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Abstract. In this paper we consider a selection-mutation model with an advec-
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1. Introduction5

Selection-mutation equations with continuous trait values have been extensively6

studied in the literature (e.g. [1, 2, 7, 8, 9, 10, 11, 12, 16, 17]). Such equations have7

been formulated on several state spaces including the space of integrable functions8

(e.g., [9, 10, 11]) and the space of �nite signed measures (e.g., [1, 12, 16]). For example,9

in [9] and [10] the authors consider selection-mutation equations in L1 describing the10

density of individuals with respect to a continuous phenotypic evolutionary trait.11

They establish the existence of steady states and study their asymptotic behavior as12

the mutation rate goes to zero. Papers with selection-mutation models formulated13

on the space of measures are fewer. We mention for instance [1] where the authors14

consider a selection-mutation model in Mb(Q), the space of �nite signed measures15

on a compact metric space Q, and study the long term behavior of the solution.16

They show that for small mutation when the trait space is discrete there exists an17

equilibrium measure that attracts all solutions with nonnegative not identically zero18

1
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initial measure/condition. In [12] the authors consider a selection-mutation model1

formulated on the space of measures and study existence-uniqueness of nonnegative2

solutions to this model.3

In this paper, we consider a selection-mutation equation onMb(Rd) (the space of4

�nite signed measures on Rd), modeling the evolution of a population structured by5

a trait x ∈ Rd. Denoting by µt the trait distribution at time t, µt evolves according6

to7

(1) ∂tµt +∇ · (v[µt]µt) =

∫
Rd

K(z, ·) dµt(z)− bµt,

with K : Rd →Mb,+(Rd) (the nonnegative cone ofMb(Rd)) and b(x) =
∫
Rd K(x, dy).8

Here, the kernelK(x, dy) models the trait distribution of the o�spring of an individual9

with trait x and b(x) is the birth rate of an individual with trait x. Considering such10

a general K(x, dy) is important as it allows us to treat in a uni�ed way continuous11

and discrete selection-mutation kernels and o�spring distributions. The function v12

is a density-dependent vector-�eld and the advection term ∇ · (v[µt]µt) models the13

individuals actively adapting to their environment seeking phenotype changes that14

makes them �tter. These changes can be seen as stress-induced epi-mutations (e.g.,15

[5]). Such advection terms are also referred to in the literature as fast evolution with16

respect to the structured variable [15, 28].17

We are interested in studying the limiting behavior of the solution to equations of

type (1) when mutation becomes small, that is, when K is suitably rescaled so as

to converge to a pure selection kernel. This question has already been addressed in

several selection-mutation models in di�erent settings. For example in [28][Chapter

9] the author considers the model

∂tn(t, x) =

∫
Rd

K̂(z, x− z)n(t, z)dz − b(x)n(t, x), b(x) =

∫
Rd

K̂(x, y)dy

on the state space C([0, T ], L1(Rd)) where K̂(x, y) ≥ 0 models the mutations. He

then rescales this equation using di�usive rescaling as follows:

∂tnε(t, x) =
1

ε2

(∫
Rd

ε−dK̂ε(z, (x− z)/ε)nε(t, z)dz − b(x)nε(t, x)
)
.
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The family of kernels K̂ε allows for a slight asymmetry of the o�spring distribution

namely ∫
Rd

yK̂ε(x, y)dy = εU(x) where U ∈ L∞(Rd).

Under some regularity assumptions on K̂ε the solution nε is shown to converge, up to

a subsequence, weakly in L2([0, T ]×Rd) to n, the solution of the convection-di�usion

equation

∂tn+∇ · (Un) =
1

2

d∑
i,j=1

∂ij(Bijn), Bij(x) = lim
ε→0

∫
Rd

yiyjK̂ε(x, y)dy.

A di�erent rescaling, namely the hyperbolic rescaling

∂tnε(t, x) =
1

ε

(∫
Rd

ε−dK̂(z, (x− z)/ε)n(t, z)dz − b(x)nε(t, x)
)

leads (in the limit as ε→ 0) to the transport equation

∂tn+∇ · (Un) = 0.

Similar results (but from a di�erent perspective) can be found in the book [20] where

non-local equations of the form

∂tu(t, x) = (J ∗ u)(t, x)− u(t, x) =

∫
Rd

J(x− z)(u(t, z)− u(t, x)) dz

are considered. Here, J is a smooth radial nonnegative kernel with integral one. By1

considering the rescaled kernel Jε(x) = ε−dJ(x/ε), it is proved that the solution to2

the rescaled equation converges to the solution of the heat equation and an estimate3

of the rate of convergence is provided. Many other variants of this equation are also4

considered in [20].5

In the aforementioned works, the state spaces are Lebesgue or Sobolev function

spaces. A similar result in measure spaces can be found in [14] where the authors

investigate the model

∂tξt(x) = [(1− η(x)]b(x, V ∗ ξt(x))− d(x, U ∗ ξt(x))]ξt(x)

+

∫
Rd

M(z, x− z)η(z)b(z, V ∗ ξt(z))ξt(z)dz

with initial condition ξ|t=0 = ξ0 ∈Mb(Rd). The solution ξt is obtained as the limit of

the law of a rescaled probabilistic particles system where each particle represents an

animal and the location of the particle is the phenotypic characterization (trait) of
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the animal. Here, b and d are the birth rate and death rate, ∗ denotes the convolution
operator, which means that the interaction kernels U and V give the weight of each

individual when interacting with a focal individual as a function of how phenotypically

di�erent they are, η is the mutation probability and M(x, y) is the mutation kernel.

They rescale the mutation kernel M(x, y) assuming it is the density of a random

variable with mean zero and variance-covariance matrix Σ(x)/κη, e.g., a Gaussian

variable. They also accelerate the birth and death processes at a rate proportional to

κη considering bκ(x, ζ) = κηr(x) + b(x, ζ) and dκ(x, ζ) = κηr(x) + d(x, ζ). Assuming

η < 1, they prove among other results that the law of the particle system converges

as κ→ +∞ to the unique solution of the di�usion equation

∂tξt(x) = [b(x, V ∗ ξt(x))− d(x, U ∗ ξt(x))]ξt(x) +
1

2
∆(σ2rµξt)(x).

Following those results we rescale (1) considering1

(2) ∂tµ
ε
t +∇ · (v[µεt ]µ

ε
t) =

1

ε2

(∫
Rd

Kε(z, ·) dµεt(z)− bµεt
)
.

We will explain in detail below the appropriate way to rescale our general measure2

kernel K(x, dy). The main result of this paper states that as ε → 0 the solution µεt3

of (2) converges in C([0, T ],Mb,+(Rd)), T > 0, to a solution of the di�usion equation4

(3) ∂tµt +∇ · (v[µt]µt) =
1

2

d∑
i,j=1

∂ij(dij(·, µt)µt)

where the di�usion coe�cients dij are given by

dij(x, µ) =

∫
Rd

(yi − xi)(yj − xj)K(x, µ, dy) 1 ≤ i, j ≤ d.

Our model and proofs are �exible enough to allow for several generalizations including5

asymmetric o�spring distributions, hyperbolic rescaling and systems of equations.6

This paper is organized as follows: in Section 2 we formulate a selection-mutation7

model on the space of �nite signed measures similar to (1). We present the rescaled8

equation of type (2) and the main result concerning the limit of the rescaled equation.9

We provide various examples of admissible selection-mutation kernels in Section 3. In10

Section 4 we state some preliminary results and in Section 5 we establish the existence11

and uniqueness of the measure solution to our model. The proof of the main theorem12

concerning the convergence of µεt to µt (the solution of the limiting equation of the13
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form (3)) is presented in Section 6. A �nal section is devoted to some extensions of1

our model (asymmetric distribution, hyperbolic rescaling and systems of equations).2

2. The Model and the Main Result3

We begin by modeling the selection-mutation kernel. To this end, consider a kernel4

K : Rd →Mb,+(Rd) where for any x ∈ Rd, K(x, dy) is a nonnegative �nite measure5

over Rd which models the distribution of o�spring of an animal with trait value x.6

Let b(x) =
∫
Rd K(x, dy) be the total o�spring (birth rate) of an individual with trait7

x. Note that K(x, dy) is a probability measure when b(x) ≡ 1.8

We point out that modeling the distribution of o�spring K(x, dy) by a general mea-9

sure has the advantage of allowing the treatment of singular and absolutely continuous10

distributions simultaneously. For example, following [7], we can choose11

(4) K(x, dy) = b(x)(1−m(x))δx + b(x)m(x)β(y − x)dy,

where β ∈ L1(Rd) is nonnegative and β(y − x)dy is the probability density that an12

animal with trait x gives rise to an o�spring with trait y, and m(x) ∈ [0, 1] is the13

proportion of o�springs with mutations (i.e., with di�erent trait values).14

Consider the equation15

(5) ∂tµt +∇ · (v[µt]µt) =

∫
Rd

K(z, ·) dµt(z)− bµt,

where v : Mb(Rd) → W 1,∞(Rd) is a density-dependent vector-�eld. For example, a16

common choice of v that depends on µ through some weighted mean of µ is of the17

form18

(6) v[µ](x) = V

(
x,

∫
Rd

η(y)dµ(y)

)
for given maps V : Rd × R→ Rd and η : Rd → R.19

We are interested in rescaling the reproduction kernel K so that the size of the20

mutations goes to 0 as the rescaling parameter ε goes to 0. For instance if K(x, dy) =21

β(y − x)dy we let βε(z) = ε−dβ(z/ε) and then rescale K considering Kε(x, dy) =22

βε(y − x)dy. To do the same for a general kernel, it is useful to think that the23

probability measure βε(y − x)dy converges to the Dirac mass δx as ε → 0 and, from24

a more abstract point of view, that the curve ε ∈ [0, 1]→ βε(y − x)dy connects δx to25



6 AZMY S. ACKLEH AND NICOLAS SAINTIER

β(y − x)dy in P (Rd), the space of probability measures. Optimal transport theory1

provides us with a simple way to implement this idea when replacing β(y − x)dy2

by an arbitrary transition kernel K(x, dy). Consider the constant map Tx(y) = x,3

y ∈ Rd. Notice that Tx]µ, the push-forward of the bounded measure µ by Tx, is4

simply µ(Rd)δx. We then consider the new kernel Kε(x, dy), ε ∈ [0, 1], de�ned by5

(7) Kε(x, dy) = (Tx + ε(Id− Tx))]K(x, dy)

(where Id is the identity map). This means that for any test-function φ : Rd → R,6

(8) (Kε(x, dy), φ) =

∫
Rd

φ(x+ ε(y − x))K(x, dy).

Taking φ ≡ 1, we observe that the measure Kε(x, dy) has the same total mass as7

K(x, dy), namely b(x). Thus, for each x, the map ε ∈ [0, 1]→ Kε(x, dy) is a curve in8

Mb,+(Rd) connecting b(x)δx to K(x, dy). When b ≡ 1, so that K(x, dy) is a proba-9

bility measure in P (Rd) for each x, it is known that this curve is indeed the shortest10

path (or McCann interpolant) connecting these two measures in the Wasserstein space11

(P (Rd),W2), where W2 is the Monge-Kantorovich distance (see e.g. [29]).12

Notice that in the smooth case where K(x, dy) = β(y − x)dy and β ∈ L1(Rd), we13

have for any test-function φ that14

(Kε(x, dy), φ) =

∫
Rd

φ(x+ ε(y − x)))K(x, dy) =

∫
Rd

φ(x+ ε(y − x))β(y − x) dy

=

∫
Rd

φ(z)ε−dβ((z − x)/ε) dz.

So Kε(x, dy) = βε(y − x) dy and we recover the smooth case rescaling kernel.15

Rescaling the kernel K by considering Kε de�ned in (8) and at the same time16

increasing the mutation rate leads to the equation17

(9) ∂tµt +∇ · (v[µt]µt) =
1

ε2

(∫
Rd

Kε(z, ·) dµt(z)− bµt
)
.

Inspired by model (9), in this paper we study the following more general equation18

with a nonlinear source term N̄(t, ·, µ)µ and a nonlinear selection-mutation kernel19

K(x, µ, dy):20

(10) ∂tµt +∇ · (v[µt]µt) = N̄(t, ·, µt)µt +
1

ε2

(∫
Rd

Kε(z, µt, ·) dµt(z)− b(·, µt)µt
)
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with a given nonnegative initial condition µ0 ∈ Mb,+(Rd), and where b(x, µ) =1 ∫
Rd K(x, µ, dy). Introducing a nonlinearity with respect to µ in the kernel K and2

hence in the birth rate b allows to model competition between individuals due to3

limiting resources (e.g., [1, 2]). Furthermore, the added term N̄(t, ·, µt)µt can be used4

to model a loss term due to mortality (e.g., [1, 2]) or a source term due to external5

forces (e.g., seeds blown by wind in a population of plants).6

For ε > 0, denote by µεt the solution to equation (10). In Theorem 5.3 below we7

extend the results obtained in [3] to show that given a nonnegative initial condition8

µε0, then equation (10) has a unique nonnegative solution µεt de�ned for any t ≥ 0.9

Our main goal here is to study the asymptotic behavior of µεt , the solution of (10),10

as ε→ 0.11

The need to consider nonnegative initial conditions µ0, and thus nonnegative so-12

lutions µεt , is motivated both from the biological and the mathematical point of13

view. From a biological perspective µεt models the distribution of the population14

in the trait space and thus must be a nonnegative measure. From a mathematical15

point of view, the non-negativity of µεt implies that the total variation norm of µεt16

is ‖µεt‖TV =
∫
Rd dµ

ε
t which is useful to obtain the bound (30) below. Moreover, it17

allows us to use the norm ‖.‖BL,3 de�ned in (18) below which is more suitable to our18

problem than the usual Bounded Lipschitz (BL) norm and at the same time has the19

same convergence properties as the BL norm on the positive cone of the measures.20

We will show that up to a subsequence, as ε→ 0, the solution µεt of (10) converges21

to µt a solution of the non-linear convection-di�usion equation22 {
∂tµt +∇ · (v[µt]µt) = N̄(t, ·, µt)µt + 1

2

∑d
i,j=1 ∂ij(dij(·, µt)µt)

µ|t=0 = µ0

(11)

where the di�usion coe�cients dij are given by23

(12) dij(x, µ) =

∫
Rd

(yi − xi)(yj − xj)K(x, µ, dy) 1 ≤ i, j ≤ d.

To our knowledge, existence for a parabolic but possibly degenerate equations like24

(11) has not been established in the literature. Furthermore, this limiting equation25

provides a connection between two types of approaches that have been used to model26

small mutation including using an integral operator (e.g., [1]) and a di�usion operator27

(e.g., [26]).28
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The matrix (dij(x, µ))ij can be seen as a covariance matrix. Indeed, let K̃(x, µ, dy) :=

τ−x]K(x, µ, dy) where τ−x(y) = y−x. Thus,
∫
Rd φ(y) K̃(x, µ, dy) =

∫
Rd φ(y−x)K(x, µ, dy)

for any φ. In particular, we can rewrite dij as

dij(x, µ) =

∫
Rd

yiyj K̃(x, µ, dy) 1 ≤ i, j ≤ d.

Recall that K(x, µ, dy) is a nonnegative �nite measure with total mass b(x, µ). There-

fore, so is K̃(x, µ, dy). Moreover, assumption (K4) below implies that
∫
Rd y K̃(x, µ, dy) =

0. Thus, the matrix (dij(x, µ)/b(x, µ))ij is the covariance matrix of the probability

measure K̃(x, µ, dy)/b(x, µ). In particular, it follows that (dij(x, µ))ij is a symmetric

nonnegative matrix. The non-negativity can be seen directly by noticing that for any

z ∈ Rd,

d∑
i,j=1

dij(x, µ)zizj =

∫
Rd

d∑
i,j=1

(yizi)(yjzj) K̃(x, µ, dy) =

∫
Rd

(
d∑

k=1

ykzk)
2 K̃(x, µ, dy) ≥ 0.

Before stating the assumptions on the model parameters, we need to recall some

known measure-theoretical facts. Unless speci�ed otherwise the space Mb(Rd) of

bounded Borel measures on Rd is always endowed with the BL norm de�ned by

‖µ‖BL = sup
{∫

Rd

φ dµ : φ ∈ W 1,∞(Rd), ‖φ‖∞ + Lip(φ) ≤ 1
}
.

Here, W 1,∞(Rd) denotes the space of bounded Lipschitz continuous functions, i.e.,

φ ∈ W 1,∞(Rd) if φ is bounded and there exists C > 0 such that

|φ(x)− φ(y)| ≤ C|x− y|, for any x, y ∈ Rd.

We denote by Lip(φ) the least admissible constant C.1

Other topologies can be considered on Mb(Rd) like the weak* convergence and

the total-variation norm. However, the BL norm seems to be the most useful when

dealing with transport equations. We recall a few facts concerning the relationship

between these three topologies. Let µn, µ ∈ Mb(Rd). If µn → µ weak* (in the sense

that (µn, φ) → (µn, φ) for any φ ∈ Cb(Rd)) then ‖µn − µ‖BL → 0 but in general the

converse is false except when µn, µ ≥ 0 (see Thm 6 and 8 in [18]). Also, notice that

a converging sequence (µn)n in the BL norm may not be tight nor bounded in total

variation. As an example, consider µn =
√
n(δn+1/n−δn). Then ‖µn‖BL =

√
n/n→ 0

but (µn)n is neither tight nor TV-bounded since ‖µn‖TV = 2
√
n. Notice thatMb(Rd)
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is not complete under the BL norm (see Thm 4.8 in [22] for a complete treatment of

the completeness under the BL norm) but that a subset of the form

Mb,R(Rd) := {µ ∈Mb(Rd) : ||µ||TV ≤ R},

i.e., the ball inMb(Rd) of total variation radius R, is complete (see e.g. Thm 2.7 in1

[23]).2

We denote by C([0, T ],Mb(Rd)) the space of continuous functions from [0, T ] to

(Mb(Rd), ‖.‖BL) endowed with the usual sup-norm. Next we state our assumptions

on the model functions v, N̄ , K and b appearing in (10). We start with the vector-�eld

v and assume that

v : µ ∈Mb(Rd)→ v[µ] ∈ W 1,∞(Rd)

satis�es3

(V1) v :Mb(Rd)→ L∞(Rd) is continuous and for any R > 0 there exists Lv,R > 0

such that

‖v[µ]− v[µ̃]‖∞ ≤ Lv,R‖µ− µ̃‖BL for any µ, µ̃ ∈Mb,R(Rd),

(V2) there exists Cv > 0 such that

Lip(v[µ]) ≤ Cv for any µ ∈Mb(Rd).

Concerning the source term N̄ , we assume that

N̄ : (t, x, µ) ∈ R+ × Rd ×Mb(Rd)→ N̄(t, x, µ) ∈ R

is continuous in (t, x, µ) and4

(N1) for any R > 0, there exist LN̄,R > 0 such that for any t ∈ R, any µ, µ̃ ∈
Mb,R(Rd) and any x ∈ Rd,

|N̄(t, x, µ)− N̄(t, x, µ̃)| ≤ LN̄,R‖µ− µ̃‖BL,

(N2) there exists CN̄ > 0 such that

‖N̄(t, ·, µ)‖W 1,∞ ≤ CN̄ for any µ ∈Mb(Rd) and any t ≥ 0.

Finally, concerning the reproduction kernel K we assume that

K : (x, µ) ∈ Rd ×Mb(Rd)→ K(x, µ, dy) ∈Mb(Rd)

satis�es5
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(K0) K(x, µ, dy) ≥ 0 whenever µ ≥ 0,1

(K1) for any φ : Rd → R measurable and bounded and any µ ∈ Mb(Rd), the2

function x→
∫
Rd φ(y)K(x, µ, dy) is measurable,3

(K2) the function b : (x, µ) ∈ Rd ×Mb(Rd) →
∫
Rd K(x, µ, dy) ∈ R is continuous4

and satis�es5

(i) there exists Cb > 0 such that ‖b(·, µ)‖W 1,∞ ≤ Cb for any µ ∈Mb(Rd),6

(ii) for any R > 0 there exists Lb,R > 0 such that

|b(x, µ)− b(x, µ̃)| ≤ Lb,R‖µ− µ̃‖BL for any µ, µ̃ ∈Mb,R(Rd) and any x ∈ Rd,

(K3) for any φ ∈ W 1,∞(Rd), the function x→ (K(x, µ, ·), φ) is Lipschitz with

sup
µ∈Mb(Rd), ‖φ‖W1,∞≤1

Lip(x→ (K(x, µ, ·), φ)) <∞,

(K4) for any x ∈ Rd and any µ ∈Mb(Rd),∫
Rd

(y − x)K(x, µ, dy) = 0,

(K5) for any R > 0 there exists CK,R > 0 such that∫
Rd

|y − x|3K(x, µ, dy) ≤ CK,R for any x ∈ Rd and µ ∈Mb,R(Rd),

(K6) if ‖µn − µ‖BL → 0 then ‖K(x, µn, ·)−K(x, µ, ·)‖BL → 0 for any x ∈ Rd, and

for any R > 0 there exists LK,R > 0 such that

‖K(x, µ̃, ·)−K(x, µ, ·)‖BL ≤ LK,R‖µ̃− µ‖BL

for any x ∈ Rd and any µ, µ̃ ∈Mb,R(Rd),7

(K7) the function dij(x, µ) =
∫
Rd(yi − xi)(yj − xj)K(x, µ, dy) satis�es8

(i) for any R > 0 there exists Ld,R > 0 such that

‖dij(·, µ)‖W 1,∞ ≤ Ld,R for any µ ∈Mb,R(Rd).

(ii) for any x ∈ Rd and for any nonnegative TV-bounded sequence (µn)n9

converging in the BL norm to some µ, we have dij(x, µn)→ dij(x, µ).10

(K8) There exists CK > 0 such that

‖K(x, µ, ·)‖TV ≤ CK for any x ∈ Rd and any µ ∈Mb(Rd).
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An example of admissible vector �elds v[µ] can be obtained through weighted means1

of µ such as2

(13) v[µ](x) = V

(
x,

∫
Rd

η(y)dµ(y)

)
for given maps V : Rd × R → Rd and η : Rd → R. Indeed, if we assume that V and

η are both bounded and globally Lipschitz then for any µ, µ̃ ∈Mb(Rd),

Lip(v[µ]) ≤ Lip(V ) and ‖v[µ]− v[µ̃]‖∞ ≤ Lip(V )‖η‖W 1,∞‖µ− µ̃‖BL

so that assumptions (V1) and (V2) hold. We can build examples of admissible source3

terms N̄ in the same spirit considering4

(14) N̄(t, x, µ) = A
(
t, x,

∫
Rd

η(y) dµ(y)
)

for given bounded and globally Lipschitz maps A : R+ × Rd ×Mb(Rd) → R and

η : Rd → R. Then N̄ is continuous and satis�es assumptions (N1) and (N2) since

|N̄(t, x, µ)− N̄(t, x, µ̃)| ≤ Lip(A)‖η‖W 1,∞‖µ− µ̃‖BL

and

‖N̄(t, ·, µ)‖W 1,∞ ≤ ‖A‖W 1,∞ .

Since the general formulation of the selection-mutation kernel K (and its rescaled5

version Kε) that we consider in this paper is important and novel, we will devote6

the next section to provide several examples of biologically relevant and admissible7

kernels, K, that satisfy the assumptions above.8

Now we are in a position to state our main result:9

Theorem 2.1. Assume that v : Mb(Rd) → W 1,∞(Rd) satis�es (V1)-(V2), that10

N̄ : R+ × Rd × Mb(Rd) → R is continuous and satis�es (N1)-(N2), and that11

K : Rd ×Mb(Rd) → Mb(Rd) satis�es (K0)-(K8). Then, for any nonnegative ini-12

tial condition µ0 ∈ Mb(Rd) such that
∫
Rd |x| dµ0(x) < ∞, there exists a solution13

µ ∈ C([0,+∞),Mb,+(Rd)) to14 {
∂tµt +∇ · (v[µt]µt) = N̄(t, ·, µt)µt + 1

2

∑d
i,j=1 ∂ij(dij(·, µt)µt)

µ|t=0 = µ0
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where the di�usion coe�cients dij are given by

dij(x, µ) =

∫
Rd

(yi − xi)(yj − xj)K(x, µ, dy) 1 ≤ i, j ≤ d.

This solution is obtained as the limit as ε → 0 (up to a subsequence) of the unique

solution µεt of equation (10), namely

∂tµt +∇ · (v[µt]µt) = N̄(t, ·, µt)µt +
1

ε2

(∫
Rd

Kε(z, µt, ·) dµt(z)− b(·, µt)µt
)
,

in the sense that µε → µ in C([0, T ],Mb(Rd)) for any T > 0. Moreover for any

T > 0 there exist CT > 0 such that∫
Rd

(1 + |x|) dµt ≤ CT 0 ≤ t ≤ T.

We point out that the existence a unique solution µεt of equation (10) stated in1

Theorem 2.1 will be established in Theorem 5.3 below.2

3. Examples of admissible selection-mutation kernels3

To demonstrate the usefulness of the general formulation of the kernel K(x, µ, dy)4

that we consider here, we present several examples of selection-mutation kernels from5

the literature that can be uni�ed under this general formulation.6

• A pure selection kernel: a simple example is KS(x, µ, dy) = δx which models7

the case where mutation never occurs, i.e., the o�spring inherits exactly the8

trait of its parent. In this case b = 1, dij = 0 and the assumptions (K0)-(K8)9

trivially hold. Such a mutation kernel has been considered in [2].10

11

• A continuous mutation distribution: for this kernel the o�spring's trait is

assumed to be distributed according to a continuous probability distribution

β, namely,

KCM(x, µ, dy) = β(x, µ, y − x)dy

where β(x, µ, ·) is a nonnegative integrable function (so that K(x, µ, dy) ∈
Mb,+(Rd)). This type of kernel has been studied, for example, in [9]. Here,

dij(x, µ) =

∫
Rd

zizjβ(x, µ, z)dz.
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Notice in particular that assumption (K7) is satis�ed if we assume that dij

is continuous in µ for any x ∈ Rd, and if for any z ∈ Rd and any µ ∈Mb(Rd),

the function x ∈ Rd → β(x, µ, z) is Lipschitz and satis�es for any R > 0,

sup
µ∈Mb,R(Rd)

∫
Rd

|z|2‖β(., µ, z)‖W 1,∞ dz <∞.

Indeed,

sup
µ∈Mb,R(Rd)

‖dij(·, µ)‖W 1,∞ ≤ sup
µ∈Mb,R(Rd)

∫
Rd

|z|2‖β(·, µ, z)‖W 1,∞ dz <∞.

1

2

• A discrete mutation distribution: for this kernel the o�spring's trait is assumed

to be distributed according to a discrete probability distribution, namely,

KDM(x, µ, dy) =
N∑
k=1

αk(x, µ)δx+hk(x,µ)

whereN ∈ N, α1, . . . , αN ∈ [0, 1] with
∑N

k=1 αk = 1, and h1(x, µ), . . . , hN(x, µ) ∈3

Rd. This reproduction kernel models the situation where an o�spring of a par-4

ent with trait x will have trait x + hk(x, µ) with probability αk(x, µ) ∈ [0, 1].5

A similar discrete selection-mutation kernel has been considered, for example,6

in [4]7

• A mixed mutation distribution: we can combine the previous cases to obtain

a reproduction kernel of the form

K(x, µ, dy) = (1− a(x, µ)− b(x, µ))δx + a(x, µ)KCM(x, µ, dy)
+b(x, µ)KDM(x, µ, dy)

where a, b ∈ [0, 1] are the probabilities of choosing KCM and KDM , respec-8

tively. Of course this is only an example, since our model allows a priori any9

kind of measure (for instance a measure supported on some sub-manifold like10

a sphere for example).11

A simple particular case is worth mentioning which corresponds to the case where12

K is homogeneous in the trait space, i.e., K depends on x only through a translation13

at x of a given measure K(µ, dy). To treat this case, consider a nonnegative bounded14

measure K(µ, dy). Let τx : y ∈ Rd → y + x ∈ Rd. De�ne K(x, µ, dy) := τx]K(µ, dy)15

so that
∫
Rd φ(y)K(x, µ, dy) =

∫
Rd φ(y + x)K(µ, dy) for any φ. Here K(µ, dy) is the16
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trait distribution of an o�spring with parent's trait 0 and K(x, µ, dy) is obtained1

centering K(µ, dy) at x.2

Notice that KS(x, dy) = δx is space homogeneous (take K(µ, dy) = δ0). Space

homogeneous version of KCM and KDM are

KCM(x, µ, dy) = β(µ, y − x)dy

obtained from β(µ, y)dy, and

KDM(x, µ, dy) =
N∑
k=1

αk(µ)δx+hk(µ)

obtained from
∑N

k=1 αk(µ)δhk(µ).3

In the case of a space homogeneous kernel, it is easily seen that (K1) and (K3) are4

satis�ed. Towards (K1) note that if ν ∈ Mb,+(Rd) then for any φ : Rd → R measur-5

able and bounded and any µ ∈Mb(Rd) we have
∫
Rd×Rd |φ(y+x)|K(µ, dy)ν(dx) <∞6

and a simple application of Fubini's Theorem results in x →
∫
Rd φ(y + x)K(µ, dy)7

being measurable.8

As for (K3), since for any φ ∈ W 1,∞(Rd), ‖φ‖W 1,∞ ≤ 1, we have (K(x, µ, ·), φ) =9 ∫
φ(y + x)K(µ, dy) so that10

|(K(x, µ, ·), φ)− (K(x̃, µ, ·), φ)| ≤
∫
Rd

|φ(y + x)− φ(y + x̃)|K(µ, dy)

≤ |x− x̃|‖K(µ, dy)‖TV ≤ CK |x− x̃|,

where we used (K8) in the last inequality. Thus, the function x → (K(x, µ, ·), φ)11

is Lipschitz with Lipschitz constant less than CK for any ‖φ‖W 1,∞ ≤ 1 and any12

µ ∈Mb(Rd).13

The remaining assumptions can be simpli�ed as follows by dropping the dependence14

on x.15

(K0') K(µ, dy) ≥ 0 whenever µ ≥ 0,16

(K2') the function b : µ ∈ Mb(Rd) →
∫
Rd K(µ, dy) ∈ R is continuous and for any

R > 0 there exists Lb,R > 0 such that

|b(µ)− b(µ̃)| ≤ Lb,R‖µ− µ̃‖BL for any µ, µ̃ ∈Mb,R(Rd),

(K4')
∫
Rd y K(µ, dy) = 017
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(K5') for any R > 0 there exists CK,R > 0 such that∫
Rd

|y|3K(µ, dy) ≤ CK,R for any µ ∈Mb,R(Rd),

(K6') if ‖µn − µ‖BL → 0 then ‖K(µn, ·)−K(µ, ·)‖BL → 0, and for any R > 0 there

exists LK,R > 0 such that

‖K(µ̃, ·)−K(µ, ·)‖BL ≤ LK,R‖µ̃− µ‖BL for any µ, µ̃ ∈Mb,R(Rd),

(K7') the function dij(µ) =
∫
Rd yiyjK(µ, dy) is such that dij(µn) → dij(µ) for any1

nonnegative TV-bounded sequence (µn)n converging for the BL-norm to µ.2

(K8') There exists CK > 0 such that

‖K(µ, ·)‖TV ≤ CK for any µ ∈Mb(Rd).

We can make a further simpli�cation assuming that K is space homogeneous and3

also independent of µ i.e. K(x, µ, dy) = K(x, dy) = τx]K(dy) for some nonnegative4

K(dy) ∈ Mb,+(Rd). It is easily veri�ed that all the assumptions hold with the5

exception of (K4) and (K5) that can be simpli�ed to6

(K4�)
∫
Rd y K(dy) = 07

(K5�)
∫
Rd |y|3K(dy) < +∞8

For instance in the case of a continuous kernel KCM(dy) = β(y)dy with β ∈ L1(Rd),9

β ≥ 0, assumptions (K4�) and (K5�) reduce to10

(15)

∫
Rd

yβ(y) dy = 0 and

∫
Rd

|y|3β(y) dy <∞.

In the case of a discrete mutation kernel KDM(dy) =
∑N

k=1 αkδhk with α1, . . . , αN ∈11

[0, 1], α1+· · ·+αN = 1 and h1, . . . , hN ∈ Rd, (K5�) is void and (K4�) is
∑N

k=1 αkhk = 0.12

Using space homogenous kernels, we can introduce easily some space inhomogeneity13

and measure-dependence by considering a convex combination like14

K(x, µ, dy) = (1− a1(x, µ)− a2(x, µ))δx + a1(x, µ)β(y − x)dy

+ a2(x, µ)
N∑
k=1

αkδx+hk .
(16)

We then have the following direct corollary of Theorem 2.1:15

Corollary 3.1. Assume that a1, a2 : Rd ×Mb(Rd) → [0, 1] satisfy a1 + a2 ≤ 1, and16

for k = 1, 2,17
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(i) there exists C > 0 such that ‖ak(·, µ)‖W 1,∞ ≤ C for any µ ∈Mb(Rd),1

(ii) for any R > 0 there exists Lb,R > 0 such that

|ak(x, µ)− ak(x, µ̃)| ≤ Lb,R‖µ− µ̃‖BL for any µ, µ̃ ∈Mb,R(Rd),

(iii) ak is continuous in µ for any �xed x ∈ Rd.2

Assume also that β ∈ L1(Rd) is nonnegative and satis�es (15) and that α1, . . . , αN ≥ 03

and h1, . . . , hN ∈ Rd satisfy
∑N

k=1 αkhk = 0.4

Then, for any nonnegative initial condition µ0 ∈Mb(Rd) such that
∫
Rd |x| dµ0(x) <

∞, there exists a solution µ ∈ C([0,+∞),Mb,+(Rd) to (11) with di�usion coe�cients

dij(x, µ) = a1(x, µ)

∫
Rd

zizjβ(z) dz + a2(x, µ)
N∑
k=1

hikh
j
k

(where hk = (h1
k, . . . , h

d
k)). This solution is obtained as the limit as ε → 0 (up to a5

subsequence) of the solutions µεt of (10) in the sense that µε → µ in C([0, T ],Mb(Rd))6

for any T > 0.7

Proof. Notice that8

b(x, µ) =

∫
Rd

K(x, µ, dy)

= (1− a1(x, µ)− a2(x, µ)) + a1(x, µ)

∫
Rd

β(y − x)dy + a2(x, µ)
N∑
k=1

αk.

In view of the assumptions on a1 and a2, b satis�es (K2) and dij satis�es (K7). The9

assumptions (K3) and (K6) clearly hold, while (K4) and (K5) are satis�ed by the10

assumptions made on β and α1, . . . , αN . �11

As we already saw in examples (13) and (14) of admissible vector �elds v[µ] and12

source terms N̄(t, x, µ), we can verify that admissible functions ak, k = 1, 2, are given13

by14

(17) ak(x, µ) := Ak

(
x,

∫
Rd

ηk(y)dµ(y)

)
for some bounded and globally Lipschitz functions ηk : Rd → R and Ak : Rd × R →15

[0,+∞) such A1(x, t) + A2(x, t) ≤ 1 for any (x, t) ∈ Rd × R.16

Except for the last section which contains comments on extension of our results, the17

rest of the paper is devoted to the proof of Theorem 2.1. In particular, in Section 4 we18
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establish some technical results necessary for the proofs. Speci�cally, we introduce a1

variant of the BL norm denoted by ‖.‖BL,N and show that this norm is equivalent to2

the BL norm on the cone of nonnegative measures and we also establish the existence3

of
∫
Rd K(x, µ, dy) dµ as a Bochner integral. We then proceed in section 5 with the4

existence and uniqueness of the solution µεt of equation (10). We �nally present the5

proof of Theorem 2.1 in section 6.6

4. Preliminary technical results.7

We begin this section by introducing a variant of the BL norm and showing that8

it is equivalent to the BL norm for nonnegative measures.9

4.1. An equivalent norm on nonnegative measures. We will need the following10

variant of the BL-norm: given an integer N ≥ 1 we consider the norm11

(18) ‖µ‖BL,N = sup
{∫

Rd

φ dµ : φ ∈ CN(Rd), ‖Dαφ‖∞ ≤ 1, 0 ≤ |α| ≤ N
}
.

This kind of norm has been considered in [21] but taking |α| ≥ 1.12

Proposition 4.1. Let µn, µ ∈Mb,+(Rd). Then13

(19) ‖µn − µ‖BL → 0 if and only if ‖µn − µ‖BL,N → 0.

As a consequence, a function from [0, T ] to (Mb,+(Rd), ‖.‖BL) is continuous if and14

only if it is continuous from [0, T ] to (Mb,+(Rd), ‖.‖BL,N). Moreover, consider µε, µ ∈15

C([0, T ],Mb,+(Rd)). Then, convergence as ε→ 0 of µε to µ in C([0, T ], (Mb,+(Rd), ‖.‖BL))16

is equivalent to convergence in C([0, T ], (Mb,+(Rd), ‖.‖BL,N)).17

The proof of (19) is inspired by [18][proof of Thm 8].18

Proof. We �rst prove (19). Since ‖µ‖BL,N ≤ ‖µ‖BL the =⇒ implication is obvi-

ous. Let us assume that ‖µn − µ‖BL,N → 0. We have to prove that µn → µ in

the BL-norm. Since µn, µ ≥ 0, this is equivalent to proving that µn → µ weak*.

According to Portmanteau Theorem (see e.g. Thm 2.1. in [6]) this amount to show-

ing that lim inf µn(U) ≥ µ(U) for any open subset U ⊂ Rd. Let Fm = {x ∈ U :

dist(x,Rd\U) ≥ 1/m, |x| ≤ m}, m ∈ N. Notice that the sets Fm are compact and

they form an increasing sequence with ∪mFm = U . Thus µ(Fm) ↑ µ(U) so that, given

ε > 0, we can �x m such that µ(Fm) ≥ µ(U)−ε. Let φ ∈ C∞c (U) such that 0 ≤ φ ≤ 1
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and φ = 1 on Fm. (φ is obtained as the convolution of the characteristic function

of a neighborhood of Fm contained in U and the standard molli�ers (see, e.g., Thm

1.4.1 in [25]). We have ‖Dαφ‖∞ ≤ ckm
k for |α| ≤ k. Then, CNφ is an admissible test

function for ‖.‖BL,N for some CN > 0. Thus,

lim inf
n

µn(U) ≥ lim inf
n

∫
φ dµn =

∫
φ dµ ≥ µ(Fm) ≥ µ(U)− ε

It follows that lim inf µn(U) ≥ µ(U).1

We now consider µε, µ ∈ C([0, T ],Mb(Rd)). Since ‖.‖BL,N ≤ ‖.‖BL, convergence of2

µε to µ in C([0, T ], (Mb(Rd), ‖.‖BL)) implies convergence in C([0, T ], (Mb(Rd), ‖.‖BL,N)).3

Let us now assume that the convergence holds in C([0, T ], (Mb(Rd), ‖.‖BL,N)) but not4

in C([0, T ], (Mb(Rd), ‖.‖BL)). Then there exist δ > 0, (tk)k ⊂ [0, T ], and εk → 0 such5

that ‖µεktk − µtk‖BL ≥ δ. We can assume without loss of generality that there exists6

t := limk tk. Then δ ≤ ‖µεktk − µt‖BL + ‖µtk − µt‖BL. Since ‖µtk − µt‖BL,N → 0, we7

have ‖µtk − µt‖BL → 0 by (19). Thus for large k,8

(20) ‖µεktk − µt‖BL ≥ δ/2.

On the other hand9

‖µεktk − µt‖BL,N ≤ ‖µεktk − µtk‖BL,N + ‖µtk − µt‖BL,N
≤ max

0≤s≤T
‖µεks − µs‖BL,N + o(1)→ 0

since µε → µ in C([0, T ], (Mb(Rd), ‖.‖BL,N)). Thus, ‖µεktk − µt‖BL → 0 by (19) which10

contradicts (20). �11

4.2. Existence of
∫
Rd K(x, µ, dy) dµ as a Bochner integral. Consider a mutation

kernel K : (x, µ) ∈ Rd×Mb(Rd)→ K(x, µ, dy) ∈Mb(Rd) and �x a nonnegative mea-

sure µ ∈Mb(Rd). Using results from [19][Appendix C] we will argue that the integral∫
Rd K(x, µ, dy) dµ(x) exists as a Bochner integral inMb(Rd). Let p(x) := K(x, µ, dy)

so that p : Rd →Mb(Rd). From assumption (K1) it follows that the map x ∈ Rd →
(p(x), φ) is measurable. Thus according to [19][Appendix C], p is Bochner measur-

able as a map with values in Mb(Rd) (the completion of Mb(Rd) in the BL norm).

Using (K8), the map x → ‖p(x)‖TV is in L1(Rd, µ). It follows from [19][Appendix

C] that the integral
∫
Rd K(x, µ, dy) dµ exists as a Bochner integral inMb(Rd). Fur-

thermore, its total variation is less or equal to
∫
Rd ‖K(x, µ, dy)‖TV dµ(x), and thus
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Rd K(x, µ, dy) dµ is in fact a bounded measure. Finally, for any bounded measurable

function φ : Rd → R,(∫
Rd

K(x, µ, dy) dµ, φ
)

=

∫
Rd

(∫
Rd

φ(y)K(x, µ, dy)
)
dµ.

Notice that the above still hold true for a signed �nite measure µ by writing µ =1

µ+ − µ− and de�ning
∫
Rd K(x, µ, dy) dµ :=

∫
Rd K(x, µ, dy) dµ+ −

∫
Rd K(x, µ, dy) dµ−.2

5. Global nonnegative solution to a nonlinear transport equation3

and existence of µε.4

Consider the following nonlinear transport equation in Rd
5

(21) ∂tµt +∇ · (v[µt]µt) = N(t, µt).

Assume that the vector-�eld v : Mb(Rd) → W 1,∞(Rd) satis�es (V1) and (V2)6

above. Furthermore, assume that the source term N : R+ ×Mb(Rd) → Mb(Rd)7

is continuous in (t, µ) (recall that we endow Mb(Rd) with the BL norm). We also8

assume there exists CN > 0, and for any R > 0, that there exist LN,R > 0 such that9

the following is satis�ed:10

(N1') ‖N(t, µ) − N(t, µ̃)‖BL ≤ LN,R‖µ − µ̃‖BL for any t ∈ R and any µ, µ̃ ∈11

Mb,R(Rd),12

(N2') ‖N(t, µ)‖TV ≤ CN(1 + ‖µ‖TV ) for any t ∈ R and µ ∈Mb(Rd).13

The following result is from [3][Cor. 7.3]:14

Theorem 5.1. Assume that the vector-�eld v :Mb(Rd) → W 1,∞(Rd) satis�es (V1)

and (V2) above, and that the source term N : R+×Mb(Rd)→Mb(Rd) is continuous

and satis�es (N1')-(N2') above. Then for any initial condition µ0 ∈ Mb(Rd) there

exists a unique solution µ ∈ C([0,+∞),Mb(Rd)) to equation (21), namely

∂tµt +∇ · (v[µt]µt) = N(t, µt).

Moreover for any T > 0, there exists RT > 0 such that ‖µt‖TV ≤ RT for t ∈ [0, T ].15

In order to obtain a nonnegative solution when µ0 ∈Mb,+(Rd) we �rst consider an16

equation of the form17

∂tµt +∇ · (v(t, ·)µt) = c(t, ·)µt +B(µt) t ∈ [0, T ](22)



20 AZMY S. ACKLEH AND NICOLAS SAINTIER

with initial condition µ0 ∈ Mb(Rd), where v : [0, T ]× Rd → Rd, c : [0, T ]× Rd → R1

and B :Mb(Rd)→Mb(Rd). We assume that2

(H1) v is continuous bounded in (t, x) and globally Lipschitz in x uniformly in t,3

i.e., there exists C > 0 such that |v(t, x)−v(t, x′)| ≤ C|x−x′| for any t ∈ [0, T ]4

and any x, x′ ∈ Rd.5

(H2) c is continuous and there exists C > 0 such that ‖c(t, ·)‖W 1,∞ ≤ C for any6

t ∈ [0, T ],7

(H3) B is continuous, B(µ) ≥ 0 if µ ≥ 0, ‖B(µ)‖TV ≤ C(1 + ‖µ‖TV ) for any8

µ ∈ Mb(Rd), and for any R > 0 there exists CR > 0 such that ‖B(µ) −9

B(µ̃)‖BL ≤ CR‖µ− µ̃‖BL for any µ, µ̃ ∈Mb,R(Rd).10

Proposition 5.1. Assume that v : [0, T ] × Rd → Rd, c : [0, T ] × Rd → R and11

B : Mb(Rd) → Mb(Rd) satisfy assumptions (H1)-(H3) above. Then equation (22)12

has a unique solution µ ∈ C([0, T ],Mb(Rd)). Moreover, the solution µt is nonnegative13

if µ0 ≥ 0.14

Proof. With the above assumptions it is easily seen from [3][Cor. 7.3] and [3][Prop.

5.1] that (22) has a unique solution µ̃ ∈ C([0, T ],Mb(Rd)). Let us verify that this

solution is nonnegative if µ0 ≥ 0. To this end, we denote by Ts,t the �ow of v (which

is well-de�ned for any s, t ∈ [0, T ]) and consider

h(s, t, x) = exp
(∫ t

s

c(τ, Tt,τ (x)) dτ
)
.

Notice that15

h(s, t, x) ≤ e‖c‖∞T , |h(s, t′, x)− h(s, t, x)| ≤ C|t− t′|,

|h(s, t, x′)− h(s, t, x)| ≤ C|x− x′|.
(23)

Then, for µ ∈ C([0, T ),Mb(Rd)) we de�ne Γ(µ) ∈ C([0, T ),Mb(Rd)) by

Γ(µ)t := h(0, t, ·)(T0,t]µ0) +

∫ t

0

h(s, t, ·)(Ts,t]B(µs)) ds.

This means that for any φ ∈ Cb(Rd),16

(Γ(µ)t, φ) =

∫
Rd

φ(T0,t(x))h(0, t, T0,t(x)) dµ0(x)

+

∫ t

0

∫
Rd

φ(Ts,t(x))h(s, t, Ts,t(x)) d(B(µs))(x) ds
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and thus1

(Γ(µ)t, φ) =

∫
Rd

φ(T0,t(x)) exp
(∫ t

0

c(τ, T0,τ (x)) dτ
)
dµ0(x)

+

∫ t

0

∫
Rd

φ(Ts,t(x)) exp
(∫ t

s

c(τ, Ts,τ (x)) dτ
)
d(B(µs))(x) ds.

Notice that if µ ∈ C([0, T ),Mb(Rd)) is a �xed-point of Γ in the sense that µt = Γ(µ)t2

for any t ∈ [0, T ], then µ is a solution of (22) and thus is equal to µ̃, the unique3

solution to (22).4

We look for a nonnegative �xed-point of Γ in

XS = {µ ∈ C([0, S],Mb(Rd)) : µ|t=0 = µ0, ‖µt‖TV ≤ 2‖µ0‖TV , µt ≥ 0, t ∈ [0, S]}

for some S. Notice that XS is complete as a closed subset of C([0, S],Mb,R(Rd))5

with R = 2‖µ0‖TV . Moreover, since B(µ) ≥ 0 for µ ≥ 0 we have that Γ(µ)t ≥ 0 if6

µt ≥ 0. We can then prove in a standard way that for S small enough, depending7

only on ‖µ0‖TV , Γ(X) ⊂ X and that Γ is a strict contraction. Thus Γ has a unique8

�xed-point in XS which is therefore µ̃. We can then extend the �xed-point µt to9

a maximal time interval [0, S∗). If S∗ < T then limt→S∗ ‖µt‖TV = +∞. But since10

µt = µ̃t on [0, T ∗) and we know that ‖µ̃t‖TV ≤ C on [0, T ] we obtain a contradiction.11

Thus µ̃, the unique solution to (22), is nonnegative. �12

Combining Theorem 5.1 and Proposition 5.1 we can obtain nonnegative global13

solution to the following equation:14

(24) ∂tµt +∇ · (v[µt]µt) = N̄(t, ·, µt)µt +B(µt) t > 0

with initial condition µ0 ∈Mb(Rd).15

Theorem 5.2. Assume that v : Mb(Rd) → W 1,∞(Rd) satis�es (V1)-(V2), N̄ :16

[0,+∞)×Rd×Mb(Rd)→ R is continuous and satis�es (N1)-(N2), and B :Mb(Rd)→17

Mb(Rd) satis�es (H3). Then equation (24) has a unique solution µ ∈ C([0,+∞),Mb(Rd))18

for any initial condition µ0 ∈ Mb(Rd). Furthermore, if µ0 ≥ 0 then µt ≥ 0 for any19

t > 0.20

Proof. The source term N(t, µ) := N̄(t, ·, µ)µ + B(µ) is continuous in (t, µ) and21

satis�es (N1') and (N2') from Theorem (5.1) above. Indeed, this is obvious for B22
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from assumption (H3). Concerning N̄(t, ·, µ)µ, we clearly have (N2') in view of (N2).1

Concerning (N1'), for any µ, µ̃ ∈Mb,R(Rd) and any φ ∈ W 1,∞(Rd) with ‖φ‖W 1,∞ ≤ 12

we have3

(N̄(t, ·, µ)µ− N̄(t, ·, µ̃)µ̃, φ)

=

∫
Rd

φ(x)[N̄(t, x, µ)− N̄(t, x, µ̃)] dµ(x) +

∫
Rd

φ(x)N̄(t, x, µ̃) d(µ− µ̃)(x)

≤ ‖N̄(t, ·, µ)− N̄(t, ·, µ̃)‖∞‖µ‖TV + ‖φN̄(t, ·, µ̃)‖W 1,∞‖µ− µ̃‖BL.

In view of (N1)-(N2) we get

(N̄(t, ·, µ)µ− N̄(t, ·, µ̃)µ̃, φ) ≤ (LN̄,RR + CN̄)‖µ− µ̃‖BL

which yields (N1') after taking the supremum over all such φ. We thus obtain the4

existence of a unique solution µ ∈ C([0,+∞),Mb(Rd)) to equation (24).5

We de�ne v(t, x) := v[µt](x) and c(t, x) := N̄(t, x, µt). For a given T > 0, we know6

from Theorem 5.1 that there exists RT > 0 such that ‖µt‖TV ≤ RT for t ∈ [0, T ].7

Then it follows from (V1)-(V2) that v satis�es (H1) and from (N1)-(N2) that c satis�es8

(H2). Thus, if µ0 ≥ 0 we deduce from Proposition 5.1 that µt ≥ 0 for t ∈ [0, T ]. Since9

T > 0 is arbitrary we obtain that µt ≥ 0 for any t ≥ 0. �10

We can now easily obtain the existence and uniqueness of µε.11

Theorem 5.3. Let (V1)-(V2), (N1)-(N2) and (K0),(K1),(K2),(K3),(K6) and (K8)12

hold. For any ε > 0 and any initial condition µ0 ∈ Mb(Rd) equation (10) has a13

unique solution µε ∈ C([0,+∞),Mb(Rd)) and for any T > 0 there exists CT,ε > 014

such that15

(25) ‖µεt‖TV ≤ CT,ε for any t ∈ [0, T ].

Moreover, if µ0 ≥ 0 then µεt ≥ 0 for any t ≥ 0.16

Proof. Since v satis�es (V1)-(V2) and N̄(t, x, µ) is continuous and satis�es (N1)-(N2),17

we only need to check in view of Theorem 5.2 that (i) b(x, µ) is continuous and satis�es18

(N1)-(N2), and that (ii) B(µ) := 1
ε2

∫
Rd Kε(x, µ, ·) dµ(x) satis�es (H3).19

Concerning b this is obvious in view of assumption (K2). As for B, �rst notice that20

B(µ) ≥ 0 if µ ≥ 0 since K(x, µ, dy) ≥ 0 according to (K0). Moreover, for any φ with21
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‖φ‖∞ ≤ 1, by recalling de�nition (8) we obtain1

(ε2B(µ), φ) =

∫
Rd

(∫
Rd

φ(x+ ε(y − x))K(x, µ, dy)
)
dµ(x)

≤
∫
Rd

‖K(x, µ, ·)‖TV dµ(x)

≤ CK‖µ‖TV

where we used assumption (K8) in the last equality. Thus, ‖B(µ)‖TV ≤ Cε‖µ‖TV .2

It remains to check that B is continuous and locally Lipschitz. For any µ, µ̃ ∈3

Mb(Rd) and any test-function φ such that ‖φ‖∞ + Lip(φ) ≤ 1 we have4

ε2(B(µ)−B(µ̃), φ) =
(∫

Rd

Kε(x, µ, dy) dµ(x)−
∫
Rd

Kε(x, µ̃, dy) dµ̃(x), φ
)

=

∫
Rd

(Kε(x, µ, dy)−Kε(x, µ̃, dy), φ) dµ(x)

+

∫
Rd

(Kε(x, µ̃, dy), φ) d(µ− µ̃)(x)

≤ Cε

∫
Rd

‖K(x, µ, ·)−K(x, µ̃, ·)‖BL d|µ|(x) + Cε‖µ− µ̃‖BL

where we used assumption (K3) in the last equality. Thus5

(26) ‖B(µ)−B(µ̃)‖BL ≤ Cε

∫
Rd

‖K(x, µ, ·)−K(x, µ̃, ·)‖BL d|µ|(x) + Cε‖µ− µ̃‖BL.

Notice that for any x ∈ Rd, ‖K(x, µ, ·) − K(x, µ̃, ·)‖BL → 0 when µ̃ → µ by (K6)6

and also that ‖K(x, µ, ·)−K(x, µ̃, ·)‖BL ≤ ‖K(x, µ, ·)‖TV + ‖K(x, µ̃, ·)‖TV ≤ 2CK by7

(K8). Thus, the integral on the right-hand side goes to 0 as µ̃→ µ by the Dominated8

Convergence Theorem. It follows that B is continuous. Moreover, if µ, µ̃ ∈Mb,R(Rd)9

for some R > 0 then from (26) and (K6) we get ‖B(µ)−B(µ̃)‖BL ≤ Cε,R‖µ− µ̃‖BL.10

Thus, B satis�es (H3). �11

Hence, for any φ ∈ C1
c (Rd) and any t ≥ 0, we have12 ∫

Rd

φ dµεt =

∫
Rd

φ dµ0 +

∫ t

0

∫
Rd

v[µεs]∇φ dµεs ds

+

∫ t

0

∫
Rd

N̄(s, x, µεs)φ dµ
ε
s ds+

∫ t

0

(Ñε(µ
ε
s), φ) ds

(27)

where Ñε(µ) = 1
ε2

( ∫
Rd Kε(x, µ, dy) dµ(x) − b(·, µ)µ

)
. A priori the test-function φ13

must have compact support. However, as a direct consequence of (30) we can easily14
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show that the weak formulation (27) holds for bounded functions φ with bounded1

�rst derivative without assuming that they have compact support:2

Proposition 5.2. The weak formulation (27) holds for any bounded φ ∈ C1(Rd) with3

bounded �rst derivative.4

Proof. Take a bounded φ ∈ C1(Rd) with bounded �rst derivative. Given R > 0 we5

truncate φ considering φR(x) = φ(x)ρ(|x|/R) where ρ : [0,+∞) → [0, 1] is smooth,6

supported in [0, 2] and ρ = 1 in [0, 1]. Since φR is C1 with compact support we can7

use it as a test-function in (27):8

∫
Rd

φ(x)ρ(|x|/R) dµεt −
∫
Rd

φ(x)ρ(|x|/R) dµ0 =
1

R

∫ t

0

∫
Rd

φ(x)ρ′(|x|/R)
x

|x|
v[µεs] dµ

ε
s ds

+

∫ t

0

∫
Rd

ρ(|x|/R)v[µεs]∇φ dµεs ds+

∫ t

0

∫
Rd

N̄(s, x, µεs)φ(x)ρ(|x|/R) dµεs ds

+

∫ t

0

(Ñε(µ
ε
s), φ(·)ρ(| · |/R)) ds.

(28)

We now pass to the limit R → +∞ in each integral to drop ρ. We pass to the limit

in the two integrals on the left-hand side by Monotone Convergence. Using (30) and

(31) we bound the �rst integral on the right-hand side by

1

R
‖φ‖∞‖ρ′‖∞

∫ t

0

‖v[µεs]‖∞µεs(Rd) ds ≤ C/R→ 0.

Concerning the second integral, notice that for any s we have |ρ(|x|/R)v[µεs]∇φ| ≤ C.9

Thus, the Dominated Convergence Theorem implies that
∫
Rd ρ(|x|/R)v[µεs]∇φ dµεs →10 ∫

Rd v[µεs]∇φ dµεs. Moreover, |
∫
Rd ρ(|x|/R)v[µεs]∇φ dµεs| ≤ Cµεs(Rd) ≤ C so that we can11

pass to the limit in the second integral once again applying the Dominated Conver-12

gence Theorem. We treat the third and fourth integral terms on the right-hand side13

in the same way recalling that |N̄(s, x, µεs)| ≤ CN̄ by (N2) and ‖K(x, µεs, ·)‖TV ≤ CK14

for any x ∈ Rd and any s ∈ [0, t] by (K8). We conclude that φ satis�es (27). �15
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6. Proof of Theorem 2.11

We denote by µεt ∈ C([0,+∞),Mb(Rd)) the unique solution solution to equation2

(10) as given by Theorem 5.3. Thus, for any φ ∈ C1
c (Rd) and any t ≥ 0 there holds3 ∫

Rd

φ dµεt =

∫
Rd

φ dµ0 +

∫ t

0

∫
Rd

v[µεs]∇φ dµεs ds

+

∫ t

0

∫
Rd

N̄(s, x, µεs)φ dµ
ε
s ds+

∫ t

0

(Ñε(µ
ε
s), φ) ds

(29)

where Ñε(µ) = 1
ε2

( ∫
Rd Kε(x, µ, dy) dµ(x)− b(·, µ)µ

)
.4

From now on we assume that the initial condition µ0 is a nonnegative measure. In5

view of Theorem 5.3 it follows that µεt ≥ 0 for any t ≥ 0.6

We divide the proof into several steps.7

Step 6.1. For any T > 0 there exists CT > 0 independent of ε such that8

(30) ‖µεt‖TV ≤ CT for any t ∈ [0, T ].

Proof. Since µεt ≥ 0 we have ‖µεt‖TV =
∫
Rd dµ

ε
t . In view of Proposition 5.2 we can take9

φ ≡ 1 in (29). Recalling that (Ñε(µ), 1) = 0 by de�nition of b, and using assumption10

(N2), we obtain11

‖µεt‖TV =

∫
Rd

dµεt =

∫
Rd

dµ0 +

∫ t

0

∫
Rd

N̄(s, x, µεs) dµ
ε
s ds

≤ ‖µ0‖TV + CN̄

∫ t

0

‖µεs‖TV ds.

Using Gronwall lemma we deduce

‖µεt‖TV ≤ ‖µ0‖TV eCN t ≤ ‖µ0‖TV eCNT =: CT .

�12

Notice that in view of (30) and assumptions (V1) and (V2), the vector �elds13

vε(t, x) := v[µεt ](x) are bounded in W 1,∞(Rd):14

(31) ‖vε‖W 1,∞ ≤ C.

This fact will be used below.15
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Step 6.2. For any T > 0 there exists CT > 0 such that for any bounded φ ∈ C3(Rd)1

with all derivatives up to order 3 bounded and for any t ∈ [0, T ], there holds2

(32)∣∣∣ 1

ε2

(∫
Rd

Kε(x, µ
ε
t , dy) dµεt(x)− b(·, µεt)µεt , φ

)
− 1

2

∫
Rd

d∑
i,j=1

∂ijφ(x)dij(x, µ
ε
t) dµ

ε
t(x)

∣∣∣
≤ CT ε‖D3φ‖∞

where

dij(x, µ) =

∫
Rd

(yi − xi)(yj − xj)K(x, µ, dy).

Proof. Recalling the de�nition of b and of Kε given in (8) we can write3 (∫
Rd

Kε(x, µ
ε
t , dy) dµεt(x)− b(·, µεt)µεt , φ

)
=

∫
Rd

∫
Rd

(φ(y)− φ(x))Kε(x, µ
ε
t , dy) dµεt(x)

=

∫
Rd

(∫
Rd

[φ(x+ ε(y − x))− φ(x)]K(x, µεt , dy)
)
dµεt(x).

Performing a Taylor expansion we then obtain4

(∫
Rd

Kε(x, µ
ε
t , dy) dµεt(x)− b(·, µεt)µεt , φ

)
=

∫
Rd

(∫
Rd

(ε∇φ(x)(y − x) +
ε2

2
(y − x)TD2φ(x+ θε(y − x))(y − x))K(x, µεt , dy)

)
dµεt(x)

(33)

where θ = θ(x, y, ε) ∈ (0, 1). From (K4) we have
∫
Rd(y − x)K(x, µεt, dy) = 0 for any5

x ∈ Rd, thus the �rst integral term on the right-hand side of (33) of order ε equals6

to zero. Hence, we get7

1

ε2

(∫
Rd

Kε(x, µ
ε
t , dy) dµεt(x)− b(·, µεt)µεt , φ

)
=

1

2

∫
Rd

∫
Rd

(y − x)TD2φ(x+ θε(y − x))(y − x)K(x, µεt , dy) dµεt(x).

Thus, the left-hand side of (32) is bounded by8

≤ 1

2

∫
Rd

∫
Rd

|D2φ(x+ θε(y − x))−D2φ(x)||y − x|2K(x, µεt , dy) dµεt(x)

≤ ε

2
‖D3φ‖∞

∫
Rd

∫
Rd

|y − x|3K(x, µεt , dy) dµεt(x).

Hence, we obtain the result by invoking (30) and assumption (K5). �9



DIFFUSIVE LIMIT TO A SELECTION-MUTATION EQUATION 27

Step 6.3. For any T > 0 there exists a positive constant CT independent of ε such1

that2

(34)

∫
Rd

|x| dµεt ≤ CT for any t ∈ [0, T ].

Proof. We denote by | · |δ the function | · | smoothed near 0 in such a way that3

| · | ≤ | · |δ. Given R > 0 we then truncate | · |δ considering ψδ,R(x) = |x|δρ(|x|/R)4

where ρ : [0,+∞) → [0, 1] is smooth, supported in [0, 2] and ρ = 1 in [0, 1]. Notice5

that for any x ∈ Rd the following is satis�ed: 0 ≤ ψδ,R(x) ≤ |x|δ and |Dαψδ,R(x)| ≤6

Cδ1{|x|≤2R}, 1 ≤ |α| ≤ 3.7

Since ψδ,R is smooth and compactly supported we can use it as a test-function in8

(29):9 ∫
Rd

ψδ,R dµ
ε
t =

∫
Rd

ψδ,R dµ0 +

∫ t

0

∫
Rd

N̄(s, x, µεs)ψδ,R dµ
ε
s ds

+

∫ t

0

∫
Rd

v[µεs]∇ψδ,R dµεs ds+

∫ t

0

(Ñε(µ
ε
s), ψδ,R) ds.

(35)

Using assumption (N2), 0 ≤ ψδ,R(x) ≤ |x|δ and
∫
Rd |x| dµ0(x) <∞ we can bound the

�rst two integrals on the right-hand side by∫
Rd

|x|δ dµ0 + CN̄

∫ t

0

(∫
Rd

ψδ,R dµ
ε
s

)
ds ≤ C + CN̄

∫ t

0

(∫
Rd

ψδ,R dµ
ε
s

)
ds.

Recalling that from (31) |v[µεs](x)| ≤ C (because of (V1) and (30)), ‖µεt‖TV ≤ C by10

(30) and |∇ψδ,R(x)| ≤ Cδ, we can bound the integral involving ∇ψδ,R by CδT . It11

remains to bound the last integral on the right-hand side of (35). Using (32) we have12

|(Ñε(µ
ε
s), ψδ,R)| ≤ 1

2

∫
Rd

d∑
i,j=1

|∂ijψδ,R(x)||dij(x, µεs)| dµεt(x) + CT ε‖D3ψδ,R‖∞.

It follows from assumptions (K7) and (30) that13

(36) |dij(x, µεt)| ≤ C for any t ∈ [0, T ] and any ε.

We then obtain

|(Ñε(µ
ε
s), ψR)| ≤ Cδ,T .

Thus, ∫
Rd

ψδ,R dµ
ε
t ≤ Cδ,T + CN̄

∫ t

0

(∫
Rd

ψδ,R dµ
ε
s

)
ds.
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Gronwall lemma gives ∫
Rd

ψδ,R dµ
ε
t ≤ Cδ,T e

CNT .

Letting R→ +∞ and using the Monotone Convergence theorem we obtain∫
Rd

|x|δ dµεt ≤ Cδ,T .

Since |x| ≤ |x|δ we deduce the claim. �1

Step 6.4. The sequence µε : [0, T ]→Mb(Rd) is uniformly equicontinuous, i.e., there2

exists CT > 0 such that for any ε ∈ (0, 1] and any t, t′ ∈ [0, T ],3

(37) ‖µεt − µεt′‖BL,3 ≤ CT |t− t′|,

where the norm ‖.‖BL,3 is de�ned in (18) with N = 3.4

Proof. Without loss of generality, we assume that t′ > t and take a bounded test-5

function φ ∈ C3(Rd) whose derivatives up to order three are bounded. Then according6

to Proposition 5.2,7

(µεt′ − µεt , φ) =

∫ t′

t

∫
Rd

N̄(s, x, µεs)φ(x) dµεs(x)ds+

∫ t′

t

∫
Rd

v[µεs]∇φ dµεs(x)ds

+

∫ t′

t

(Ñε(µ
ε
s), φ) ds.

Recalling that ‖v[µεs]‖∞ ≤ C from (31), the TV-bound (30) and using (32) and (36)8

we have9

|(µεt′ − µεt , φ)| ≤ CN,T

(
‖φ‖∞ + ‖∇φ‖∞ + ε‖D3φ‖∞

)
|t− t′|

+
1

2

d∑
i,j=1

∫ t′

t

∫
Rd

|∂ijφ(x)||dij(x, µεs)| dµεs(x)

≤ CT |t− t′|
∑

0≤|α|≤3

‖Dαφ‖∞.

Now, we obtain the result by taking the supremum over all such φ and recalling the10

de�nition (18) of the norm ‖.‖BL,3. �11

Notice that a sequence of measures (µn)n satisfying
∫
Rd |x| d|µn|(x) ≤ C for some

constant C is tight since
∫
{|x|≥R} d|µn| ≤ C/R. It follows that a set of the form

K =
{
µ ∈Mb,+(Rd) :

∫
Rd

(1 + |x|) dµ ≤ C
}
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for some constant C > 0, is compact under the BL norm (see [18]) and thus also1

compact under the norm ‖ · ‖BL,3 in view of Proposition 4.1. According to (30) and2

(34), and recalling that µεt ≥ 0, we know that the sequence µε belongs to C([0, T ],K).3

Moreover, it is uniformly equicontinuous in view of (37). It then follows from Arzela-4

Ascoli theorem that up to a subsequence there exists µ := limε→0 µ
ε in C([0, T ],K).5

Notice that the convergence holds not only in C([0, T ], (Mb(Rd), ‖.‖BL,3)) but also in6

C([0, T ], (Mb(Rd), ‖.‖BL)) by Proposition 4.1.7

The last Step of the proof is8

Step 6.5. µ is a solution of9

(38) ∂tµt +∇ · (v[µt]µt) = N̄(t, ·, µ)µ+
1

2

d∑
i,j=1

∂ij(dij(·, µt)µt).

Proof. According to (29) and (32) we have for any T > 0, any t ∈ [0, T ], any ε > 010

and any φ ∈ C∞c (Rd), that11 ∫
Rd

φ dµεt =

∫
Rd

φ dµ0 +

∫ t

0

∫
Rd

N̄(s, x, µεs)φ(x) dµεs ds+

∫ t

0

∫
Rd

∇φ.v[µεs] dµ
ε
s ds

+
1

2

d∑
i,j=1

∫ t

0

∫
Rd

dij(x, µ
ε
s)∂ijφ(x) dµεs(x) ds+O(ε)‖φ(3)‖∞.

(39)

Let us �rst check that for any s ∈ [0, T ],12

(40) lim
ε→0

∫
Rd

dij(x, µ
ε
s)∂ijφ(x) dµεs(x) =

∫
Rd

dij(x, µs)∂ijφ(x) dµs(x).

Indeed13 ∫
Rd

dij(x, µ
ε
s)∂ijφ(x) dµεs(x)−

∫
Rd

dij(x, µs)∂ijφ(x) dµs(x)

=

∫
Rd

dij(x, µ
ε
s)∂ijφ(x) d(µεs − µs)(x) +

∫
Rd

(dij(x, µ
ε
s)− dij(x, µs))∂ijφ(x) dµs(x)

=: A+B.

Using assumption (K7) with TV-bound (30) we have

|A| ≤ ‖µεs − µs‖BL‖dij(·, µεs)∂ijφ‖W 1,∞ ≤ C‖µεs − µs‖BL → 0.

Moreover since ‖dij(·, µεs)‖∞, ‖dij(·, µs)‖∞ ≤ C by (K7) and (30), and dij(x, µ
ε
s) →14

dij(x, µs) as ε → 0 for any x ∈ Rd, we have B → 0 by the Dominated Convergence15

Theorem. This proves (40).16
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Now using (40) and the bound |
∫
Rd dij(x, µ

ε
s)∂ijφ(x) dµεs(x)| ≤ CT for any s ∈ [0, T ],

we can pass to the limit in the fourth integral on the right-hand side using the

Dominated Convergence Theorem to obtain

lim
ε→0

∫ t

0

∫
Rd

dij(x, µ
ε
s)∂ijφ(x) dµεs(x) ds =

∫ t

0

∫
Rd

dij(x, µs)∂ijφ(x) dµs(x) ds.

We prove in the same way that

lim
ε→0

∫ t

0

∫
Rd

N̄(s, x, µεs)φ(x) dµεs ds =

∫ t

0

∫
Rd

N̄(s, x, µs)φ(x) dµs ds.

We now pass to the limit in the third integral term on the right-hand side of (39).

We �rst write it as∫ t

0

∫
Rd

∇φ(v[µεs]− v[µs]) dµ
ε
s ds+

∫ t

0

∫
Rd

∇φ.v[µs] dµ
ε
s ds =: I + II.

We bound I using assumption (V1) by1

‖∇φ‖∞L1
R

∫ t

0

∫
Rd

‖µεs − µs‖BL dµεs ds ≤ ‖∇φ‖∞L1
R max

0≤s≤T
‖µεs − µs‖BL‖µεs‖TV T

≤ C max
0≤s≤T

‖µεs − µs‖BL

which goes to 0 since µε → µ in C([0, T ],Mb(Rd)). Moreover, II goes to
∫ t

0

∫
Rd ∇φ.v[µs] dµs ds

by the Dominated Convergence Theorem since |
∫
Rd∇φ.v[µs] dµ

ε
s| ≤ C. Thus

lim
ε→0

∫ t

0

∫
Rd

∇φ.v[µεs] dµ
ε
s ds =

∫ t

0

∫
Rd

∇φ.v[µs] dµs ds.

Hence, we can pass to the limit in (39) to obtain∫
Rd

φ dµt =

∫
Rd

φ dµ0 +

∫ t

0

∫
Rd

∇φv[µs] dµs ds+
1

2

d∑
i,j=1

∫ t

0

∫
Rd

dij∂ijφ dµs ds

which is the weak form of (38). �2

7. Remarks and extensions3

In this paper we formulated a selection-mutation model on the space of �nite signed4

measures and we modeled the selection-mutation kernel as a family of �nite nonneg-5

ative measures in the trait parameter x. This allows to simultaneously treat discrete6

and continuous kernels under the same theory. We established the convergence of7

a nonlinear di�usively rescaled selection-mutation model with a nonlinear transport8
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and source terms to a nonlinear reaction-advection-di�usion equation. To end this1

paper, below we provide remarks on possible extensions to the theory we presented2

here.3

7.1. Asymmetric distribution. We can slightly generalize the results above by4

considering instead of K a sequence of kernels Kε(x, µ, ·) ∈Mb(Rd), ε > 0, satis�ying5

basically the same assumptions as K with estimates to be uniform in ε but relaxing6

the assumption (K4) allowing for slightly asymmetric distribution:7

(K0') Kε(x, µ, dy) ≥ 0 whenever µ ≥ 0,8

(K1') For any φ : Rd → R measurable and bounded and any µ ∈Mb(Rd) and ε > 0,9

the function x→
∫
Rd φ(y)Kε(x, µ, dy) is measurable.10

(K2') the function bε : (x, µ) ∈ Rd ×Mb(Rd) →
∫
Rd K

ε(x, µ, dy) ∈ R is continuous11

and satis�es12

(i) there exists Cb > 0 such that ‖bε(., µ)‖W 1,∞ ≤ Cb for any µ ∈ Mb(Rd)13

and any ε > 0,14

(ii) for any R > 0 there exists Lb,R > 0 such that

|bε(x, µ)− bε(x, µ̃)| ≤ Lb,R‖µ− µ̃‖BL for any µ, µ̃ ∈Mb,R(Rd) and any ε > 0,

(K3') For any φ ∈ W 1,∞(Rd), the function x→ (Kε(x, µ, ·), φ) is Lipschitz with

sup
µ∈Mb(Rd), ‖φ‖W1,∞≤1

Lip
(
x→ (Kε(x, µ, ·), φ)

)
≤ C where C is independent of ε.

(K4') the functions V ε(x, µ) := 1
ε

∫
Rd(y − x)Kε(x, µ, dy) satisfy15

� for any R > 0 there exists CV,R > 0 such that

‖V ε(·, µ)‖W 1,∞ ≤ CV,R for any µ ∈Mb,R(Rd) and any ε > 0,

� there exists V (x, µ) such that for any x ∈ Rd and any nonnegative TV-16

bounded sequence (µε)ε converging for the BL-norm to some µ, we have17

V ε(x, µε)→ V (x, µ).18

(K5') for any R > 0 there exists CK,R > 0 such that

sup
x∈Rd

∫
Rd

|y − x|3Kε(x, µ, dy) ≤ CK,R for any µ ∈Mb,R(Rd) and any ε > 0.

(K6') for any R > 0 there exists LK,R > 0 such that

‖Kε(x, µ̃, ·)−Kε(x, µ, ·)‖BL ≤ LK,R‖µ̃− µ‖BL
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for any x ∈ Rd, any µ, µ̃ ∈Mb,R(Rd) and any ε > 0.1

(K7') the functions dεij(x, µ) =
∫
Rd(yi − xi)(yj − xj)Kε(x, µ, dy) satisfy2

� for any R > 0 there exists Ld,R > 0 such that

‖dεij(·, µ)‖W 1,∞ ≤ Ld,R for any µ ∈Mb,R(Rd) and any ε > 0.

� there exists dij(x, µ) such that for any x ∈ Rd and any nonnegative TV-3

bounded sequence (µε)ε converging for the BL-norm to some µ, we have4

dεij(x, µε)→ dij(x, µ).5

(K8') There exists CK > 0 such that

‖Kε(x, µ, ·)‖TV ≤ CK for any x ∈ Rd, any µ ∈Mb(Rd) and any ε > 0.

The main di�erence with the setting of the previous section lies in assumption6

(K4) where we do not assume anymore that
∫
Rd(y−x)K(x, dy) = 0, i.e., the o�spring7

is distributed symmetrically around x, but instead that this distribution could be8

slightly asymmetric with an asymmetry of order ε.9

We rescale as before the kernels Kε(x, µ, dy) de�ning Kε
ε(x, µ, dy) by

(Kε
ε(x, µ, dy), φ) =

∫
Rd

φ(x+ ε(y − x))Kε(x, µ, dy).

We then obtain as before a unique nonnegative global solution µεt to10

(41) ∂tµt +∇ · (v[µt]µt) = N̄(t, ·, µt)µt +
1

ε2

(∫
Rd

Kε
ε(z, ·) dµt(z)− bεµt

)
.

11

We still assume that the vector-�eld v satis�es (V1)-(V2) and that the source term12

N̄ satis�es (N1)-(N2).13

The asymmetry of the reproduction kernelKε quanti�ed by V ε in assumption (K4')14

is re�ected by an additional transport term ∇ · (V µt) in the limit equation:15

Theorem 7.1. For any nonnegative initial condition µ0 ∈Mb(Rd) such that
∫
Rd |x| dµ0 <16

∞, the µεt converge up to a subsequence as ε→ 0 in C([0, T ],Mb(Rd)) for any T > 017

to some µ ∈ C([0,+∞),Mb,+(Rd)) which solves18

(42) ∂tµt +∇ · (v[µt]µt) +∇ · (V (·, µt)µt) = N̄(t, ·, µt)µt +
1

2
∂ij(dij(·, µt)µt)

with initial condition µ|t=0 = µ0 and where V and dij are de�ned in (K4') and (K7')19

respectively.20
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Proof. The proof is an adaptation of the proof of Theorem 2.1. We only highlight1

the main changes. Step 6.1 remains unchanged. Step 6.2 must be slighlty modi�ed2

replacing (32) by3 ∣∣∣ 1

ε2

(∫
Rd

Kε
ε(x, µ, dy) dµεt(x)− bε(., µεt)µεt , φ

)
−
∫
Rd

V ε(x, µεt)∇φ dµεt(x)− 1

2

∫
Rd

∂ijφ(x)dεij(x, µ
ε
t) dµ

ε
t(x)

∣∣∣
≤ CT ε‖D3φ‖∞.

(43)

Indeed, the Taylor expansion (33) can be written now as4

1

ε2

(∫
Rd

Kε
ε(x, µ

ε
t , dy) dµεt(x)− bε(., µεt)µεt , φ

)
=

∫
Rd

(∫
Rd

(1

ε
∇φ(x)(y − x) +

1

2
(D2φ(x+ θε(y − x))(y − x), y − x)

)
Kε(x, µεt , dy)

)
dµεt(x)

=

∫
Rd

∇φ(x)V ε(x, µεt) dµ
ε
t(x)

+
1

2

∫
Rd

(∫
Rd

(D2φ(x+ θε(y − x))(y − x), y − x)Kε(x, , µεt , dy)
)
dµεt(x).

Step 6.3 and Step 6.4 remain unchanged since |dεij(x, µεt)| is bounded uniformly in5

ε by assumption (K7').6

The other change is in the last Step 6.5 of the proof when proving that µt :=7

limε→0 µ
ε
t solves equation (42). Indeed we have to pass to the limit in the aditional8

term and prove that9

(44)

∫ t

0

∫
Rd

∇φ(x)V ε(x, µεs) dµ
ε
s(x)ds→

∫ t

0

∫
Rd

∇φ(x)V (x, µs) dµs(x)ds.

To this end, we write10 ∫ t

0

∫
Rd

∇φ(x)V ε(x, µεs) dµ
ε
s(x)ds−

∫ t

0

∫
Rd

∇φ(x)V (x, µs) dµs(x)ds

=

∫ t

0

∫
Rd

∇φ(x)V ε(x, µεs) d(µεs − µs)(x)ds+

∫ t

0

∫
Rd

∇φ(x)(V ε(x, µεs)− V (x, µs)) dµs(x)ds

= A+B

We have for any s ∈ [0, T ] that∣∣∣ ∫
Rd

∇φ(x)V ε(x, µεs) d(µεs−µs)(x)
∣∣∣ ≤ ‖µεs−µs‖BL‖∇φV ε(., µεs)‖W 1,∞ ≤ C‖µεs−µs‖BL → 0
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in view of assumption (K4'). We deduce that A→ 0 by the Dominated Convergence

Theorem. Moreover,∫
Rd

∇φ(x)(V ε(x, µεs)− V (x, µs)) dµs(x)→ 0

by the Dominated Convergence Theorem in view of assumption (K4'). We then1

deduce that B → 0 again by the Dominated Convergence Theorem.2

We also have to pass to the limit in the di�usion term and prove that for any3

s ∈ [0, T ],4

(45) lim
ε→0

∫
Rd

dεij(x, µ
ε
s)∂ijφ(x) dµεs(x) =

∫
Rd

dij(x, µs)∂ijφ(x) dµs(x).

This can be done exactly in the same way as (44) using (K7'). �5

As an example of admissible kernels Kε consider

Kε(x, µ, dy) := K(x, µ, dy) + εK̃(x, µ, dy)

where K satis�es (K0)-(K8) and K̃ satis�es (K0)-(K8) except (K4). Then Kε satisfy

(K0')-(K8') except (K4'). Concerning (K4') we have

V ε(x, µ) = V (x, µ) =

∫
Rd

(y − x)K̃(x, µ, dy)

and we must add the assumption on K̃ that V satis�es (K4') namely6

(K4')(i) for any R > 0 there exists CV,R > 0 such that

‖V (·, µ)‖W 1,∞ ≤ CV,R for any µ ∈Mb,R(Rd),

(K4')(ii) for any x ∈ Rd and any nonnegative TV-bounded sequence (µε)ε converging7

for the BL-norm to some µ, we have V (x, µε)→ V (x, µ).8

Concerning (K7') notice that

dεij(x, µ) = dij(x, µ) + ε

∫
Rd

(yi − xi)(yj − xj)K̃(x, µ, dy),

where

dij(x, µ) =

∫
Rd

(yi − xi)(yj − xj)K(x, µ, dy).
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Then (K7') is satis�ed. Indeed if (µε)ε is a nonnegative TV-bounded sequence con-1

verging for the BL-norm to some µ then for any x ∈ Rd,2

|dεij(x, µε)− dij(x, µ)| ≤ |dij(x, µε)− dij(x, µ)|+ ε

∫
Rd

|y − x|2K̃(x, µε, dy)

≤ o(1) + Cε

∫
Rd

(1 + |y − x|3)K̃(x, µε, dy)

≤ o(1) + Cε

since K satis�es (K7) and K̃ satis�es (K5) and (K8).3

7.2. Slower mutation rate: hyperbolic rescaling. We still consider variable ker-

nels Kε as in subsection 7.1. Instead of accelerating the mutation rate by 1/ε2, thus

obtaining a di�usion equation in the limit, we only accelerate it by 1/ε (hyperbolic

rescaling), i.e., we consider instead the equation

∂tµ
ε
t +∇ · (v[µεt ]µ

ε
t) = N̄(t, ·, µt)µt +

1

ε

(∫
Kε
ε(z, ·) dµεt(z)− bεµεt

)
.

4

We still assume that the vector-�eld v satis�es (V1)-(V2) and that the source term5

N̄ satis�es (N1)-(N2). Concerning Kε, we asume (K0')-(K6') (we do not need (K7')6

anymore) of subsection 7.1 but we replace (K4') and (K5') by7

(K4�) the functions V ε(x, µ) :=
∫
Rd(y − x)Kε(x, µ, dy) satisfy8

(i) for any R > 0 there exists CV,R > 0 such that

‖V ε(·, µ)‖W 1,∞ ≤ CV,R for any µ ∈Mb,R(Rd) and any ε > 0,

(ii) there exists V (x, µ) such that for any nonnegative TV-bounded sequence9

µε → µ for the BL-norm and any x ∈ Rd, V ε(x, µε)→ V (x, µ).10

(K5�) for any R > 0 there exists CK,R > 0 such that

sup
x∈Rd

∫
Rd

|y − x|2Kε(x, µ, dy) ≤ CK,R for any µ ∈Mb,R(Rd) and any ε > 0.

The slower mutation rate implies that in the Taylor expansion (33) only the �rst

order term matters. We thus have to replace (32) in Step 6.2 by∣∣∣1
ε

(∫
Rd

Kε
ε(x, µ

ε
t , dy) dµεt(x)− bε(., µεt)µεt , φ

)
−
∫
Rd

V ε∇φ dµεt(x)
∣∣∣ ≤ CT ε‖D2φ‖∞.

The other steps of the proof remain unchanged. We then obtain11
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Theorem 7.2. For any nonnegative initial condition µ0 ∈Mb(Rd) such that
∫
Rd |x| dµ0 <1

∞, and for any T > 0, µεt converges as ε→ 0 in C([0, T ],Mb(Rd) to the unique so-2

lution µ ∈ C([0,+∞),Mb,+(Rd)) of the di�erential equation3

(46) ∂tµt +∇ · (v[µt]µt) +∇ · (V µt) = N̄(t, ·, µt)µt.

with initial condition µ|t=0 = µ0.4

Notice that the whole sequence µεt converges since equation (46) has a unique solution5

(see [13]).6

7.3. Case of a system. We can adapt the result and the proof in a straightforward7

way to the case of a system like8

(47)
∂tµ

ε,1
t +∇ · (v1[µεt ]µ

ε,1
t ) = N̄1(t, ·, µεt)µ

ε,1
t + 1

ε2

( ∫
Rd K

1
ε (z, µεt , ·) dµ

ε,1
t (z)− b1(·, µεt)µ

ε,1
t

)
∂tµ

ε,2
t +∇ · (v2[µεt ]µ

ε,2
t ) = N̄2(t, ·, µεt)µ

ε,2
t + 1

ε2

( ∫
Rd K

2
ε (z, µεt , ·) dµ

ε,2
t (z)− b2(·, µεt)µ

ε,2
t

)
µε,1|t=0 = µ1

0, µ
ε,2
|t=0 = µ2

0

where µεt = (µε,1t , µε,2t ) and bk(x, µ) =
∫
Rd K

k(x, µ, dy), k = 1, 2.9

Assume that for any k = 1, 2, the vector �elds vk satisfy (V1)-(V2), the source10

term N̄k satis�es (N1)-(N2), and the kernel Kk satis�es (K0) through (K8), where11

µ = (µ1, µ2) ∈Mb(Rd)×Mb(Rd).12

First the existence and uniqueness result stated in Theorem 5.1 holds since the13

result in [3][Cor. 7.3] deals with systems. We then deduce existence and uniqueness14

of a global nonnegative solution µεt = (µε,1t , µε,2t ) to the system (47) as in Theorem15

5.3. Eventually Step 6.1 to Step 6.5 hold with exactly the same proof. We thus16

obtain Theorem 2.1 for the system (47) namely17

Theorem 7.3. For any nonnegative initial condition µ1
0, µ

2
0 ∈ Mb(Rd) such that18 ∫

Rd |x| dµk0(x) < ∞, k = 1, 2, there exists a solution µ ∈ C([0,+∞),Mb,+(Rd) ×19

Mb,+(Rd)) to the system20

(48)


∂tµ

1
t +∇ · (v1[µt]µ

1
t ) = N̄1(t, ·, µt)µ1

t + 1
2

∑d
i,j=1 ∂ij(d

1
ij(·, µt)µ1

t )

∂tµ
2
t +∇ · (v2[µt]µ

2
t ) = N̄2(t, ·, µt)µ2

t + 1
2

∑d
i,j=1 ∂ij(d

2
ij(·, µt)µ2

t )

µ1
|t=0 = µ1

0, µ
2
|t=0 = µ2

0,
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with

dkij(x, µ) =

∫
Rd

(yi − xi)(yj − xj)Kk(x, µ, dy), 1 ≤ i, j ≤ d, k = 1, 2

for any x ∈ Rd and any µ = (µ1, µ2) ∈Mb(Rd)×Mb(Rd).1

This solution is obtained as the limit as ε→ 0 (up to a subsequence) of the unique

solution µεt of the system (47) in the sense that µε,k → µk in C([0, T ],Mb(Rd) for

any T > 0 and k = 1, 2. Moreover for any T > 0 there exist CT > 0 such that∫
Rd

(1 + |x|) dµkt ≤ CT 0 ≤ t ≤ T, k = 1, 2.
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