary value problems
for differential operators. They have been studied by many authors and it is
by now a classical subject. It at least goes back to [1], for more references see
[9]. In particular, the Sobolev trace inequality has been intensively studied
in [4, 11, 13, 16, 19], etc.

Let Ω be a bounded smooth domain of RN . For any 1 < p < N , the
Sobolev trace immersion says that there exists a constant S > 0 such that

S
(∫

∂Ω
|u|p∗ dS

)p/p∗
≤
∫

Ω
|∇u|p + |u|p dx

for any u ∈ W 1,p(Ω), where W 1,p(Ω) is the usual Sobolev spaces of the
functions u ∈ Lp(Ω such that ∇u ∈ Lp(Ω. Here p∗ := p(N − 1)/(N − p) is
the critical exponent for this inequality.

The optimal constant in the above inequality is the largest possible S,
that is

S = Sp(Ω) := inf

∫
Ω
|∇u|p + |u|p dx(∫
∂Ω
|u|p∗ dS

)p/p∗
,

where the infimum is taken over the set X := W 1,p(Ω) \W 1,p
0 (Ω), W 1,p

0 (Ω)
being the closure for the W 1,p-norm of the space of smooth functions with
compact support in Ω.

The dependance of S with respect to p and Ω has been studied by many
authors, specially in the subcritical case, i.e. where p∗ is replaced by any
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exponent q such that 1 < q < p∗. See, for instance [8, 14] and references
therein.

The analysis for the critical case is more involved because the immersion
W 1,p(Ω) ↪→ Lp∗(∂Ω) is no longer compact and so the existence of minimizers
for S does not follows by standard methods.

To overcome this problem, in [16], the authors use an old idea from T.
Aubin [1]. In fact, let K−1

p be the best trace constant for the embedding
W 1,p(Rn

+) ↪→ Lp∗(∂Rn
+), namely

(1.1) K−1
p = inf

u∈W 1,p(Rn
+)\W 1,p

0 (Rn
+

∫
Rn

+
|∇u|pdx(∫

∂Rn
+
|u|p∗dS

)p/p∗
.

In [16] it is shown, following ideas from [1], that if

(1.2) Sp(Ω) < K−1
p ,

then there exists an extremal for Sp(Ω). Taking the function u ≡ 1 in the
definition of Sp(Ω) one obtain that if

|Ω|
|∂Ω|

p
p∗

< K−1
p ,

then (1.2) is satisfied. Observe that this is a global condition on Ω.
It follows from Lions [20] that the infimum (1.1) is achieved. The value of

Kp is explicitely known when p = 2 (see Escobar [11]).
Recently, Biezuner [4] proved that Kp is also the best first constant in the

inequality, (∫
∂Ω
|u|p∗dS

) p
p∗
≤ A

∫
Ω
|∇u|pdx + B

∫
Ω
|u|pdx,

in the sense that, for any ε > 0, there exists a constant Cε such that

(1.3)
(∫

∂Ω
|u|p∗dS

) p
p∗
≤ (Kp + ε)

∫
Ω
|∇u|pdx + Cε

∫
Ω
|u|pdx,

for every u ∈ W 1,p(Ω), and Kp is the lowest possible constant. This fact will
be used in a crucial way in the course of the paper.

On the other hand a local condition, depending only on local geometric
properties of Ω, is known to hold in the case p = 2. Indeed Adimurthi-
Yadava [3] obtained (1.2) assuming the existence of a “good point” x ∈ ∂Ω
i.e. a point x at which the mean curvature of ∂Ω is positive and such that,
in a neighborhood of x, Ω lies on one side of the tangent plane at x. The
method in their proof is the use as test-functions of a suitable rescaling of
the extremals of (1.1).

These extremals are explicitly known for p = 2 since Escobar’s work [11]
who conjectured the result for any p ∈ (1, N). This conjecture has recently
been proved by Nazaret [21] using a mass-transportation method. It turns
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out that all the extremals of (1.1) are of the form

(1.4)
Uε,y0(y, t) =

ε
N−p

p(p−1)

[(t + ε)2 + |y − y0|2]
N−p

2(p−1)

=ε
−N−p

p U

(
y − y0

ε
,
t

ε

)
where ε > 0 and y, y0 ∈ RN−1 = ∂RN

+ , t > 0, with

(1.5) U(y, t) =
1

[(t + 1)2 + |y|2]
N−p

2(p−1)

.

The knowledge of this extremals allows us first to compute the explicit
value of Kp:

Proposition 1.1. The value of Kp is

K−1
p =

(
N − p

p− 1

)p−1

π
p−1
2

 Γ
(

N−1
2(p−1)

)
Γ
(

p(N−1)
2(p−1)

)


p−1
N−1

.

Applying a similar technique as in [3], we can use the rescaled extremals
for Kp and obtain a local (geometrical) condition on Ω such that (1.2) is
satisfied.

In fact, we can deal with a slightly more general problem. Namely

(1.6) λ = λ(p, Ω) := inf

∫
Ω
|∇u|p + h(x)|u|p dx(∫

∂Ω
|u|p∗ dS

)p/p∗

where the infimum is taken over X and the function h ∈ C1(Ω) is such that
there exists c > 0 satisfying

(1.7)
∫

Ω
|∇u|p + h(x)|u|p dx ≥ c‖u‖p

W 1,p(Ω)

for any u ∈ X.
We are lead to the following generalization of the notion of “good point”

to our case: we say that a point x ∈ ∂Ω is a “good point” if there exists
r > 0 such that Ω ∩ Br(x) lies on one side of the tangent plane at x and
either H(x) > 0 or, if H(x) = 0, either

h(x) < 0 if N = 2, 3, 4 and p <
√

n

or, if n ≥ 5,
h(x) < 0 if p < 2,

n

n− 1

∑
λ2

i − 2
∑
i<j

λiλj <
−8(n− 1)h(x)
(n− 2)(n− 4)

if p = 2,

p + n− 2
n− 1

∑
λ2

i − 2
∑
i<j

λiλj < 0 if 2 < p < (n + 2)/3.
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where the λi’s are the principal curvatures at x and H(x) is the mean cur-
vature at x.

Remark that our method gives the restriction 1 < p < (N +1)/2 and also
that a “good point” in the sense of Adimurthi-Yadava is also a “good point”
in our sense.

We get the following theorem:

Theorem 1.1. Let 1 < p < (N +1)/2. If there exist a “good point” x ∈ ∂Ω,
then

(1.8) λ < K−1
p .

As a consequence of Theorem 1.1 we have

Corollary 1.1. Under the hypotheses of Theorem 1.1, the infimum (1.6) is
achieved.

Observe that any extremal u can be taken to be nonnegative (just replace
u by |u|), and if we take it normalized as ‖u‖Lp∗ (∂Ω) = 1, it is an eigenfunction
associated to the eigenvalue λ in the sense that it is a weak solution of the
following Steklov-like eigenvalue problem

(1.9)

{
−∆pu + h(x)up−1 = 0 in Ω
|∇u|p−2 ∂u

∂ν = λup∗−1 on ∂Ω

where ∆pu = div(|∇u|p−2∇u) is the p−Laplacian and ν is the unit outward
normal of Ω.

Then it follows by the results of Cherrier [5] that u is smooth on Ω and
continuous up to the boundary. Moreover, it is strictly positive in Ω (see,
for instance, [15]) so any extremal has constant sign.

As an application of Theorem 1.1, we study a shape optimization problem
related to λ. Given α ∈ (0, |Ω|), where |Ω| denotes the volume of Ω, and a
measurable subset A ⊂ Ω of volume α, we first consider the minimization
problem

(1.10) λA = inf

∫
Ω
|∇u|p + h(x)|u|p dx(∫

∂Ω
|u|p∗ dS

)p/p∗

where the infimum is taken over XA := {u ∈ X | u|A = 0 a.e.} and the
function h ∈ C1(Ω) is such that the coercivity assumption (1.7) holds

As a consequence of Theorem 1.1, we have

Theorem 1.2. Let 1 < p < (N + 1)/2 and let A ⊂ Ω be such that |A| = α.
Assume that there exists a “good point” x ∈ ∂Ω such that Br(x) ∩A = ∅ for
some r > 0. Then λA is attained by some nonnegative nontrivial uA.

These extremals uA are eigenfunctions associated to the eigenvalue λA

in the sense that, if A is closed, they are weak solutions of the following
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Steklov-like eigenvalue problem

(1.11)


−∆pu + h(x)up−1 = 0 in Ω \A

|∇u|p−2 ∂u
∂ν = λAup∗−1 on ∂Ω \A

u = 0 in A

We consider the following shape optimization problem:

For a fixed 0 < α < |Ω|, find a set A∗ of measure α that minimizes
λA among all measurable subsets A ⊂ Ω of measure α. That is,

λ(α) := inf
A⊂Ω,|A|=α

λA = λA∗ .

In this paper we prove that there exist an optimal set A∗ (with their
corresponding extremals u∗) for this optimization problem.

This optimization problem in the subcritical case (that is, when p∗ is
replaced by an exponent q with 1 < q < p∗) has been considered recently. In
fact, in [17] the existence of an optimal set has been established, see also [12]
for numerical computations. Then, in [18], the interior regularity of optimal
sets was analyzed in the case p = 2. We remark that in the result of [18] the
subcriticality plays no role, so this local regularity result holds true also for
this critical case.

We prove,

Theorem 1.3. Let 1 < p < (N +1)/2. If there exists a “good point” x ∈ ∂Ω,
then λ(α) is achieved.

Problems of optimal design related to eigenvalue problems like (1.11) ap-
pear in several branches of applied mathematics, specially in the case p = 2.
For example in problems of minimization of the energy stored in the design
under a prescribed loading. We refer to [6] for more details.

We want to stress that Theorem 1.3 is new, even in the case p = 2.

Organization of the paper. In the next section we deal with the proof of
the applications of the estimate λ < K−1

p , that is, we deal with the proof of
Corollary 1.1 and Theorems 1.2 and 1.3. We leave for the final section the
computation of Kp and the proof of Theorem 1.1.

2. Applications of Theorem 1.1

In this section we use Theorem 1.1, that is proved in the Section 3, and
prove Corollary 1.1, Theorem 1.2 and Theorem 1.3.

2.1. Proof of Corollary 1.1. We first prove that λ is attained as soon as
(1.8) is satisfied. Since this kind of criterion is classical (see e.g. [7] or [16]),
we only sketch the proof for the reader’s convenience.

Let {un}n∈N ⊂ X be a minimizing sequence for (1.6) normalized such that
‖un‖Lp∗ (∂Ω) = 1. According to (1.7), this sequence is bounded in X and thus
it converges up to a subsequence to some u ∈ X weakly in X, strongly in
Lp(Ω) and a.e.
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Using Ekeland’s variational principle (see [23] Theorems 8.5 and 8.14),
we can assume that {un}n∈N is a Palais-Smale sequence for the functional
J : W 1,p(Ω) → R defined by

J(u) =
1
p

∫
Ω
|∇u|p + h(x)|u|p dx− λ

p∗

∫
∂Ω
|u|p∗ dS,

in the sense that the sequence {J(un)}n∈N is bounded and DJ(un) → 0
strongly in (W 1,p(Ω))∗. Letting vn := un − u, we can also assume that, up
to a subsequence,

|vn|p∗ dS ⇀ dν, |∇vn|p dx ⇀ dµ,

weakly in the sense of measures, where µ and ν are nonnegative measures
such that supp(ν) ⊂ ∂Ω.

According to (1.3), we have for any φ ∈ C1(Ω) that(∫
∂Ω
|φvn|p∗ dS

)p/p∗

≤ (Kp + ε)
∫

Ω
|∇(φvn)|p dx + Cε

∫
Ω
|φvn|p dx.

Passing to the limit in this expression, first in n →∞ and then in ε → 0, we
get that (∫

∂Ω
|φ|p∗ dν

)p/p∗

≤ Kp

∫
Ω
|φ|p dµ

for any φ ∈ C1(Ω). From this inequality, we can deduce as in [20] Lemma
2.3, the existence of a sequence of points {xi}i∈I ⊂ ∂Ω, I ⊂ N, and two
sequences of positive real numbers {νi}i∈I , {µi}i∈I such that

ν =
∑
i∈I

νiδxi , µ ≥
∑
i∈I

µiδxi and µi ≥ K−1
p ν

p/p∗
i ∀ i ∈ I.

Therefore,

(2.1)


|un|p∗dS ⇀ |u|p∗dS +

∑
i∈I νiδxi

|∇un|pdx ⇀ |∇un|pdx + µ ≥ |∇un|pdx +
∑

i∈I µiδxi

µi ≥ K−1
p ν

p/p∗
i ∀ i ∈ I.

It can also be shown that {vn}n∈N is a Palais-Smale sequence for the func-
tional I : W 1,p(Ω) → R defined by

I(u) := J(u)−
∫

Ω
h(x)|u|p dx

(see e.g. [22]). In particular, for any φ ∈ C1(Ω),

o(1) = DI(vn)(vnφ)

=
∫

Ω
|∇vn|p−2∇vn∇(vnφ) dx− λ

∫
∂Ω
|vn|p∗φ dS.

Passing to the limit, we get that
∫
Ω φ dµ = λ

∫
∂Ω φ dν for any φ ∈ C1(Ω).

Hence µ = λν. Using (2.1), we then obtain the estimates

(2.2) νi ≥ (λKp)
−n−1

p−1 , µi ≥ K−1
p (λKp)

−n−1
p−1 ∀ i ∈ I.
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Now, by (2.1), (1.7) and (2.2), we arrive at

λ =
∫

Ω
|∇un|p dx +

∫
Ω

h(x)|un|p dx + o(1) ≥
∑
i∈I

µi

≥ card(I)K−1
p (λKp)

−n−1
p−1 .

We deduce that if (1.8) holds, then I is empty. In that case, un → u strongly
in W 1,p(Ω) and in Lp∗(∂Ω). In particular u is a minimizer for λ.

This completes the proof �

2.2. Proof of Theorem 1.2. Arguing exactly as in the proof of Theorem
1.1 we obtain that a normalized minimizing sequence {un}n∈N ⊂ XA for λA

converges, up to a subsequence, strongly in W 1,p(Ω) to some uA as soon as

(2.3) inf
u∈XA

∫
Ω
|∇u|p + |u|p dx(∫
∂Ω
|u|p∗ dS

)p/p∗
< K−1

p .

Since there exists a “good point” x ∈ ∂Ω such that Br(x)∩A = ∅, we deduce
from the computations in the next section, by choosing a cut-off function φ
with support in Br/2(x) in the definition of the test function uε (3.1), that
this strict inequality (2.3) holds. Hence un → u strongly in W 1,p(Ω) and
Lp∗(∂Ω) and also a.e.. In particular u is a minimizer for λA. �

2.3. Proof of Theorem 1.3. We begin by noticing that

λ(α) = inf{λA, A ⊂ Ω measurable, |A| ≥ α}.

Hence

λ(α) = inf
u∈X, |{u=0}|≥α

∫
Ω
|∇u|p + |u|p dx(∫
∂Ω
|u|p∗ dS

)p/p∗
.

Since α < |Ω| and there exists a “good point”, it follows from the test func-
tions computations of the next section, by choosing a function φ with support
in a ball of radius small enough in the definition of uε (3.1), that λ(α) < K−1

p .
By the same argument as before, this implies the existence of a nonnega-

tive u∗ ∈ X, |{u∗ = 0}| ≥ α, such that∫
Ω
|∇u∗|p + |u∗|p dx(∫
∂Ω
|u∗|p∗ dS

)p/p∗
= λ(α).

We now conclude as in [17], Theorem 1.2, that in fact |{u∗ = 0}| = α and
so A∗ = {u∗ = 0} is an optimal set for λ(α). �
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3. Proof of Theorem 1.1

In this section we prove our main result. First we recall some very well
known formulae and prove Proposition 1.1. Finally we prove Theorem 1.1.

In all the subsequent computations, the following well known formulae
will be used frequently:

ωN−1 = volume of the standard unit sphere SN−1 of RN =
2π

N
2

Γ
(

N
2

) ,
∫ +∞

0

rα

(1 + r2)β
dr =

Γ
(

α+1
2

)
Γ
(

2β−α−1
2

)
2Γ(β)

for 2β − α > 1,

Γ(z)Γ(z +
1
2
) = 21−2z√πΓ(2z) for Re(z) > 0.

We first compute the value of Kp:

Proof of Propostion 1.1. Let U be the function defined by (1.5). We first
compute the Lp∗-norm of U restricted to RN−1 × {0} = ∂RN

+ .∫
RN−1

|U(y, 0)|p∗ dy =
∫

RN−1

dy

(1 + |y|2)p(N−1)/2(p−1)

= ωN−2

∫ ∞

0

rN−2 dr

(1 + r2)p(N−1)/2(p−1)

= π(N−1)/2
Γ
(

N−1
2(p−1)

)
Γ
(

p(N−1)
2(p−1)

)
We now compute the Lp-norm of the gradient of U . First

∇U(y, t) = −N − p

p− 1
(y, t + 1)

[(1 + t)2 + |y|2]
N−p

2(p−1)
+1

.

Using the change of variable y = (1 + t)z and passing to polar coordinates,
we can then write∫

RN
+

|∇U(y, t)|p dydt =
(

N − p

p− 1

)p ∫
RN

+

dydt

[(1 + t)2 + |y|2]
p(N−1)
2(p−1)

=
(

N − p

p− 1

)p ∫ +∞

0

dt

(1 + t)
N−1
p−1

ωN−2

∫ +∞

0

rN−2 dr

(1 + r2)
p(N−1)
2(p−1)

=
(

N − p

p− 1

)p−1

π
N−1

2

Γ
(

N−1
2(p−1)

)
Γ
(

p(N−1)
2(p−1)

) .
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Hence

K−1
p =

∫
RN

+

|∇U(y, t)| dydt(∫
RN−1

|U(y, 0)|p∗dy
) p

p∗
=
(

N − p

p− 1

)p−1

π
p−1
2

 Γ
(

N−1
2(p−1)

)
Γ
(

p(N−1)
2(p−1)

)


p−1
N−1

and the proof is complete �

We now turn our attention to the proof of Theorem 1.1. Let x0 ∈ ∂Ω be
a “good point”. By taking an appropriate chart, we can assume that x0 = 0
and that there exist r > 0 and λ1, . . . , λN−1 ∈ R such that

Br ∩ Ω ={(y, t) ∈ Br, t > ρ(y)}
Br ∩ ∂Ω ={(y, t) ∈ Br, t = ρ(y)}

where y = (y1, . . . , yN−1) ∈ RN−1, Br is the Euclidean ball centered at the
origin and of radius r, and

ρ(y) =
1
2

N−1∑
i=1

λiy
2
i +

∑
i,j,k

cijkyiyjyk + O(|y|4).

Since x0 = 0 is a “good point”, we have ρ ≥ 0. Moreover, the λi’s are the
principal curvatures at 0 and thus

H(0) =
1

N − 1

N−1∑
i=1

λi.

Let φ be a smooth radial function with compact support in Br/2 be such
that φ ≡ 1 in Br/4. We consider the test functions

(3.1) uε(y, t) =
φ(y, t)

[(t + ε)2 + |y|2]
N−p

2(p−1)

, ε > 0.

In order to give the asymptotic development of the Rayleigh quotient for uε,
we first compute the different terms involved:

Step 1. We have the following estimates:

(3.2)
∫

Ω
|∇uε|p dx = A1ε

−N−p
p−1 +



A2ε
1−N−p

p−1 + A3ε
2−N−p

p−1

+


O(ε3−

N−p
p−1 ) if p < N+3

4

O(ln(1/ε)) if p = N+3
4

O(1) if N+3
4 < p < N+1

2

A′
2 ln(1/ε) if p = N+1

2

O(1) if p > N+1
2
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(3.3)

∫
Ω

h(x)|uε|p dx =


Dε

−N−p2

p−1 +


O(ε1−

N−p2

p−1 ) if p < −1+
√

4N+5
2

O(ln(1/ε)) if p = −1+
√

4N+5
2

O(1) if
√

N > p > −1+
√

4N+5
2

O(ln(1/ε)) if p =
√

N

O(1) if p >
√

N

(3.4)

∫
∂Ω
|uε|p∗ dS =B1ε

−1−N−p
p−1 + B2ε

−N−p
p−1

+


B3ε

1−N−p
p−1 +


O(ε2−

N−p
p−1 ) if p < N+2

3

O(ln(1/ε)) if p = N+2
3

O(1) if N+2
3 < p < N+1

2

B4 ln(1/ε) if p = N+1
2

O(1) if p > N+1
2

where

A1 =
1
2

(
N − p

p− 1

)p−1

ωN−2

Γ
(

N−1
2

)
Γ
(

N−1
2(p−1)

)
Γ
(

p(N−1)
2(p−1)

)
A2 = −H(0)ωN−2

4

(
N − p

p− 1

)p Γ
(

N+1
2

)
Γ
(

N−2p+1
2(p−1)

)
Γ
(

p(N−1)
2(p−1)

)
A′

2 = −H(0)ωN−2

2

(
N − p

p− 1

)p

A3 =
ωN−2

16

(
N − p

p− 1

)p Γ
(

N−1
2

)
Γ
(

N−2p+1
2(p−1)

)
Γ
(

p(N−1)
2(p−1)

)
3

2

∑
λ2

i +
∑
i<j

λiλj



B1 = ωN−2

Γ
(

N−1
2

)
Γ
(

N−1
2(p−1)

)
2Γ
(

p(N−1)
2(p−1)

)
B2 = −ωN−2

∑
λi

8
p(N − 1)

p− 1

Γ
(

N−1
2

)
Γ
(

N−1
2(p−1)

)
Γ
(
1 + p(N−1)

2(p−1)

)

B3 =
ωN−2

32

Γ
(

N−1
2

)
Γ
(

N−2p+1
2(p−1)

)
Γ
(

p(N−1)
2(p−1)

) ×


(

1 +
3(N − 2p + 1)

p− 1

)∑
λ2

i +
(
−2 +

2(N − 2p + 1)
p− 1

)∑
i<j

λiλj
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B4 =
ωN−2

2


(

1
N − 1

− p(N − 1)
4(p− 1)

)∑
λ2

i −
p(N − 1)
2(p− 1)

∑
i<j

λiλj + o(1)



D = h(0)
p− 1

N − p2
ωN−2

Γ
(

N−1
2

)
Γ
(

N−p2+p−1
2(p−1)

)
2Γ
(

p(N−p)
2(p−1)

)
Proof of Step 1. We have

[(t+ε)2+|y|2]
N−1
p−1 |∇uε|2 =

(
N − p

p− 1

)2

φ2+|∇φ|2−2
N − p

p− 1
φ(y·∇yφ+(t+ε)∂tφ)

Hence in Br/4,

|∇uε|p =
(

N − p

p− 1

)p 1

[(t + ε)2 + |y|2]
p(N−1)
2(p−1)

,

and then ∫
Ω
|∇uε|p dx =

(
N − p

p− 1

)p

(I1 − I2) + O(1)

with

I1 =
∫

Qa

1

[(t + ε)2 + |x|2]
p(n−1)
2(p−1)

and I2 =
∫

Qa\Ω

1

[(t + ε)2 + |x|2]
p(n−1)
2(p−1)

,

where Qa := {(y, t) | |y| ≤ a and 0 ≤ t ≤ a}.
Changing variables y = (1+ t)z and passing to polar coordinates, we have

I1 =
∫

Qa

1

[(t + ε)2 + |y|2]
p(N−1)
2(p−1)

dydt

= ε
−N−p

p−1

∫
RN

+

1

[(1 + t)2 + |y|2]
p(N−1)
2(p−1)

dydt + O(1)

= ε
−N−p

p−1 ωN−2

∫ ∞

0

dt

(1 + t)
N−1
p−1

∫ ∞

0

rN−2 dr

(1 + r2)
p(N−1)
2(p−1)

+ O(1)

Hence

(3.5) I1 = ε
−N−p

p−1
p− 1
N − p

ωN−2

Γ
(

N−1
2

)
Γ
(

N−1
2(p−1)

)
2Γ
(

p(N−1)
2(p−1)

) + O(1).
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On the other hand, according to Taylor’s formula,

I2 =
∫
|y|≤a

∫ ρ(y)

0

1

[(t + ε)2 + |y|2]
p(N−1)
2(p−1)

dtdy

=
∫
|y|≤a

ρ(y) dy

(ε2 + |y|2)
p(N−1)
2(p−1)

− p(N − 1)
2(p− 1)

ε

∫
|y|≤a

ρ(y)2 dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+1

+ O

∫
|y|≤a

|y|6 dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+1



= I3 −
p(N − 1)
2(p− 1)

εI4 +


O
(
ε
3−N−p

p−1

)
, if p < N+3

4

O(ln(1/ε)), if p = N+3
4

O(1), if p > N+3
4

As the sphere is symmetric, we have

I3 =
1
2
H(0)

∫
|y|≤a

|y|2 dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+ O

∫
|y|≤a

|y|4 dy

(ε2 + |y|2)
p(N−1)
2(p−1)


with

(3.6)

∫
|y|≤a

|y|2 dy

(ε2 + |y|2)
p(N−1)
2(p−1)

= ε
1−N−p

p−1 ωN−2

∫ a/ε

0

rNdr

(1 + r2)
p(N−1)
2(p−1)

=


ε
1−N−p

p−1 ωN−2

Γ(N+1
2 )Γ

�
N−2p+1
2(p−1)

�

2Γ
�

p(N−1)
2(p−1)

� + O(1) if p < N+1
2

≈ ωN−2 ln(1/ε) if p < N+1
2

O(1) if p > N+1
2

and

(3.7)

∫
|y|≤a

|y|4 dy

(ε2 + |y|2)
p(N−1)
2(p−1)

= ε
3−N−p

p−1 ωN−2

∫ a/ε

0

rN+2 dr

(1 + r2)
p(N−1)
2(p−1)

=


O(ε3−

N−p
p−1 ) if p < N+3

4

O(ln(1/ε)) if p = N+3
4

O(1) if p > N+3
4

Since N+3
4 < N+1

2 we get

I3 =


ε
1−N−p

p−1 ωN−2H(0)
Γ(N+1

2 )Γ
�

N−2p+1
2(p−1)

�

4Γ
�

p(N−1)
2(p−1)

� +


O(ε3−

N−p
p−1 ) if p < N+3

4

O(ln(1/ε)) if p = N+3
4

O(1) if N+3
4 < p < N+1

2

≈ 1
2H(0)ωN−2 ln(1/ε) if p = N+1

2

O(1) if p > N+1
2
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Concerning I4, we have

I4 =
1
4

∑
λ2

i

∫
|y|≤a

y4
i dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+1

+
1
2

∑
i<j

λiλj

∫
|y|≤a

y2
i y

2
j dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+1

+ O

∫
|y|≤a

|y|5 dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+1

 .

First we compute

∫
|y|≤a

y4
i dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+1
= ε

1−N−p
p−1

∫
|y|≤a/ε

y4
i dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+1

=

{
O(1) if p > N+1

2

≈ ωN−2 ln(1/ε) if p = N+1
2

and if p < N+1
2 ,

∫
|y|≤a

y4
i dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+1

= 2ε
1−N−p

p−1 ωN−3

∫ ∞

0

rN−3 dr

(1 + r2)
p(N−1)
2(p−1)

− 3
2

∫ ∞

0

y4 dy

(1 + y2)
p(N−1)
2(p−1)

+1
+ O(1).

Hence

(3.8)

∫
|y|≤a

y4
i dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+1

=


ε
1−N−p

p−1
ωN−3

2

Γ(N−2
2 )Γ

�
N−2p+1
2(p−1)

�
Γ( 5

2)
Γ
�

p(N−1)
2(p−1)

+1
� + O(1) if p < N+1

2

≈ ωN−2 ln(1/ε) if p = N+1
2

O(1) if p > N+1
2

In the same way

∫
|y|≤a

y2
i y

2
j dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+1
=

{
≈ ωN−2 ln(1/ε) if p = N+1

2

O(1) if p > N+1
2
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and if p < N+1
2 ,∫

|y|≤a

y2
i y

2
j dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+1

=ε
1−N−p

p−1

∫
|y|≤a/ε

y2
i y

2
j dy

(1 + |y|2)
p(N−1)
2(p−1)

+1

=4ωN−4

∫ ∞

0

rN−4 dr

(1 + r2)
p(N−1)
2(p−1)

−2

∫ ∞

0

y2
i dyi

(1 + y2
i )

p(N−1)
2(p−1)

− 1
2

∫ ∞

0

y2
j dyj

(1 + y2
j )

p(N−1)
2(p−1)

+1

+ O(1)

Hence ∫
|y|≤a

y2
i y

2
j dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+1

=


ε
1−N−p

p−1
ωN−4

2

Γ(N−3
2 )Γ( 3

2)
2
Γ
�

N−2p+1
2(p−1)

�

Γ
�

p(N−1)
2(p−1)

+1
� + O(1) if p < N+1

2

≈ ωN−2 ln(1/ε) if p = N+1
2

O(1) if p > N+1
2

Once again,∫
|y|≤a

|y|5 dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+1
= ε

2−N−p
p−1 ωN−2

∫ a/ε

0

rN+3 dr

(1 + r2)
p(N−1)
2(p−1)

+1

=


O(ε2−

N−p
p−1 ) if p < N+2

3

O(ln(1/ε)) if p = N+2
3

O(1) if p > N+2
3

Using the fact that Γ(3
2) =

√
π

2 , Γ(5
2) = 3

√
π

4 , and

ωN−3 =
1√
π

Γ
(

N−1
2

)
Γ
(

N−2
2

)ωN−2, ωN−4 =
1
π

Γ
(

N−1
2

)
Γ
(

N−3
2

)ωN−2,

we eventually get that

(3.9) I4 =



ωN−2

16 ε
1−N−p

p−1
Γ
�

N−2p+1
2(p−1)

�
Γ(N−1

2 )
Γ
�

p(N−1)
2(p−1)

+1
�

(
3
2

∑
λ2

i +
∑

i<j λiλj

)

+


O(ε2−

N−p
p−1 ) if p < N+2

3

O(ln(1/ε)) if p = N+2
3

O(1) if N+2
3 < p < N+1

2
ωN−2

2 ln(1/ε)
(

1
2

∑
λ2

i +
∑

i<j λiλj + o(1)
)

if p = N+1
2

O(1) if p > N+1
2



SOBOLEV TRACE CONSTANT 15

We thus obtain

I2 =



ε
1−N−p

p−1
H(0)ωN−2

4

Γ(N+1
2 )Γ

�
N−2p+1
2(p−1)

�

Γ
�

p(N−1)
2(p−1)

�

−ε
2−N−p

p−1
ωN−2

16

Γ(N−1
2 )Γ

�
N−2p+1
2(p−1)

�

Γ
�

p(N−1)
2(p−1)

�
(

3
2

∑
λ2

i +
∑

i<j λiλj

)

+


O(ε3−

N−p
p−1 ) if p < N+3

4

O(ln(1/ε)) if p = N+3
4

O(1) if N+3
4 < p < N+1

2
H(0)ωN−2

2 ln(1/ε)(1 + o(1)) if p = N+1
2

O(1) if p > N+1
2

So the proof of (3.2) is completed.
To prove (3.3), we first observe that

(3.10)

∫
Ω
h(x)|uε|p dx = h(0)

∫
Ω
|uε|p dx + O

(∫
Ω
|x||uε|p dx

)
= h(0)

∫
Qa

|uε|p dx + O

(∫
Qa\Ω

|uε|p dx +
∫

Qa

|x||uε|p dx

)
,

where, as before, Qa = {(y, t) | |y| ≤ a and 0 ≤ t ≤ a}.
Now,∫

Qa

|uε|pdx =
∫
|y|≤a,0<t≤a

dydt

[(t + ε)2 + |y|2]
p(N−p)
2(p−1)

+ O(1)

= ε
−N−p2

p−1

∫
|y|≤a/ε,0<t≤a/ε

dydt

[(1 + t)2 + |y|2]
p(N−p)
2(p−1)

+ O(1)

=

{
O(ln(1/ε)) if p2 = N

O(1) if p2 > N

If p2 < N , using the change of variable y = (1 + t)z and then passing to
polar coordinates, we get∫

Qa

|uε|pdx = ε
−N−p2

p−1 ωN−2

∫ ∞

0

dt

(1 + t)
N−p2

p−1
+1

∫ ∞

0

rN−2 dr

(1 + r2)
p(N−p)
2(p−1)

+ O(1)

Hence
(3.11)

∫
Qa

|uε|pdx =


ε
−N−p2

p−1 p−1
N−p2 ωN−2

Γ(N−1
2 )Γ

�
N−p2+p−1

2(p−1)

�

2Γ
�

p(N−p)
2(p−1)

� + O(1) if p2 < N

O(ln(1/ε)) if p2 = N

O(1) if p2 > N
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On the other hand, using Taylor’s formula,

(3.12)

∫
Qa\Ω

|uε|pdx =
∫
|y|≤a

∫ ρ(y)

0

dt

[(t + ε)2 + |y|2]
p(N−p)
2(p−1)

dy + O(1)

= O

∫
|y|≤a

|y|2 dy

(ε2 + |y|2)
p(N−p)
2(p−1)

dy

+ O(1)

= ε
1−N−p2

p−1 O

∫ a/ε

0

rN dr

(1 + r2)
p(N−p)
2(p−1)

+ O(1)

=


O(ε1−

N−p2

p−1 ) if p < −1+
√

4N+5
2

O(ln(1/ε)) if p = −1+
√

4N+5
2

O(1) if p > −1+
√

4N+5
2

Similarly,

(3.13)

∫
Qa

|x||uε|pdx =
∫

Qa

|(y, t)|

[(t + ε)2 + |y|2]
p(N−p)
2(p−1)

dydt + O(1)

= ε
1−N−p2

p−1

∫
Qa/ε

|(y, t)|

[(1 + t)2 + |y|2]
p(N−p)
2(p−1)

dydt + O(1)

=


O(ε1−

N−p2

p−1 ) if p < −1+
√

4N+5
2

O(ln(1/ε)) if p = −1+
√

4N+5
2

O(1) if p > −1+
√

4N+5
2

Combining (3.10), (3.11), (3.12) and (3.13), gives (3.3).
Finally, to prove (3.4), we first observe that∫

∂Ω
|uε|p∗ dS =

∫
Qa

|uε|p∗ dS

for small ε and so∫
∂Ω
|uε|p∗ dS =

∫
|y|≤a

√
1 + |∇ρ|2

[(ε + ρ(y))2 + |y|2]
p(N−1)
2(p−1)

dy

=
∫
|y|≤a

1 + 1
2 |∇ρ|2 + O(|y|4)

(ε2 + |y|2)
p(N−1)
2(p−1)

[
1− p(N − 1)

2(p− 1)
ρ(2ε + ρ)
ε2 + |y|2

− cN,p
ρ2(2ε + ρ)2

(ε2 + |y|2)2
+ O

(
ρ3(2ε + ρ)3

(ε2 + |y|2)3

)]
dy,

where

cN,p = −p(N − 1)
4(p− 1)

[
p(N − 1)
2(p− 1)

+ 1
]

.
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Hence∫
∂Ω
|uε|p∗ dS =

=
∫
|y|≤a

dy

(ε2 + |y|2)
p(N−1)
2(p−1)

dy − ε
p(N−1)

p−1

∫
|y|≤a

ρ(y) dy

(ε2 + |y|2)1+
p(N−1)
2(p−1)

+
1
2

∫
|y|≤a

|∇ρ|2 dy

(ε2 + |y|2)
p(N−1)
2(p−1)

− p(N − 1)
2(p− 1)

∫
|y|≤a

ρ2(y) dy

(ε2 + |y|2)1+
p(N−1)
2(p−1)

− 4ε2cN,p

∫
|y|≤a

ρ2(y) dy

(ε2 + |y|2)2+
p(N−1)
2(p−1)

+ O

∫
|y|≤a

|y|4 dy

(ε2 + |y|2)
p(N−1)
2(p−1)

dy + ε

∫
|y|≤a

|y|4 dy

(ε2 + |y|2)1+
p(N−1)
2(p−1)

dy


= I5 − ε

p(N−1)
p−1 I7 +

1
2
I6 −

p(N − 1)
2(p− 1)

I8 − 4ε2cN,pI9 + O(I10).

We first compute I5 as follows:

(3.14)

I5 =
∫
|y|≤a

dy

(ε2 + |y|2)
p(N−1)
2(p−1)

= ωN−2ε
−1−N−p

p−1

∫ a/ε

0

rN−2 dr

(1 + r2)
p(N−1)
2(p−1)

= ωN−2ε
−1−N−p

p−1

∫ ∞

0

rN−2 dr

(1 + r2)
p(N−1)
2(p−1)

+ O(1)

= ωN−2ε
−1−N−p

p−1

Γ
(

N−1
2

)
Γ
(

N−1
2(p−1)

)
2Γ
(

p(N−1)
2(p−1)

) + O(1).

According to (3.6) and (3.7), using the relation Γ
(

N+1
2

)
= N−1

2 Γ
(

N−1
2

)
, we

have
(3.15)

I6 =
∫
|y|≤a

|∇ρ|2 dy

(ε2 + |y|2)
p(N−1)
2(p−1)

=
∑

λ2
i

∫
|y|≤a

|yi|2 dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+ O

∫
|y|≤a

|y|4 dx

(ε2 + |y|2)
p(N−1)
2(p−1)


=
∑

λ2
i

N − 1

∫
|y|≤a

|y|2 dy

(ε2 + |y|2)
p(N−1)
2(p−1)

+ O

∫
|y|≤a

|y|4 dx

(ε2 + |y|2)
p(N−1)
2(p−1)



=


1
4

∑
λ2

i ωN−2ε
1−N−p

p−1
Γ(N−1

2 )Γ
�

N−2p+1
2(p−1)

�

Γ
�

p(N−1)
2(p−1)

� +


O(ε3−

N−p
p−1 ) if p < N+3

4

O(ln(1/ε)) if p = N+3
4

O(1) if N+1
2 > p > N+3

4
ωN−2

P
λ2

i
N−1 ln(1/ε)) if p = N+1

2

O(1) if p > N+1
2
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By radial symmetry, we have

I7 =
∫
|y|≤a

ρ(y) dy

(ε2 + |y|2)1+
p(N−1)
2(p−1)

=
∑

λi

2(N − 1)

∫
|y|≤a

|y|2 dy

(ε2 + |y|2)1+
p(N−1)
2(p−1)

+ O

∫
|y|≤a

|y|4 dy

(ε2 + |y|2)1+
p(N−1)
2(p−1)


=

ωN−2
∑

λi

2(N − 1)
ε
−1−N−p

p−1

∫ a/ε

0

rN dr

(1 + r2)1+
p(N−1)
2(p−1)

+ ε
−N−p

p−1 O

∫ a/ε

0

rN+2 dr

(1 + r2)1+
p(N−1)
2(p−1)



=
ωN−2

∑
λi

2(N − 1)
ε
−1−N−p

p−1

∫ ∞

0

rN dr

(1 + r2)1+
p(N−1)
2(p−1)

+


O(ε1−

N−p
p−1 ) if p < N+1

2

O(ln(1/ε)) if p = N+1
2

O(ε−
N−p
p−1 ) if p > N+1

2

and so

(3.16)

I7 =
ωN−2

∑
λi

8
ε
−1−N−p

p−1

Γ
(

N−1
2

)
Γ
(

N−1
2(p−1)

)
Γ
(
1 + p(N−1)

2(p−1)

)

+


O(ε1−

N−p
p−1 ) if p < N+1

2

O(ln(1/ε)) if p = N+1
2

O(ε−
N−p
p−1 ) if p > N+1

2

To compute I9 we proceed as in the computations of I4, i.e.

I9 =
∫
|y|≤a

ρ2(y) dy

(ε2 + |y|2)2+
p(N−1)
2(p−1)

=
1
4

∑
λ2

i

∫
|y|≤a

y4
1 dy

(ε2 + |y|2)2+
p(N−1)
2(p−1)

+
1
2

∑
i<j

λiλj

∫
|y|≤a

y2
i y

2
j dy

(ε2 + |y|2)2+
p(N−1)
2(p−1)

+ O

∫
|y|≤a

|y|5 dy

(ε2 + |y|2)2+
p(N−1)
2(p−1)

 .

Now∫
|y|≤a

y4
1 dy

(ε2 + |y|2)2+
p(N−1)
2(p−1)

= ε
−N−1

p−1

∫
RN−1

y4
1 dy

(1 + |y|2)2+
p(N−1)
2(p−1)

+ O(1)

= 2ε
−N−1

p−1 ωN−3

∫ ∞

0

rN−3 dr

(1 + r2)
p(N−1)
2(p−1)

− 1
2

∫ ∞

0

s4 ds

(1 + s2)2+
p(N−1)
2(p−1)

+ O(1)

=
3ωN−2

8
ε
−N−1

p−1

Γ
(

N−1
2

)
Γ
(

N−1
2(p−1)

)
Γ
(
2 + p(N−1)

2(p−1)

) + O(1),
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∫
|y|≤a

y2
i y

2
j dy

(ε2 + |y|2)2+
p(N−1)
2(p−1)

= ε
−N−1

p−1

∫
RN−1

y2
i y

2
j dy

(1 + |y|2)2+
p(N−1)
2(p−1)

+ O(1)

=4ε
−N−1

p−1 ωN−4

∫ ∞

0

rN−4 dr

(1 + r2)
p(N−1)
2(p−1)

−1

∫ ∞

0

y2
i dyi

(1 + y2
i )

1
2
+

p(N−1)
2(p−1)

×
∫ ∞

0

y2
j dyj

(1 + y2
j )

2+
p(N−1)
2(p−1)

+ O(1)

=
ωN−2

8
ε
−N−1

p−1

Γ
(

N−1
2

)
Γ
(

N−1
2(p−1)

)
Γ
(
2 + p(N−1)

2(p−1)

) + O(1),

and ∫
|y|≤a

|y|5 dy

(ε2 + |y|2)2+
p(N−1)
2(p−1)

= ε
−N−p

p−1 ωN−2

∫ a/ε

0

rN+3 dr

(1 + r2)2+
p(N−1)
2(p−1)

= O(ε−
N−p
p−1 )

Hence

(3.17)
I9 =

ωN−2

16
ε
−N−1

p−1

Γ
(

N−1
2

)
Γ
(

N−1
2(p−1)

)
Γ
(
2 + p(N−1)

2(p−1)

)
3

2

∑
λ2

i +
∑
i<j

λiλj


+ O(ε−

N−p
p−1 ).

Finally, for I10 we have,

I10 =ε
3−N−p

p−1 ωN−2

∫ a/ε

0

rN+2 dr

(1 + r2)
p(N−1)
2(p−1)

+ ε
2−N−p

p−1 ωN−2

∫ a/ε

0

rN+2 dr

(1 + r2)1+
p(N−1)
2(p−1)

=


O(ε3−

N−p
p−1 ) if p < N+3

4

O(ln(1/ε)) if p = N+3
4

O(1) if p > N+3
4

+


O(ε2−

N−p
p−1 ) if p < N+1

2

O(ε ln(1/ε)) if p = N+1
2

O(ε) if p > N+1
2

and so

(3.18) I10 =

{
O(ε2−

N−p
p−1 ) if p ≤ N+2

3

O(1) if p > N+2
3

Putting these estimates together, we arrive at (3.4). This completes the
proof of Step 1. �

Step 2. We have, for any dimension N ≥ 2,

K−1
p

∫
Ω
|∇uε|p + |uε|p dx(∫
∂Ω
|uε|p∗ dS

)p/p∗
=

{
1 + O(ε

N−p
p−1 ) if p > N+1

2

1− N−1
2 H(0)ε ln(1/ε) + o(ε ln(1/ε)) if p = N+1

2
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and, if p < N+1
2 , for dimension N = 2, 3, 4

K−1
p

∫
Ω
|∇uε|p + |uε|p dx(∫
∂Ω
|uε|p∗ dS

)p/p∗
=1− (N − p)(p− 1)

N − 2p + 1
H(0)ε

+


D
A1

εp +

{
Eε2 + O(ε1+p) if p < N+2

3

O(ε
N−p
p−1 ) if N+2

3 ≤ p <
√

N

O(ε
N−p
p−1 ln(1/ε)) if p =

√
N

O(ε
N−p
p−1 ) if

√
N < p < N+1

2

where

E =
(N − p)(p− 1)

4(N − 1)(N − 2p + 1)

p + N − 2
N − 1

∑
λ2

i − 2
∑
i<j

λiλj

 .

Also, for dimensions N ≥ 5,

K−1
p

∫
Ω
|∇uε|p + |uε|p dx(∫
∂Ω
|uε|p∗ dS

)p/p∗
=1− (N − p)(p− 1)

N − 2p + 1
H(0)ε

+


Eε2 +


D
A1

εp +

{
o(ε2) if p ≤ 2
o(εp) if 2 ≤ p <

√
N

o(ε2) if
√

N ≤ p < N+2
3

O(ε2) if N+2
3 ≤ p < N+1

2

Proof of Step 2. Noting that

A1

B
N−p
N−1

1

= K−1
p ,

we have, when e.g. n ≥ 6 and p ≤ 2, that

K−1
p

∫
Ω
|∇uε|p + |uε|p dx(∫
∂Ω
|uε|p∗ dS

)p/p∗
= 1 +

(
A2

A1
− N − p

N − 1
B2

B1

)
ε +

D

A1
εp

+

{
N − p

N − 1

[
1
2

(
N − p

N − 1
+ 1
)(

B2

B1

)2

− B3

B1
− B2

B1

A2

A1

]
+

A3

A1

}
ε2 + o(ε2).

Using the fact that

Γ
(

N + 1
2

)
= Γ

(
N − 1

2
+ 1
)

=
N − 1

2
Γ
(

N − 1
2

)
Γ
(

N − 1
2(p− 1)

)
= Γ

(
N − 2p + 1

2(p− 1)
+ 1
)

=
N − 2p + 1

2(p− 1)
Γ
(

N − 2p + 1
2(p− 1)

)
,
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we get

A2

A1
= −1

2
N − p

N − 2p + 1

∑
λi,

A3

A1
=

1
4

N − p

N − 2p + 1

3
2

∑
λ2

i − 2
∑
i<j

λiλj

 ,

B2

B1
= −1

2

∑
λi,

B3

B1
=

1
8(N − 2p + 1)

(3N − 5p + 2)
∑

λ2
i − 4(N − p)

∑
i<j

λiλj

 ,

D

A1
=

{
2h(0)

(N−3)(N−4) if p = 2

has same sign as h(0)
N−p2 otherwise.

Hence
A2

A1
− N − p

N − 1
B2

B1
= −(N − p)(p− 1)

N − 2p + 1
H(0)

and

N − p

N − 1

[
1
2

(
N − p

N − 1
+ 1
)(

B2

B1

)2

− B3

B1
− B2

B1

A2

A1

]
+

A3

A1

=
(N − p)(p− 1)

4(N − 1)(N − 2p + 1)

p + N − 2
N − 1

∑
λ2

i − 2
∑
i<j

λiλj

 ,

which gives the result. We get the others equalities in much the same way.
�

Proof of Theorem 1.1. At this point is just a combination of Steps 1 and
2. �
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