The limit as $p \rightarrow+\infty$ of the first eigenvalue for the p-Laplacian with mixed Dirichlet and Robin boundary conditions

Julio D. Rossi ${ }^{\text {a }}{ }^{*}$, Nicolas Saintier ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Departamento de Matemática, FCEyN, Univ. de Buenos Aires, C.P. 1428, Buenos Aires, Argentina
${ }^{\text {b }}$ Instituto de Ciencias, Univ. Gral Sarmiento, Juan María Gutierrez 1150, Los Polvorines, Pcia de Buenos Aires, Argentina

A RTICLE INFO

Communicated by Enzo Mitidieri
MSC:
35J60
35 P 30
Keywords:
Eigenvalue problems
First variations
Infinity Laplacian

Abstract

We analyze the behavior as $p \rightarrow \infty$ of the first eigenvalue of the p-Laplacian with mixed boundary conditions of Dirichlet-Robin type. We find a nontrivial limit that we associate to a variational principle involving L^{∞}-norms. Moreover, we provide a geometrical characterization of the limit value as well as a description of it using optimal mass transportation techniques. Our results interpolate between the pure Dirichlet case and the mixed Dirich-let-Neumann case.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction and description of the main results

Let $U \subset \mathbb{R}^{n}$ be a smooth, bounded, open and connected set. In order to consider mixed boundary conditions, we split the boundary of U as $\partial U=\Gamma_{1} \cup \Gamma_{2}$, with $\Gamma_{1} \cap \Gamma_{2}=\emptyset$ and $\left|\Gamma_{1}\right|>0$. In this paper we deal with the first eigenvalue, that we will call λ_{p}, of the p-Laplacian with Dirichlet condition on Γ_{1} and Robin condition on Γ_{2} namely the smallest λ such that there is a nontrivial solution to the following problem,

$$
\begin{cases}-\Delta_{p} u=\lambda|u|^{p-2} u & \text { in } U, \tag{1}\\ u=0 & \text { on } \Gamma_{1}, \\ |\nabla u|^{p-2} \partial_{v} u+\alpha^{p}|u|^{p-2} u=0 & \text { on } \Gamma_{2} .\end{cases}
$$

Here α is a non-negative parameter. Notice that when $\alpha=+\infty$, the boundary condition become $u=0$ in all ∂U (a pure Dirichlet condition) and when $\alpha=0$ we have a mixed Dirichlet-Neumann boundary condition.

Our main goal is to compute the limit as $p \rightarrow \infty$ of this problem and look at its dependence on the parameter α.
To start our analysis we remark that λ_{p} has the following variational formulation:

$$
\begin{equation*}
\lambda_{p}=\inf _{u \in X_{p}}\left\{\int_{U}|\nabla u|^{p}+\alpha^{p} \int_{\Gamma_{2}}|u|^{p}:\|u\|_{L^{p}(U)}=1\right\} \tag{2}
\end{equation*}
$$

where

$$
X_{p}=\left\{u \in W_{\Gamma_{1}}^{1, p}(U), u \geq 0\right\}
$$

[^0]http://dx.doi.org/10.1016/j.na.2014.09.005
0362-546X/© 2014 Elsevier Ltd. All rights reserved.
and
$$
W_{\Gamma_{1}}^{1, p}(U)=\left\{u \in W^{1, p}(U), u=0 \text { on } \Gamma_{1}\right\} .
$$

Note that the infimum is attained since we assumed that $\left|\Gamma_{1}\right|>0$. Also notice that if we regard λ_{p} as a function of $\alpha, \alpha \in[0,+\infty) \rightarrow \lambda_{p}(\alpha)$, then $\lambda_{p}(\alpha)$ is non-decreasing with $\lim _{\alpha \rightarrow+\infty} \lambda_{p}=\lambda_{p, D}$ the first Dirichlet eigenvalue for the p-Laplacian in U.

We expect the limit problem of (2) as $p \rightarrow \infty$ to be

$$
\begin{equation*}
\lambda_{\infty}=\inf _{u \in X,\|u\|_{L^{\infty}(U)}=1} \max \left\{\|\nabla u\|_{L^{\infty}(U)}, \alpha\|u\|_{L^{\infty}\left(\Gamma_{2}\right)}\right\} \tag{3}
\end{equation*}
$$

where $X:=\left\{u \in W^{1, \infty}(U), u=0\right.$ on $\Gamma_{1}, u \geq 0$ in $\left.U\right\}$. Notice that when we let $\alpha \rightarrow+\infty$ in (3) with $\Gamma_{1}=\partial U$ we obtain

$$
\lim _{\alpha \rightarrow+\infty} \lambda_{\infty}(\alpha)=\lambda_{\infty, D}=\inf _{u \in W_{0}^{1, \infty}(U),\|u\|_{L^{\infty}(U)}=1}\|\nabla u\|_{L^{\infty}(U)}
$$

that is the first eigenvalue of the infinity Laplacian, $\Delta_{\infty} u=D u D^{2} u D u$ with Dirichlet boundary conditions. This value, $\lambda_{\infty, D}$, turns out to be the limit of $\left(\lambda_{p, D}\right)^{1 / p}$ as $p \rightarrow \infty$, see [1]. Our first result says that this kind of limit can be also computed for any nonnegative α.

Theorem 1. There holds that

$$
\lim _{p \rightarrow+\infty}\left(\lambda_{p}\right)^{1 / p}=\lambda_{\infty}
$$

Moreover the positive, normalized extremals for λ_{p}, u_{p} converge uniformly in \bar{U} along subsequences $p_{j} \rightarrow \infty$ to $u \in X$ which is a minimizer for (3) and a viscosity solution to

$$
\begin{cases}\min \left\{|D u|-\lambda_{\infty} u,-\Delta_{\infty} u\right\}=0 & \text { in } U, \\ u=0 & \text { on } \Gamma_{1}, \\ \min \left\{|D u|-\alpha u,-\partial_{v} u\right\}=0 & \text { on } \Gamma_{2} .\end{cases}
$$

Our next goal is to characterize this limit value λ_{∞}. The value of λ_{∞} results in the interplay between α, the geometry of U and the sets Γ_{1}, Γ_{2}. We consider the (possibly empty) set

$$
\mathcal{A}:=\left\{x \in \bar{U}, d\left(x, \Gamma_{1}\right) \geq \frac{1}{\alpha}+d\left(x, \Gamma_{2}\right)\right\} .
$$

Notice that if $\mathcal{A} \neq \emptyset$ then the set

$$
\mathcal{A}^{\prime}:=\left\{x \in \bar{U}, d\left(x, \Gamma_{1}\right)=\frac{1}{\alpha}+d\left(x, \Gamma_{2}\right)\right\}
$$

is also not empty. Indeed the function $f(x)=\frac{1}{\alpha}+d\left(x, \Gamma_{2}\right)-d\left(x, \Gamma_{1}\right)$ is continuous, less than or equal to 0 on \mathscr{A}, and greater than or equal to 0 if $d\left(x, \Gamma_{1}\right) \ll 1$ (we are using here the fact that U is connected to apply the mean value theorem). Our next result gives a geometrical characterization of λ_{∞}.

Theorem 2. It holds that

$$
\lambda_{\infty}= \begin{cases}\min _{x \in \bar{U}} \frac{1}{d\left(x, \Gamma_{1}\right)}, & \text { if } \mathcal{A}=\emptyset \tag{4}\\ \min _{x \in \mathcal{A}} \frac{1}{\frac{1}{\alpha}+d\left(x, \Gamma_{2}\right)}=\min _{x \in \mathcal{A}^{\prime}} \frac{1}{\frac{1}{\alpha}+d\left(x, \Gamma_{2}\right)}, & \text { if } \mathcal{A} \neq \emptyset\end{cases}
$$

Notice that when $\alpha=+\infty$, which corresponds to pure Dirichlet boundary conditions on the whole ∂U, then $\mathcal{A}=\mathcal{A}^{\prime}=\emptyset$ and we recover the result of [1], $\lambda_{\infty}^{-1}=\lambda_{\infty, D}^{-1}=\max _{x \in \bar{U}} d(x, \partial U)$. In the case of Neumann boundary conditions i.e. $\Gamma_{1}=\emptyset$ and $\alpha=0$ then $\mathcal{A}=\emptyset$ and $d\left(x, \Gamma_{1}\right)=d(x, \emptyset)=+\infty$ for any $x \in \bar{U}$ so that $\lambda_{\infty}=0$ which is consistent with the fact the 1st eigenvalue of Δ_{p} with Neumann boundary conditions is 0 .

We will first give a simple proof in the case where U is convex by using a test-function argument based proof which we were not able to extend to the general case. In fact the result for a arbitrary connected domain will be a consequence of an optimal mass transport formulation of λ_{∞} that we now introduce.

To continue our analysis we have to recall some notions and notations from optimal mass transport theory. Recall that the Monge-Kantorovich distance $W_{1}(\mu, v)$ between two probability measures μ and v over \bar{U} is defined by

$$
\begin{equation*}
W_{1}(\mu, v)=\max _{v \in W^{1, \infty}(U),\|\nabla v\|_{\infty} \leq 1} \int_{U} v(d \mu-d v) \tag{5}
\end{equation*}
$$

Recently the authors in [2] relate $\lambda_{\infty, D}$ with the Monge-Kantorovich distance W_{1}. They proved that

$$
\begin{equation*}
\lambda_{\infty, D}^{-1}=\max _{\mu \in P(U)} W_{1}(\mu, P(\partial U)), \tag{6}
\end{equation*}
$$

where $P(U)$ and $P(\partial U)$ denote the set of probability measures over \bar{U} and ∂U. Notice that the maximum is easily seen to be reached at δ_{x} where $x \in U$ is a most inner point.

In our case we are also able to give a characterization for λ_{∞} in terms of a maximization problem involving W_{1} but this time we get an extra term involving the total variation of a measure on Γ_{2}.

Theorem 3. It holds that

$$
\begin{equation*}
\frac{1}{\lambda_{\infty}}=\max _{\sigma \in P(\bar{U})} \inf _{v \in P(\partial U)}\left\{W_{1}(\sigma, v)+\frac{1}{\alpha} v\left(\Gamma_{2}\right)\right\} . \tag{7}
\end{equation*}
$$

Moreover, the measures $u_{p}^{p-1} d x$ weakly converge (up to a subsequence) as $p \rightarrow+\infty$ to a probability measure f_{∞} which attains the maximum in (7).

Notice that when $\alpha=+\infty$, which corresponds to Dirichlet boundary conditions, then we recover the result of [2], who showed that (6) holds.

As a corollary of this characterization in terms of optimal transportation, we can extend the result stated in Theorem 2 for the value of λ_{∞} to the case where U is not convex. We prefer to present our results in this order (even if Theorem 2 is not initially proved in its full generality) for readability of the whole paper (the proof of Theorem 2 in the convex case is much simpler).

Let us end the introduction with a brief description of the previous bibliography and the main ideas and techniques used to prove our results. First, as by now classical results, we mention that the limit as $p \rightarrow \infty$ of the first eigenvalue $\lambda_{p, D}$ of the p-Laplacian with Dirichlet boundary condition was studied in [3,1] (see also [4] for an anisotropic version). For its dependence with respect to the domain we refer to [5]. The limit operator that appears here, the infinity-Laplacian is given by the limit as $p \rightarrow \infty$ of the p-Laplacian, in the sense that solutions to $\Delta_{p} v_{p}=0$ with a Dirichlet data $v_{p}=f$ on $\partial \Omega$ converge as $p \rightarrow \infty$ to the solution to $\Delta_{\infty} v=0$ with $v=f$ on $\partial \Omega$ in the viscosity sense (see [6-8]). This operator appears naturally when one considers absolutely minimizing Lipschitz extensions in Ω of a boundary data f (see [9,6,10]).

The case of a Steklov boundary condition (here the eigenvalue appears in the boundary condition) has also been investigated recently. Indeed in [11] (see also [12] for a slightly different problem) it is studied the behavior as $p \rightarrow+\infty$ of the so-called variational eigenvalues $\lambda_{k, p, S}, k \geq 1$, of the p-Laplacian with a Steklov boundary condition. In particular it is proved that

$$
\lim _{p \rightarrow+\infty} \lambda_{1, p, S}^{1 / p}=1 \quad \text { and } \quad \lambda_{2, \infty, S}:=\lim _{p \rightarrow+\infty} \lambda_{2, p, S}^{1 / p}=\frac{2}{\operatorname{diam}\left(U, \mathbb{R}^{n}\right)}
$$

where here $\operatorname{diam}\left(U, \mathbb{R}^{n}\right)$ denotes the diameter of U for the usual Euclidean distance in \mathbb{R}^{n}.
For pure Neumann eigenvalues, we quote [13,14]. In those references it is considered the limit for the second eigenvalue (the first one is zero). It is proved that in this case $\lambda_{\infty}:=\lim _{p \rightarrow+\infty} \lambda_{p}^{1 / p}=2 / \operatorname{diam}(U)$, where diam (U) denotes the diameter of U with respect to the geodesic distance in U. In addition, the regularity of λ_{∞} as a function of the domain U is studied in [14] and in [13] it is proved that there are no nonzero eigenvalues below λ_{∞}, so that λ_{∞} is indeed the first nontrivial eigenvalue for the infinity-Laplacian with Neumann boundary conditions.

Concerning ideas and methods used in the proofs we use classical variational ideas to obtain the limit of $\left(\lambda_{p}\right)^{1 / p}$ and viscosity techniques and to find the limit PDE problem we use viscosity techniques as in [1] (we refer to [8] for the definition of a viscosity solution). The characterization of λ_{∞} given in Theorem 2 follows using cones as test functions in the variational formulation. Finally, mass transport techniques (we refer to [15]) and gamma-convergence of functionals are used to show the more general characterization of λ_{∞} given in Theorem 3, see $[2,14]$ for similar arguments in different contexts.

The paper is organized as follows. In Section 2 we deal with the limit as $p \rightarrow \infty$ and prove Theorem 1. In Section 3 we prove Theorem 2 that characterizes λ_{∞} in geometrical terms in the cases of a convex domain U. In Section 4 we use optimal transport ideas to obtain Theorem 3. As a corollary, we eventually prove Theorem 2 for a general connected domain in the last section.

2. Proof of Theorem 1

For the proof of Theorem 1 we will use the following lemma.
Lemma 1. For any $f, g \in L^{\infty}(U)$ there holds

$$
\lim _{p \rightarrow+\infty}\left(\|f\|_{L^{p}(U)}+\|g\|_{L^{p}(U)}\right)^{\frac{1}{p}}=\max \left\{\|f\|_{L^{\infty}(U)},\|g\|_{L^{\infty}(U)}\right\} .
$$

Proof. The result is a direct consequence of the inequalities

$$
\begin{aligned}
\max \left\{\|f\|_{L^{p}(U)}^{p},\|g\|_{L^{p}(U)}^{p}\right\} & \leq\|f\|_{L^{p}(U)}^{p}+\|g\|_{L^{p}(U)}^{p} \\
& \leq 2 \max \left\{\|f\|_{L^{p}(U)}^{p},\|g\|_{L^{p}(U)}^{p}\right\} .
\end{aligned}
$$

In fact, from the previous inequalities, we get

$$
\begin{aligned}
\lim _{p \rightarrow+\infty} \max \left\{\|f\|_{L^{p}(U)},\|g\|_{L^{p}(U)}\right\} & \leq \lim _{p \rightarrow+\infty}\left(\|f\|_{L^{p}(U)}+\|g\|_{L^{p}(U)}\right)^{\frac{1}{p}} \\
& \leq \lim _{p \rightarrow+\infty} 2^{\frac{1}{p}} \max \left\{\|f\|_{L^{p}(U)},\|g\|_{L^{p}(U)}\right\}
\end{aligned}
$$

We conclude using that

$$
\lim _{p \rightarrow+\infty}\|f\|_{L^{p}(U)}=\|f\|_{L^{\infty}(U)}
$$

and

$$
\lim _{p \rightarrow+\infty}\|g\|_{L^{p}(U)}=\|g\|_{L^{\infty}(U)} .
$$

Now let us proceed with the proof of Theorem 1.
Proof of Theorem 1. Let $u \in X$ then $u \in \cap_{p} X_{p}$. From the variational characterization of λ_{p} we have

$$
\left(\lambda_{p}\right)^{1 / p} \leq \frac{1}{\|u\|_{L^{p}(U)}}\left(\int_{U}|\nabla u|^{p}+\alpha^{p} \int_{\Gamma_{2}}|u|^{p}\right)^{1 / p}
$$

Hence, using the previous lemma we get

$$
\limsup _{p \rightarrow \infty}\left(\lambda_{p}\right)^{1 / p} \leq \max \left\{\|\nabla u\|_{L^{\infty}(U)}, \alpha\|u\|_{L^{\infty}\left(\Gamma_{2}\right)}\right\}
$$

for any $u \in X$. Therefore, we conclude that

$$
\limsup _{p \rightarrow \infty}\left(\lambda_{p}\right)^{1 / p} \leq \lambda_{\infty} .
$$

In addition, we get that, for u_{p} an eigenfunction associated to λ_{p} in X_{p} it holds that

$$
\limsup _{p \rightarrow \infty}\left\|\nabla u_{p}\right\|_{L^{p}(U)} \leq \lambda_{\infty}
$$

Therefore, we have that $\left\{u_{p}\right\}$ is uniformly bounded (independently of p) in $W^{1, p}(U)$. Then, for any fixed q we obtain

$$
\left\|\nabla u_{p}\right\|_{L^{q}(U)} \leq\left\|\nabla u_{p}\right\|_{L^{p}(U)}|U|^{\frac{p-q}{q p}} \leq C
$$

with C independent of p. Hence, by a diagonal procedure, we can extract a subsequence $p_{j} \rightarrow \infty$ such that

$$
u_{p_{j}} \rightarrow u
$$

uniformly in \bar{U} and weakly in every $W^{1, q}(U), q \in \mathbb{N}$. This limit u verifies that

$$
\|\nabla u\|_{L^{q}(U)} \leq \limsup _{p \rightarrow \infty}\left\|\nabla u_{p}\right\|_{L^{q}(U)} \leq \limsup _{p \rightarrow \infty}\left\|\nabla u_{p}\right\|_{L^{p}(U)}|U|^{\frac{p-q}{q p}} \leq \lambda_{\infty}|U|^{\frac{1}{q}}
$$

and then we get

$$
\|\nabla u\|_{L^{\infty}(U)} \leq \lambda_{\infty} .
$$

Moreover, we have

$$
\alpha\left\|u_{p}\right\|_{L^{q}\left(\Gamma_{2}\right)} \leq\left(\alpha^{p}\left\|u_{p}\right\|_{L^{p}\left(\Gamma_{2}\right)}^{p}\left|\Gamma_{2}\right|^{\frac{p-q}{q}}\right)^{1 / p} \leq\left(\lambda_{p}\left|\Gamma_{2}\right|^{\frac{p-q}{q}}\right)^{1 / p},
$$

then

$$
\alpha\|u\|_{L^{q}\left(\Gamma_{2}\right)} \leq \limsup _{p \rightarrow \infty} \alpha\left\|u_{p}\right\|_{L^{q}\left(\Gamma_{2}\right)} \leq \limsup _{p \rightarrow \infty} \alpha\left\|u_{p}\right\|_{L^{q}\left(\Gamma_{2}\right)} \leq \lambda_{\infty}\left|\Gamma_{2}\right|^{\frac{1}{q}}
$$

and we conclude that

$$
\alpha\|u\|_{L^{\infty}\left(\Gamma_{2}\right)} \leq \lambda_{\infty}
$$

Hence

$$
\max \left\{\|\nabla u\|_{L^{\infty}(U)}, \alpha\|u\|_{L^{\infty}\left(\Gamma_{2}\right)}\right\} \leq \lambda_{\infty}
$$

Now, we only have to observe that from the uniform convergence we get that $u \in X$, and then we conclude that u is a minimizer of (3). In addition, our previous calculations show that

$$
\lambda_{\infty} \leq \liminf _{p \rightarrow \infty}\left(\lambda_{p}\right)^{\frac{1}{p}}
$$

Now, concerning the equation verified by the limit of u_{p}, u, we have that, from the fact that u_{p} are viscosity solutions to $\Delta_{p} u=\lambda_{p}|u|^{p-2} u$ and that $\left(\lambda_{p}\right)^{1 / p}$ converges to λ_{∞} we conclude as in [1] that the limit u is a viscosity solution to

$$
\min \left\{|D u|-\lambda_{\infty} u,-\Delta_{\infty} u\right\}=0
$$

That $u=0$ on Γ_{1} is immediate from uniform convergence in \bar{U} and the fact that u_{p} verify the same condition.
On Γ_{2} we have

$$
|\nabla u|^{p-2} \partial_{v} u+\alpha^{p}|u|^{p-2} u=0
$$

therefore, passing to the limit in the viscosity sense as done in [16] we obtain

$$
\min \left\{|D u|-\alpha u,-\partial_{\nu} u\right\}=0 .
$$

This ends the proof.

3. Proof of Theorem $\mathbf{2}$ for convex domains

Along this section we assume that U is convex.
Proof of Theorem 2. Using the variational characterization (3) proved in the previous section, we estimate λ_{∞} from above by using as test-function a truncated cone of the form

$$
u(x)=\left(1-a\left|x-x_{0}\right|\right)_{+}
$$

where $a>0$ and $x_{0} \in \bar{U}$. Then

$$
\begin{aligned}
& u \equiv 0 \quad \text { on } \Gamma_{1} \quad \text { iff } \quad a \geq \frac{1}{d\left(x_{0}, \Gamma_{1}\right)} \\
& \|\nabla u\|_{L^{\infty}(U)}=a \\
& \text { and } \quad\|u\|_{L^{\infty}\left(\Gamma_{2}\right)}=\left(1-a d\left(x_{0}, \Gamma_{2}\right)\right)_{+} .
\end{aligned}
$$

It follows that

$$
\lambda_{\infty} \leq \inf \max \left\{a, \alpha\left[1-a d\left(x_{0}, \Gamma_{2}\right)\right]_{+}\right\}
$$

where the infimum is taken over all the $x_{0} \in \bar{U}$ and $a>0$ such that $a \geq 1 / d\left(x_{0}, \Gamma_{1}\right)$. Examining the two possibilities for the max, we obtain easily the upper bound for λ_{∞}.

To prove the lower bound we argue as follows: for any $x_{0} \in \bar{U}$, and any Lipschitz function $u \in X$ with $u\left(x_{0}\right)=1$, we have

$$
1 \geq\|u\|_{L^{\infty}\left(\Gamma_{2}\right)} \geq\left(1-\|\nabla u\|_{\infty} d\left(x_{0}, \Gamma_{2}\right)\right)_{+}
$$

Thus

$$
\lambda_{\infty} \geq \inf \max \left\{\|\nabla u\|_{L^{\infty}(U)}, \alpha\left(1-\|\nabla u\|_{L^{\infty}(U)} d\left(x_{0}, \Gamma_{2}\right)\right)_{+}\right\}
$$

where the infimum is taken over all $u \in W^{1, \infty}(\bar{U})$ such that $u=0$ in $\Gamma_{1},\|u\|_{L^{\infty}(U)}=1$ and $\|\nabla u\|_{L^{\infty}(U)} \geq \frac{1}{d\left(x_{0}, \Gamma_{1}\right)}$ for any $x_{0} \in\{u=1\}$. From this point the argument concludes as for the previous case just analyzing the possibilities for the max.

4. Proof of Theorem 3

The proof follows the lines of [2] (see also [14] for the pure Neumann boundary case).

We begin rewriting the variational formulation (2) of λ_{p} as

$$
1=\sup \left\{\int_{U}|u|^{p}: u \in W_{\Gamma_{1}}^{1, p}(U) \text { s.t. } \int_{U}|\nabla u|^{p}+\alpha^{p} \int_{\Gamma_{2}}|u|^{p}=\lambda_{p}\right\} .
$$

We are thus lead to consider the functions $G_{p}: C(\bar{U}) \times M(\bar{U}) \rightarrow \mathbb{R}, p \geq 1$, defined by

$$
G_{p}(v, \sigma)= \begin{cases}-\int v d \sigma & \text { if } v \in W_{\Gamma_{1}}^{1, p}(U), \int_{U}|\nabla v|^{p}+\alpha^{p} \int_{\Gamma_{2}}|v|^{p} \leq \lambda_{p}^{p}, \text { and } \sigma \in L^{p^{\prime}}(U) \text { with } \int_{U}|\sigma|^{p^{\prime}} \leq 1, \\ +\infty & \text { otherwise. }\end{cases}
$$

Notice that the pair $\left(u_{p}, u_{p}^{p-1} d x\right)$ is an extremal for G_{p} so that $\min G_{p}=-1$. Indeed for any admissible pair $(v, \sigma) \in$ $W_{\Gamma_{1}}^{1, p}(U) \times L^{p^{\prime}}(U)$, we have

$$
\begin{aligned}
-G_{p}(v, \sigma) & =\int_{U} v \sigma \leq\|v\|_{p}\|\sigma\|_{p^{\prime}} \leq \lambda_{p}^{-1 / p}\left(\int_{U}|\nabla v|^{p}+\alpha^{p} \int_{\Gamma_{2}}|v|^{p}\right)^{1 / p} \\
& \leq 1=\int_{U} u_{p}^{p}
\end{aligned}
$$

(we used successively Hölder's inequality, the definition of λ_{p} and the fact that v is admissible). In view of Lemma 1 , we introduce the formal limit functional $G_{\infty}: C(\bar{U}) \times M(\bar{U}) \rightarrow \mathbb{R}$ of the G_{p} by

$$
G_{\infty}(v, \sigma)=\left\{\begin{array}{l}
-\int v d \sigma \quad \text { if } v \in W_{\Gamma_{1}}^{1, \infty}(U), \max \left\{\|\nabla u\|_{\infty}, \alpha\|v\|_{L^{\infty}\left(\Gamma_{2}\right)}\right\} \leq \lambda_{\infty}, \text { and }|\sigma|(\bar{U}) \leq 1, \\
+\infty \text { otherwise. }
\end{array}\right.
$$

The convergence of the functionals G_{p} to G_{∞} can be justified using the notion of Γ-convergence. Recall that a sequence of functionals $F_{n}: X \rightarrow[0,+\infty]$ defined over a metric space X is said to Γ-converge to a functional $F_{\infty}: X \rightarrow[0,+\infty]$ if the following two conditions hold:

- for every $x \in X$ and every sequence $\left(x_{n}\right)_{n} \subset X$ converging to $x, F(x) \leq \lim \inf F\left(x_{n}\right)$,
and
- for any $x \in X$, there exists a sequence $\left(x_{n}\right)_{n} \subset X$ converging to x such that $F(x) \geq \lim \sup F\left(x_{n}\right)$.

An easy but important consequence of the definition, that we will use later, is the fact that if x_{n} is a minimizer of F_{n} then every cluster point of the sequence $\left(x_{n}\right)$ is a minimizer of F_{∞}. We refer e.g. to $[17,18]$ for a detailed account on Γ-convergence.

Proposition 4.1. The functionals $G_{p} \Gamma$-converge as $p \rightarrow+\infty$ to G_{∞}.
Proof. The proof is very similar to [2] (see also [14] for the pure Neumann boundary case). We briefly sketch it for the reader's convenience.

Assume that $\left(v_{p}, \sigma_{p}\right) \in C(\bar{U}) \times M(\bar{U})$ converges to (v, σ). We have to prove that

$$
\begin{equation*}
\liminf _{p \rightarrow+\infty} G_{p}\left(v_{p}, \sigma_{p}\right) \geq G(v, \sigma) . \tag{8}
\end{equation*}
$$

We can assume that $G_{p}\left(v_{p}, \sigma_{p}\right)<\infty$. Then we have

$$
\int_{U} v_{p} \sigma_{p} d x-\int_{U} v d \sigma=\int_{U}\left(v_{p}-v\right) \sigma_{p} d x+\int_{U} v\left(\sigma_{p} d x-d \sigma\right) \rightarrow 0
$$

as $p \rightarrow+\infty$. Indeed the first integral on the right hand side can be bounded by $\left\|v_{p}-v\right\| \infty\left\|\sigma_{p}\right\|_{p^{\prime}}|U|^{\frac{1}{p}}=o(1)$. Independently

$$
\int_{U}|\sigma|=\int_{U}\left|\sigma_{p}\right| d x+o(1) \leq\left\|\sigma_{p}\right\|_{p^{\prime}}|U|^{\frac{1}{p}}+o(1) \leq 1+o(1)
$$

so that $\int_{U}|\sigma| \leq 1$. Moreover taking limit in $\alpha\left\|v_{p}\right\|_{L^{p}\left(\Gamma_{2}\right)} \leq \lambda_{p}$ yields $\alpha\|v\|_{L^{\infty}\left(\Gamma_{2}\right)} \leq \lambda_{\infty}$. Eventually, for any $\phi \in L^{p^{\prime}}\left(U, \mathbb{R}^{n}\right)$ such that $\|\phi\|_{p^{\prime}} \leq 1$ we have

$$
\begin{aligned}
\int_{U} \phi \nabla v d x & =-\int_{U} v \operatorname{div} \phi d x=-\int_{U} v_{p} \operatorname{div} \phi d x+o(1)=\int_{U} \phi \nabla v_{p} d x+o(1) \\
& \leq\left\|\nabla v_{p}\right\|_{p}+o(1) \leq \lambda_{p}^{\frac{1}{p}}+o(1)=\lambda_{\infty}+o(1),
\end{aligned}
$$

where the $o(1)$ does not depend on ϕ. Taking the supremum over all such ϕ we obtain $\|\nabla v\|_{p} \leq \lambda_{\infty}+o(1)$, so that $\|\nabla v\|_{\infty} \leq \lambda_{\infty}$. It follows that (v, σ) is admissible for G_{∞}.

We now fix a pair (v, σ) admissible for G_{∞}. We have to find some pair (v_{p}, σ_{p}) admissible for G_{p} which converges to (v, σ) and such that

$$
\limsup _{p \rightarrow+\infty} G_{p}\left(v_{p}, \sigma_{p}\right) \leq G_{\infty}(v, \sigma)
$$

We define

$$
v_{p}=\frac{\lambda_{p}^{\frac{1}{p}}}{\lambda_{\infty}\left(|U|+\left|\Gamma_{2}\right|\right)^{\frac{1}{p}}} v
$$

Then $v_{p} \in W^{1, p}(U), v_{p} \rightarrow v$ uniformly, and $\int_{U}\left|\nabla v_{p}\right|^{p}+\alpha^{p} \int_{\Gamma_{2}}\left|v_{p}\right|^{p} \leq \lambda_{p}^{p}$.
In order to define σ_{p} by regularizing σ by convolution, we first need to adjust a little. Let \vec{n} be the unit inner normal vector to U that we extend in a smooth way to \mathbb{R}^{n} with compact support in a neighborhood of ∂U. We consider $T_{\varepsilon}: \bar{U} \rightarrow \bar{U}_{2 \varepsilon}:=$ $\{x \in \bar{U}, \operatorname{dist}(x, \partial U) \geq 2 \varepsilon\}$ defined by $T_{\varepsilon}(x)=x+2 \varepsilon \vec{n}$. Let $\sigma_{\varepsilon}=T_{\varepsilon} \sharp \sigma$ be the push-forward of σ by T_{ε} i.e. $\int f d \sigma_{\varepsilon}=\int f \circ T_{\varepsilon} d \sigma$ for any $f \in C\left(\bar{U}_{2 \varepsilon}\right)$. Observe that supp $\sigma_{\varepsilon} \subset \bar{U}_{2 \varepsilon}$ and also that $\int\left|\sigma_{\varepsilon}\right| \leq 1$ since

$$
\begin{aligned}
\int\left|\sigma_{\varepsilon}\right| & =\sup _{\|\phi\|_{L} \infty\left(U_{2 \varepsilon}\right) \leq 1} \int \phi d \sigma_{\varepsilon}=\sup _{\|\phi\|_{L} \infty_{\left(U_{2 \varepsilon}\right)} \leq 1} \int \phi \circ T_{\varepsilon} d \sigma \\
& \leq \int d|\sigma| \leq 1
\end{aligned}
$$

Moreover

$$
\sigma_{\varepsilon} \rightarrow \sigma \text { weakly in the sense of measure. }
$$

Indeed for any $\phi \in C(\bar{U})$,

$$
\left|\int \phi d \sigma_{\varepsilon}-\int \phi d \sigma\right| \leq \int|\phi(x+2 \varepsilon \vec{n})-\phi(x)| d \sigma(x)=o(1)
$$

since the integrand goes to 0 uniformly in $x \in \bar{U}$. Denote by ρ_{ε} the usual mollifying functions (i.e. $\rho_{\varepsilon}(x)=\varepsilon^{-n} \rho(x / \varepsilon)$ where ρ is a smooth function compactly supported in the unit ball of \mathbb{R}^{n} with $\int \rho=1$). Then

$$
\rho_{\varepsilon} * \sigma_{\varepsilon}-\sigma_{\varepsilon} \rightarrow 0 \quad \text { weakly in the sense of measure. }
$$

This follows from the fact that $\left\|\phi * \rho_{\varepsilon}-\phi\right\|_{L^{\infty}\left(U_{2 \varepsilon}\right)} \rightarrow 0$ for any $\phi \in C(\bar{U})$. Hence

$$
\begin{equation*}
\rho_{\varepsilon} * \sigma_{\varepsilon} \rightharpoonup \sigma \quad \text { weakly in the sense of measure. } \tag{9}
\end{equation*}
$$

We now regularize σ_{ε} considering

$$
\tilde{\sigma}_{\varepsilon}:=\sigma_{\varepsilon} * \tilde{\rho}_{\varepsilon} \in C^{\infty}(U)
$$

with

$$
\tilde{\rho}_{\varepsilon}:=\frac{\rho_{\varepsilon}}{\left\|\rho_{\varepsilon}\right\|_{p^{\prime}}}, \quad \varepsilon=1 / p
$$

Then $\left\|\rho_{\varepsilon}\right\|_{p^{\prime}} \rightarrow 1$ since $\left\|\rho_{\varepsilon}\right\|_{p^{\prime}}=\varepsilon^{-n / p}\|\rho\|_{p^{\prime}} \rightarrow\left\|\rho_{\varepsilon}\right\|_{1}=1$. It then follows that $\tilde{\sigma}_{\varepsilon} \rightharpoonup \sigma$. Moreover $\tilde{\sigma}_{\varepsilon}$ is admissible for G_{p} since, by the Holder inequality and recalling (9),

$$
\left\|\tilde{\sigma}_{\varepsilon}\right\|_{p^{\prime}}^{p^{\prime}} \leq\left(\int\left|\sigma_{\varepsilon}\right|\right)^{\frac{1}{p-1}} \int \tilde{\rho}_{\varepsilon}(x-y)^{p^{\prime}} d x d\left|\sigma_{\varepsilon}\right|(y)=\left\|\tilde{\rho}_{\varepsilon}\right\|_{p^{\prime}}^{p^{\prime}}\left(\int\left|\sigma_{\varepsilon}\right|\right)^{\frac{p}{p-1}} \leq 1 .
$$

It follows that $\left(\sigma_{\varepsilon}, v_{p}\right)$ is admissible for G_{p} and converges to (v, σ). As before we have $G_{p}\left(v_{p}, \sigma_{\varepsilon}\right) \rightarrow G_{\infty}(v, \sigma)$.
Recall that from Theorem $1, u_{p}$ converge in $C(\bar{U})$ up to a subsequence to some $u_{\infty} \in C(\bar{U}),\|u\|_{\infty}=1$. Moreover, up to a subsequence, the measures $u_{p}^{p-1} d x$ converge weakly to some probability measure σ_{∞}. Indeed since \bar{U} is compact, it suffices, according to the Prokhorov theorem, to show that

$$
\lim _{p \rightarrow+\infty} \int_{\bar{U}} u_{p}^{p-1} d x=1
$$

This follows from

$$
\int_{\bar{U}} u_{p}^{p-1} d x \leq\left\|u_{p}\right\|_{p}|U|^{1 / p} \rightarrow 1
$$

and, for $p>n$,

$$
1=\int_{\bar{U}} u_{p}^{p-1} u_{p} d x \leq\left\|u_{p}\right\|_{\infty} \int_{\bar{U}} u_{p}^{p-1} d x=(1+o(1)) \int_{\bar{U}} u_{p}^{p-1} d x
$$

As a consequence of the Γ-convergence of G_{p} to G_{∞} and the fact that $\left(u_{p}, u_{p}^{p-1} d x\right)$ is a minimizer of G_{p}, we obtain that $\left(u_{\infty}, \sigma_{\infty}\right)$ is a minimizer of G_{∞} with $G_{\infty}\left(u_{\infty}, \sigma_{\infty}\right)=\lim _{p \rightarrow+\infty} G_{p}\left(u_{p}, u_{p}^{p-1} d x\right)=-1$. Since $\sigma_{\infty} \in P(\bar{U})$ and u_{∞} is an extremal for λ_{∞}, we can thus write

$$
1=\max \left\{\int v d \sigma ; v \in W_{\Gamma_{1}}^{1, \infty}(U), \max \left\{\|\nabla v\|_{\infty}, \alpha\|v\|_{L^{\infty}\left(\Gamma_{2}\right)}\right\}=\lambda_{\infty}, \sigma \in P(\bar{U})\right\}
$$

i.e.

$$
\begin{equation*}
\lambda_{\infty}^{-1}=\max \left\{\int v d \sigma ; v \in W_{\Gamma_{1}}^{1, \infty}(U), \max \left\{\|\nabla v\|_{\infty}, \alpha\|v\|_{L^{\infty}\left(\Gamma_{2}\right)}\right\}=1, \sigma \in P(\bar{U})\right\} . \tag{10}
\end{equation*}
$$

An approximation argument shows that we can replace $W_{\Gamma_{1}}^{1, \infty}(U)$ by $C^{1}(U) \cap C_{\Gamma_{1}}(\bar{U})$ where $C_{\Gamma_{1}}(\bar{U})=\{u \in C(\bar{U}): u=$ 0 on Γ_{1} \}.

Proposition 4.2. Given $v \in W_{\Gamma_{1}}^{1, \infty}(U), \max \left\{\|\nabla v\|_{\infty}, \alpha\|v\|_{L^{\infty}\left(\Gamma_{2}\right)}\right\} \leq 1$, there exist $v_{k} \in C^{1}(U) \cap C_{\Gamma_{1}}(\bar{U}), \max \left\{\left\|\nabla v_{k}\right\|_{\infty}\right.$,

Proof. The proof uses ideas from [2]. We first extend v in a neighborhood of ∂U by antisymmetric reflection across ∂U so that the extended function \bar{v} is Lipschitz with $\|\nabla \bar{v}\|_{\infty}=\|\nabla v\|_{\infty} \leq 1$. We then apply the same method as in [2] consisting in introducing the function $\theta_{\varepsilon}(t)=(t-\operatorname{sgn}(t) \varepsilon) 1_{|t| \geq \varepsilon}$ and then regularizing $\theta_{\varepsilon} \circ \bar{v}$ by convolution with the usual mollifying functions. Observe that $\left\|\nabla\left(\theta_{\varepsilon} \circ \bar{v}\right)\right\|_{\infty} \leq\|\nabla \bar{v}\|_{\infty} \leq 1$ and that $\theta_{\varepsilon} \circ \bar{v}=0$ in the ε-neighborhood $\left\{x \in \mathbb{R}^{n}, \operatorname{dist}\left(x, \Gamma_{1}\right)<\varepsilon\right\}$ of Γ_{1} since \bar{v} is 1-Lipschitz. Note also that $|\theta(t)|=(|t|-\varepsilon) 1_{|t| \geq \varepsilon}$ so that on $\Gamma_{2},\left|\theta_{\varepsilon} \circ \bar{v}\right| \leq\left(\alpha^{-1}-\varepsilon\right)_{+}$. Hence $\left|\theta_{\varepsilon} \circ \bar{v}\right| \leq \alpha^{-1}$ in the ε-neighborhood of Γ_{2}. It follows from these three comments that the regularizing of $\theta_{\varepsilon} \circ \bar{v}$ is adequate.

Denoting by Res : $C(\bar{U}) \rightarrow C\left(\Gamma_{2}\right)$ the restriction operator, $A u=\nabla u$ the derivation operator with domain $C^{1}(U)$, and $B(R)$ the closed ball of radius R centered at 0 in $C(\bar{U}), B=B(1)$, we can rewrite (10) as

$$
\frac{1}{\lambda_{\infty}}=\max _{\sigma \in P(\bar{U})} \max _{u \in C(\bar{U})}\left\{(\sigma, u)-\left(\chi_{B(1 / \alpha)} \circ \operatorname{Res}\right)(u)-\left(\chi_{B} \circ A\right)(u)-\chi_{C_{\Gamma_{1}}(U)}(u)\right\}
$$

Recalling the definition of the Legendre transform, we eventually obtain

$$
\begin{equation*}
\frac{1}{\lambda_{\infty}}=\max _{\sigma \in P(\bar{U})}\left(\left(\chi_{B(1 / \alpha)} \circ \operatorname{Res}\right)+\left(\chi_{B} \circ A\right)+\chi_{C_{\Gamma_{1}}(U)}\right)^{*}(\sigma) \tag{11}
\end{equation*}
$$

The inf-convolution $f \square g$ of two proper lower semi-continuous (lsc) convex functions $f, g: E \rightarrow \mathbb{R}$ (E denotes a normed space-we will take $E=C(\bar{U})$ here $)$ is defined by $(f \square g)(x)=\inf _{y \in E} f(y)+g(x-y)$. This operation is commutative and associative. Moreover $f \square g$ is a proper lsc convex function with domain $\operatorname{Dom}(f)+\operatorname{Dom}(g)$, and its Legendre transform is $(f \square g)^{*}=f^{*}+g^{*}$. Eventually, if 0 belongs to the interior of $\operatorname{Dom}(f)-\operatorname{Dom}(g)$ then $(f \pm g)^{*}=f^{*} \square g^{*}$ (see [19, Section 3.9 p. 42]). This last assumption is trivially satisfied here since any neighborhood of 0 in $C(\bar{U})$ is contained in $C^{1}(\bar{U})+C(\bar{U})$.

We can thus rewrite (11) as

$$
\begin{align*}
\frac{1}{\lambda_{\infty}} & =\max _{\sigma \in P(\bar{U})}\left(\left(\chi_{B(1 / \alpha)} \circ \operatorname{Res}\right)^{*} \square\left(\chi_{B} \circ A\right)^{*} \square \chi_{C_{\Gamma_{1}}(U)}^{*}\right)(\sigma) \\
& =\max _{\sigma \in P(\bar{U})} \inf \left(\left(\chi_{B(1 / \alpha)} \circ \operatorname{Res}\right)^{*}\left(\mu_{1}\right)+\left(\chi_{B} \circ A\right)^{*}\left(\mu_{2}\right)+\chi_{C_{\Gamma_{1}}(U)}^{*}\left(\mu_{3}\right)\right) \tag{12}
\end{align*}
$$

where the inf is taken over all triple of measures $\mu_{1}, \mu_{2}, \mu_{3} \in M(\bar{U})$ such that $\sigma=\mu_{1}+\mu_{2}+\mu_{3}$. To pursue further we need to compute the various Legendre transforms involved in this expression. This is the content of the next proposition.

Proposition 4.3. There holds for $\mu \in M(\bar{U})$,

$$
\chi_{C_{\Gamma_{1}}(U)}^{*}(\mu)=\left\{\begin{array}{l}
0 \text { if supp } \mu \subset \Gamma_{1} \tag{13}\\
+\infty \text { otherwise }
\end{array}\right.
$$

and

$$
\begin{align*}
\left(\chi_{B} \circ A\right)^{*}(\mu) & =\inf \left\{\int_{\bar{U}}|\sigma|: \sigma \in M\left(\bar{U}, \mathbb{R}^{n}\right) \text { s.t. }-\operatorname{div} \sigma=\mu \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)\right\} \\
& = \begin{cases}W_{1}\left(\mu^{+}, \mu^{-}\right) \quad \text { if } \mu(\bar{U})=0 \\
+\infty & \text { otherwise. }\end{cases} \tag{14}
\end{align*}
$$

Moreover,

$$
\left(\chi_{B(1 / \alpha)} \circ \text { Res }\right)^{*}(\mu)=\left\{\begin{array}{l}
\frac{1}{\alpha}|\mu|\left(\Gamma_{2}\right) \quad \text { if supp } \mu \subset \Gamma_{2} \tag{15}\\
+\infty \quad \text { otherwise } .
\end{array}\right.
$$

Proof. These computations are more or less classical. We sketch them here for the reader's convenience.
First, the definition of the Legendre transform gives

$$
\begin{align*}
\chi_{C_{\Gamma_{1}}(U)}^{*}(\mu) & =\sup _{u \in C(\bar{U})}(\mu, u)-\chi_{C_{\Gamma_{1}}(U)}(u) \\
& =\sup _{u \in C(\bar{U}), u=0 \text { on } \Gamma_{1}} \int_{\bar{U}} u d \mu \tag{16}
\end{align*}
$$

from which we deduce (13).
We now prove (14). The second equality in (14) is well-known. It remains to prove the first one. We recall the following result concerning the Legendre transform: if E and F are two normed space, $L: E \rightarrow F$ linear with domain Dom (L) and $f: E \rightarrow \mathbb{R}$ is convex, consider the function $(L F)(y)=\inf \{f(x): x \in \operatorname{Dom}(L)$ s.t. $L x=y\}, y \in F$. Then $L f$ is convex with $(L f)^{*}=f^{*} \circ L^{*}$ in the domain $\operatorname{Dom}\left(L^{*}\right)$ of the adjoint $L^{*}: F^{*} \rightarrow E^{*}$ of L.

Notice that the adjoint $A^{*}: M(\bar{U}) \rightarrow M(\bar{U})$ of A is defined by $A^{*} \mu=-\operatorname{div} \mu$ in the weak sense (i.e. $\left(A^{*} \mu, u\right)=(\mu, \nabla u)=$ $\int \nabla u d \mu$ for any $\left.u \in \operatorname{Dom}(A)=C^{1}(\bar{U})\right)$ with domain $\operatorname{Dom}\left(A^{*}\right)=\left\{\mu \in M(\bar{U}),-\operatorname{div} \mu \in M_{b}\left(\mathbb{R}^{n}\right)\right\}$.

In a similar way as in (16), it can be seen that $\chi_{B}^{*}(\sigma)=\int|\sigma|$, so that the inf in (14) can be written as $\left(A^{*} \chi_{B}^{*}\right)(\mu)$. Then taking $f=\chi_{B}^{*}, L=A^{*}$ and noticing that χ_{B} is convex lsc (because B is convex and closed), so that $\chi_{B}^{* *}=\chi_{B}$, we obtain $\chi_{B} \circ A^{* *}=\left(A^{*} \chi_{B}^{*}\right)^{*}$. Observe that $A^{* *}=A$ on $\operatorname{Dom}(A)$ so that $\chi_{B} \circ A=\left(A^{*} \chi_{B}^{*}\right)^{*}$ on $\operatorname{Dom}(A)$.

Observe that $A^{*} \chi_{B}^{*}$, which is the r.h.s. of (14), is lsc for the weak convergence (and thus also for the strong i.e. total variation convergence) in the sense that if $\mu_{n}, \mu \in M(\bar{U})$ verify $\mu_{n} \rightarrow \mu$ weakly then

$$
\liminf _{n \rightarrow+\infty}\left(A^{*} \chi_{B}^{*}\right)\left(\mu_{n}\right) \geq\left(A^{*} \chi_{B}^{*}\right)(\mu)
$$

Indeed we can assume that $\left(A^{*} \chi_{B}^{*}\right)\left(\mu_{n}\right) \leq$ Cste. Then taking $\sigma_{n} \in M\left(\bar{U}, \mathbb{R}^{n}\right)$ s.t. $-\operatorname{div} \sigma_{n}=\mu_{n}$ and $A^{*} \chi_{B}^{*}\left(\mu_{n}\right)=\int\left|\sigma_{n}\right|+o(1)$, we have $\int\left|\sigma_{n}\right| \leq C$. Then applying the Prokhorov theorem to σ_{n}^{+}and σ^{-}, we have, up to a subsequence, that $\sigma_{n} \rightarrow \sigma$ weakly. In particular $-\operatorname{div} \sigma=\mu$ and $\lim \inf _{n \rightarrow+\infty} \int\left|\sigma_{n}\right| \geq \int|\sigma| \geq\left(A^{*} \chi_{B}^{*}\right)(\sigma)$ from which we deduce the result.

We thus have that $A^{*} \chi_{B}^{*}$ is convex lsc so that $A^{*} \chi_{B}^{*}=\left(A^{*} \chi_{B}^{*}\right)^{* *}$. Hence $\left(\chi_{B} \circ A\right)^{*}=A^{*} \chi_{B}^{*}$ which is exactly (14).
The proof of (15) is similar. We have as before that for any $\mu \in M(\bar{U})$,

$$
\left(\chi_{B(1 / \alpha)} \circ \operatorname{Res}\right)^{*}(\mu)=\left(\operatorname{Res}^{*} \chi_{B(1 / \alpha)}^{*}\right)(\mu)=\inf \left\{\left(\chi_{B(1 / \alpha)}^{*}\right)(\sigma): \operatorname{Res}^{*}(\sigma)=\mu\right\}
$$

with Res : $C(\bar{U}) \rightarrow C\left(\Gamma_{2}\right)$ and Res* $: C\left(\Gamma_{2}\right)^{*}=M\left(\Gamma_{2}\right) \rightarrow C(\bar{U})^{*}=M(\bar{U})$ is given by

$$
\left(\operatorname{Res}^{*}(\sigma), v\right)=(\sigma, \operatorname{Res}(v))=\left(\sigma, v_{\mid \Gamma_{2}}\right)=\int_{\Gamma_{2}} v d \sigma
$$

for any $\sigma \in C\left(\Gamma_{2}\right)^{*}, v \in C(\bar{U})$. Moreover $\chi_{B(1 / \alpha)}: C\left(\Gamma_{2}\right) \rightarrow \mathbb{R}$ and for any $\sigma \in C\left(\Gamma_{2}\right)^{*}$,

$$
\begin{aligned}
\chi_{B(1 / \alpha)}^{*}(\sigma) & =\sup _{v \in C\left(\Gamma_{2}\right)}(\sigma, v)-\chi_{B(1 / \alpha)}(v)=\sup _{v \in C\left(\Gamma_{2}\right),\|v\|_{L^{\infty}}\left(\Gamma_{2}\right) \leq 1 / \alpha} \int_{\Gamma_{2}} v d \sigma \\
& =\frac{1}{\alpha} \sup _{v \in C\left(\Gamma_{2}\right),\|v\|_{L} \infty_{\left(\Gamma_{2}\right)} \leq 1} \int_{\Gamma_{2}} v d \sigma \\
& =\frac{1}{\alpha} \int_{\Gamma_{2}}|\sigma|
\end{aligned}
$$

Thus

$$
\left(\chi_{B(1 / \alpha)} \circ \operatorname{Res}\right)^{*}(\mu)=\inf \left\{\frac{1}{\alpha} \int_{\Gamma_{2}}|\sigma|: \sigma \in C\left(\Gamma_{2}\right)^{*} \text { s.t. } \int_{\Gamma_{2}} u d \sigma=\int_{\bar{U}} u d \mu \text { for all } u \in C(\bar{U})\right\} .
$$

Consider an admissible measure σ. Then for any $A \subset \bar{U}$,

$$
\sigma\left(A \cap \Gamma_{2}\right)=\int_{\Gamma 2} 1_{A} d \sigma=\int_{\bar{U}} 1_{A} d \mu=\mu(A)
$$

It follows that there cannot exist $A \subset \bar{U} \backslash \Gamma_{2}$ s.t. $\mu(A) \neq 0$ i.e. supp $\mu \subset \Gamma_{2}$, and then $\sigma=\mu$. Hence $\left(\chi_{B(1 / \alpha)} \circ \operatorname{Res}\right)^{*}(\mu)=$ $\frac{1}{\alpha}|\mu|\left(\Gamma_{2}\right)$ if supp $\mu \subset \Gamma_{2}$. Otherwise there does not exist any admissible σ and the inf is $+\infty$.

ARTICLE IN PRESS

Using the previous proposition, we can rewrite (16) as

$$
\frac{1}{\lambda_{\infty}}=\max _{\sigma \in P(\bar{U})} \inf \left(\chi_{B} \circ A\right)^{*}\left(\mu_{2}\right)+\frac{1}{\alpha}\left|\mu_{1}\right|\left(\Gamma_{2}\right)
$$

where the inf is taken over all triple of measures $\mu_{1}, \mu_{2}, \mu_{3} \in M(\bar{U})$ such that $\sigma=\mu_{1}+\mu_{2}+\mu_{3}, \operatorname{supp} \mu_{3} \subset \Gamma_{1}$, supp $\mu_{1} \subset \Gamma_{2}, \mu_{2}(\bar{U})=0$. Letting $v=\mu_{1}+\mu_{3}=\sigma-\mu_{2}$, we have $\left|\mu_{1}\right|\left(\Gamma_{2}\right)=|v|\left(\Gamma_{2}\right)=v^{+}\left(\Gamma_{2}\right)+v^{-}\left(\Gamma_{2}\right)$ since μ_{1} and μ_{3} have disjoint support. Moreover, since $\mu_{2}(\bar{U})=0$ i.e. $\left(\sigma+v^{-}\right)(\bar{U})=v^{+}(\bar{U})$, we have

$$
\begin{aligned}
\left(\chi_{B} \circ A\right)^{*}\left(\mu_{2}\right) & =\left(\chi_{B} \circ A\right)^{*}(\sigma-v) \\
& =\inf \left\{\int_{\bar{U}}|\tilde{\sigma}|: \tilde{\sigma} \in M\left(\bar{U}, \mathbb{R}^{n}\right) \text { s.t. }-\operatorname{div} \tilde{\sigma}=\left(\sigma+v^{-}\right)-v^{+} \text {in } \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)\right\} \\
& =W_{1}\left(\sigma+v^{-}, v^{+}\right) .
\end{aligned}
$$

We thus obtain

$$
\frac{1}{\lambda_{\infty}}=\max _{\sigma \in P(\bar{U})} \inf _{v \in M(\partial U), v(\partial U)=1} W_{1}\left(\sigma+v^{-}, v^{+}\right)+\frac{1}{\alpha} v^{+}\left(\Gamma_{2}\right)+\frac{1}{\alpha} v^{-}\left(\Gamma_{2}\right)
$$

To conclude the proof of (7), it suffices to verify that the inf can be taken over non-negative v. This is a consequence of the following proposition:

Proposition 4.4. For any $\sigma \in P(\bar{U})$,

$$
\inf _{v_{1}, \nu_{2} \in M_{+}(\partial U), \nu_{2}(\partial U)=v_{1}(\partial U)+1} W_{1}\left(\sigma+v_{1}, v_{2}\right)=\inf _{v \in P(\partial U)} W_{1}(\sigma, v) .
$$

The proof of this lemma is based on the following lemma:
Lemma 2. Consider probability measures $\mu_{\varepsilon}, \mu \in P\left(\mathbb{R}^{n}\right)$ such that

$$
\lim _{\varepsilon \rightarrow 0} W_{1}\left(\mu_{\varepsilon}, \mu\right)=0
$$

and a subset $A \subset P\left(\mathbb{R}^{n}\right)$ compact w.r.t. the convergence in distance W_{1}. Then $\lim _{\varepsilon \rightarrow 0} W_{1}\left(\mu_{\varepsilon}, A\right)=W_{1}(\mu, A)$ where $W_{1}(\mu, A)=$ $\inf _{v \in A} W_{1}(\mu, v)$.
Observe that the compactness assumption is satisfied for $A=P(K)$ where $K \subset \mathbb{R}^{n}$ is compact in view of Prokhorov theorem and the fact that W_{1} matrices the weak convergence in $P(K)$ (because K is bounded).
Proof of Lemma 2. Consider $v_{\delta} \in A$ s.t. $\lim _{\delta \rightarrow 0} W_{1}\left(v_{\delta}, \mu\right)=W_{1}(\mu, A)$. Then passing to the limit in $W_{1}\left(\mu_{\varepsilon}, A\right) \leq W_{1}\left(\mu_{\varepsilon}, v_{\delta}\right)$ yields $\lim \sup _{\varepsilon \rightarrow 0} W_{1}\left(\mu_{\varepsilon}, A\right) \leq W_{1}\left(\mu, v_{\delta}\right)$ for any δ, so that $\lim \sup _{\varepsilon \rightarrow 0} W_{1}\left(\mu_{\varepsilon}, A\right) \leq W_{1}(\mu, A)$.

To prove the opposite inequality we consider $v_{\varepsilon} \in A$ such that $W_{1}\left(\mu_{\varepsilon}, v_{\varepsilon}\right)=W_{1}\left(\mu_{\varepsilon}, A\right)+o(1)$. Since A is compact, we can assume up to a subsequence that there exists $v \in A$ s.t. $W_{1}\left(v_{\varepsilon}, v\right) \rightarrow 0$. Since $W_{1}\left(\mu_{\varepsilon}, \mu\right) \rightarrow 0$, we obtain

$$
\lim _{\varepsilon \rightarrow 0} W_{1}\left(\mu_{\varepsilon}, A\right)=\lim _{\varepsilon \rightarrow 0} W_{1}\left(\mu_{\varepsilon}, v_{\varepsilon}\right)=W_{1}(\mu, v) \geq W_{1}(\mu, A)
$$

which ends the proof of the lemma.
We now prove Proposition 4.4.
Proof of Proposition 4.4. The \leq inequality is clear (take $v_{1}=0$). To prove the opposite inequality, we first assume that supp $\sigma \subset U$. Given any ν_{1}, ν_{2}, any transfer plan $\pi \in \Pi\left(\sigma+v_{1}, \nu_{2}\right)$ (i.e. $\pi \in P(\bar{U})$ has marginals $\sigma+v_{1}$ and $\left.\nu_{2}\right)$ can be written as

$$
\pi=\tilde{\pi}+\bar{\pi}, \quad \tilde{\pi} \in \Pi\left(\sigma, \tilde{v}_{2}\right), \bar{\pi} \in \Pi\left(v_{1}, \bar{v}_{2}\right)
$$

for some decomposition $v_{2}=\tilde{v}_{2}+\bar{v}_{2}$ with $\tilde{v}_{2}, \bar{v}_{2} \in M_{+}(\partial U), \tilde{v}_{2}(\partial U)=1, \bar{v}_{2}(\partial U)=v_{1}(\partial U)$. It follows that

$$
\begin{aligned}
W_{1}\left(\sigma+v_{1}, v_{2}\right) & =\inf _{\pi \in \Pi\left(\sigma+\nu_{1}, v_{2}\right)} \int_{\bar{U} \times \bar{U}} d(x, y) d \pi(x, y) \\
& =\inf _{\nu_{2}=\tilde{v}_{2}+\bar{v}_{2}, \tilde{\pi} \in \Pi\left(\sigma, \tilde{v}_{2}\right), \bar{\pi} \in \Pi\left(\nu_{1}, \bar{v}_{2}\right)} \int_{\bar{U} \times \bar{U}} d(x, y) d \tilde{\pi}(x, y)+\int_{\bar{U} \times \bar{U}} d(x, y) d \bar{\pi}(x, y) \\
& \geq \inf _{v_{2}=\tilde{v}_{2}+\bar{v}_{2}} W_{1}\left(\sigma, \tilde{v}_{2}\right)+W_{1}\left(v_{1}, \bar{v}_{2}\right) .
\end{aligned}
$$

Then

$$
\inf _{\nu_{1}, v_{2} \in M_{+}(\partial U), \nu_{2}(\partial U)=v_{1}(\partial U)+1} W_{1}\left(\sigma+v_{1}, \nu_{2}\right) \geq \inf _{\nu_{1}, v_{2} \in M_{+}(\partial U), \nu_{2}(\partial U)=\nu_{1}(\partial U)+1} \inf _{v_{2}=\tilde{v}_{2}+\bar{v}_{2}} W_{1}\left(\sigma, \tilde{v}_{2}\right)+W_{1}\left(v_{1}, \bar{v}_{2}\right)
$$

which is clearly greater than or equal to $\inf _{\tilde{\tilde{\nu}}_{2} \in P(\partial U)} W_{1}\left(\sigma, \tilde{v}_{2}\right)$. This proves the \geq inequality when $\operatorname{supp} \sigma \subset U$.

In the general case we have supp $\sigma \subset \bar{U}$. We consider $\sigma_{\varepsilon}=T_{\varepsilon} \sharp \sigma$ the push-forward of σ under $T_{\varepsilon}(x)=x-\varepsilon \vec{n}$ where \vec{n} denotes some smooth extension of the unit exterior normal to a neighborhood of ∂U. Then supp $\sigma_{\varepsilon} \subset U$ so that

$$
\inf _{\nu_{1}, \nu_{2} \in M_{+}(\partial U), \nu_{2}(\partial U)=v_{1}(\partial U)+1} W_{1}\left(\sigma_{\varepsilon}+v_{1}, \nu_{2}\right)=W_{1}\left(\sigma_{\varepsilon}, P(\partial U)\right) .
$$

To pass to the limit as $\varepsilon \rightarrow 0$, we use Lemma 2. Just notice that $\sigma_{\varepsilon} \rightarrow \sigma$ weakly as measure i.e. $W_{1}\left(\sigma_{\varepsilon}, \sigma\right) \rightarrow 0$ since U is bounded, and $A=P(\partial U)$ is compact for the weak convergence. We then have $W_{1}\left(\sigma_{\varepsilon}, P(\partial U)\right) \rightarrow W_{1}(\sigma, P(\partial U))$. Observe also that the first part of the proof of Proposition 4.4, which does not use the compactness assumption, yields

$$
\limsup _{\varepsilon \rightarrow 0} \inf _{\nu_{1}, v_{2} \in M_{+}(\partial U), v_{2}(\partial U)=\nu_{1}(\partial U)+1} W_{1}\left(\sigma_{\varepsilon}+v_{1}, v_{2}\right) \leq \inf _{v_{1}, v_{2} \in M_{+}(\partial U), v_{2}(\partial U)=v_{1}(\partial U)+1} W_{1}\left(\sigma+v_{1}, v_{2}\right) .
$$

The result follows.
To end the proof of Theorem 3, we verify that the max in (7) is attained by f_{∞}, the weak limit as $p \rightarrow+\infty$ of the measures $f_{p}=u_{p}^{p-1} d x$ (which exists up to a subsequence). Notice that u_{p} is the unique minimizer of the functional $F_{p}: W_{\Gamma_{1}}^{1, p}(U) \rightarrow \mathbb{R}$ defined by

$$
F_{p}(u)=\frac{1}{p \lambda_{p}} \int_{U}|\nabla u|^{p}+\frac{\alpha^{p}}{p \lambda_{p}} \int_{\Gamma_{2}}|u|^{p}-\left(f_{p}, u\right) .
$$

Indeed the associated Euler-Lagrange equation, which has a unique solution since F_{p} is strictly convex, is the equation $\Delta_{p} u=\lambda_{p} f_{p}$ with the boundary conditions of (1), which admits u_{p} as a solution.

Writing F_{p} as

$$
F_{p}(u)=\int_{U}\left|\frac{\nabla u}{p^{1 / p} \lambda_{p}^{1 / p}}\right|^{p}+\int_{\Gamma_{2}}\left|\frac{\alpha u}{p^{1 / p} \lambda_{p}^{1 / p}}\right|^{p}-\left(f_{p}, u\right),
$$

we can prove, as in Proposition 4.1, that $F_{p} \Gamma$-converge as $p \rightarrow+\infty$ to the functional $F_{\infty}: C(\bar{U}) \rightarrow \mathbb{R}$ defined by

$$
F_{\infty}(u)= \begin{cases}-\left(f_{\infty}, u\right), \quad \text { if } u \in W_{\Gamma_{1}}^{1, \infty}(U),\|\nabla u\|_{\infty} \leq \lambda_{\infty}, \text { and } \alpha\|u\|_{L^{\infty}\left(\Gamma_{2}\right)} \leq \lambda_{\infty} \\ +\infty & \text { otherwise }\end{cases}
$$

Since

$$
\inf F_{p}=F_{p}\left(u_{p}\right)=\frac{1}{p}-1,
$$

we obtain that

$$
F_{\infty}\left(u_{\infty}\right)=\inf F_{\infty}=\lim _{p \rightarrow+\infty} \inf F_{p}=-1
$$

Hence

$$
-1=\min \left\{-\left(f_{\infty}, u\right)+\chi_{B(1 / \alpha)}\left(u_{\mid \Gamma_{1}} / \lambda_{\infty}\right)+\chi_{B}\left(\nabla u / \lambda_{\infty}\right)+\chi_{C_{\Gamma_{1}}(\bar{U})}(u)\right\},
$$

i.e.

$$
-\frac{1}{\lambda_{\infty}}=\min \left\{-\left(f_{\infty}, u\right)+\chi_{B(1 / \alpha)}\left(u_{\mid \Gamma_{1}}\right)+\chi_{B}(\nabla u)+\chi_{C_{\Gamma_{1}}(\bar{U})}(u)\right\} .
$$

Then

$$
\begin{aligned}
\frac{1}{\lambda_{\infty}} & =\max _{u \in C(\bar{U})}\left\{\left(f_{\infty}, u\right)-\chi_{B(1 / \alpha)}\left(u_{\mid \Gamma_{1}}\right)-\chi_{B}(\nabla u)-\chi_{C}(u)\right\} \\
& =\left(\left(\chi_{B(1 / \alpha)} \circ \operatorname{Res}\right)+\left(\chi_{B} \circ A\right)+\chi_{C_{\Gamma_{1}}(\bar{U})}\right)^{*}\left(f_{\infty}\right) .
\end{aligned}
$$

Since $f_{\infty} \in P(\partial U)$, we obtain in view of (11) that f_{∞} is extremal in (7).

5. Proof of Theorem 2 for connected domains

Let $\phi(\sigma, v)=W_{1}(\sigma, v)+\frac{1}{\alpha} v\left(\Gamma_{2}\right), \sigma, v \in P(\partial U)$. Since W_{1} is convex in (σ, v) (see e.g. [15, Theorem 4.8]), we see that ϕ is convex. It easily follows that the function $\Phi(\sigma)=\inf _{v \in P(\partial U)} \phi(\sigma, v), \sigma \in P(\bar{U})$ is also convex. Indeed given $\sigma_{1}, \sigma_{2} \in P(\bar{U})$ and any $\nu_{1}, v_{2} \in P(\bar{U})$, we have

$$
\begin{aligned}
\Phi\left(t \sigma_{1}+(1-t) \sigma_{2}\right) & \leq \phi\left(t \sigma_{1}+(1-t) \sigma_{2}, t v_{1}+(1-t) \nu_{2}\right) \\
& \leq t \phi\left(\sigma_{1}, v_{1}\right)+(1-t) \phi\left(\sigma_{2}, v_{2}\right)
\end{aligned}
$$

The result follows taking the infimum in ν_{1}, v_{2}.

ARTICLE IN PRESS

Since Φ is convex, it attains its maximum at an extreme point of the convex compact $P(\bar{U})$ i.e. at some Dirac mass δ_{x}, $x \in \bar{U}$:

$$
\frac{1}{\lambda_{\infty}}=\max _{x \in \bar{U}} \inf _{v \in P(\partial U)} W_{1}\left(\delta_{x}, v\right)+\frac{1}{\alpha} v\left(\Gamma_{2}\right) .
$$

It is well-known that $W_{1}\left(\delta_{x}, \nu\right)=\int_{\bar{U}} d(x, y) d \nu(y)$ for any $x \in \bar{U}$. This follows from the fact that the unique $\pi \in P(\bar{U} \times \bar{U})$ with marginals δ_{x} and v is $\pi=\delta_{x} \otimes v$. Indeed such a π must have support in $\{x\} \times \operatorname{supp} v$ so that for any $A, B \subset \bar{U}$, $\pi(A \times B)=0=\left(\delta_{x} \otimes v\right)(A \times B)$ if $x \notin A$, and if $x \in A$,

$$
\pi(A \times B)=\pi(\{x\} \times B)=\pi(X \times B)=v(B)=\left(\delta_{x} \otimes v\right)(A \times B)
$$

Given $x \in \bar{U}$, we consider $x_{1} \in \Gamma_{1}$ and $x_{2} \in \Gamma_{2}$ such that $d\left(x, \Gamma_{i}\right)=d\left(x, x_{i}\right), i=1$, We write $v \in P(\partial U)$ as $v=v_{1}+v_{2}$ where $v_{i}=v_{\mid \Gamma_{i}}, i=1,2$. Then

$$
\begin{aligned}
W_{1}\left(\delta_{x}, v\right) & =\int_{\partial U} d(x, y) d v(y)=\int_{\Gamma_{1}} d(x, y) d \nu_{1}(y)+\int_{\Gamma_{2}} d(x, y) d v_{2}(y) \\
& \geq d\left(x, \Gamma_{1}\right) v_{1}\left(\Gamma_{1}\right)+d\left(x, \Gamma_{2}\right) v_{2}\left(\Gamma_{2}\right) \\
& =W_{1}\left(\delta_{x_{1}}, \beta \delta_{x_{1}}+(1-\beta) \delta_{x_{2}}\right),
\end{aligned}
$$

where $\beta=\nu_{1}\left(\Gamma_{1}\right)$. We thus have

$$
\frac{1}{\lambda_{\infty}}=\max _{x \in \bar{U}} \inf _{0 \leq \beta \leq 1} \beta d\left(x, \Gamma_{1}\right)+(1-\beta) d\left(x, \Gamma_{2}\right)+\frac{1-\beta}{\alpha} .
$$

We deduce Theorem 2 noticing that for any $x \in \bar{U}$, the inf in β is

$$
\left\{\begin{array}{l}
d\left(x, \Gamma_{2}\right)+\frac{1}{\alpha} \text { if } d\left(x, \Gamma_{1}\right)-d\left(x, \Gamma_{2}\right)-\frac{1}{\alpha} \geq 0 \text { i.e. } x \in \mathscr{A} \\
d\left(x, \Gamma_{1}\right) \quad \text { otherwise. }
\end{array}\right.
$$

References

[1] P. Juutinen, P. Lindqvist, J.J. Manfredi, The ∞-eigenvalue problem, Arch. Ration. Mech. Anal. 148 (1999) 89-105.
[2] T. Champion, L. De Pascale, C. Jimenez, The ∞-eigenvalue problem and a problem of optimal transportation, Commun. Appl. Anal. 13 (4) (2009) 547-565.
[3] P. Juutinen, P. Lindqvist, On the higher eigenvalues for the ∞-eigenvalue problem, Calc. Var. Partial Differential Equations 23 (2) (2005) $169-192$.
[4] M. Belloni, B. Kawohl, The pseudo-p-Laplace eigenvalue problem and viscosity solutions as $p \rightarrow \infty$, ESAIM Control Optim. Calc. Var. 10 (2004) $28-52$.
[5] J.C. Navarro, J.D. Rossi, N. Saintier, A. San Antolin, The dependence of the first eigenvalue of the infinity Laplacian with respect to the domain, Glasg. Math. J. 56 (2014) 241-249.
[6] G. Aronsson, M.G. Crandall, P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. 41 (2004) 439-505.
[7] T. Bhattacharya, E. Di Benedetto, J. Manfredi, Limits as $p \rightarrow \infty$ of $\Delta_{p} u_{p}=f$ and related extremal problems, Rend. Semin. Mat. Univ. Politec. Torino (1991) 15-68.
[8] M.G. Crandall, H. Ishii, P.L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992) 1-67.
[9] G. Aronsson, Extensions of functions satisfiying Lipschitz conditions, Ark. Mat. 6 (1967) 551-561.
[10] R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal. 123 (1993) 51-74.
[11] J. Garcia-Azorero, J.J. Manfredi, I. Peral, J.D. Rossi, Steklov eigenvlue for the ∞-Laplacian, Rend. Lincei 17 (3) (2006) 199-210.
[12] A. Le, On the first eigenvalue of the Steklov eigenvalue problem for the infinity Laplacian, Electron. J. Differential Equations 2006 (111) (2006) 1-9.
[13] L. Esposito, B. Kawohl, C. Nitsch, C. Trombetti, The Neumann eigenvalue problem for the ∞-Laplacian, Preprint.
[14] J.D. Rossi, N. Saintier, On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions, Houston J. Math. (2014) in press.
[15] C. Villani, Optimal Transport, Old and New, in: Grundlehren der Mathematischen Wissenschaften, vol. 338, Springer-Verlag, Berlin, 2009.
[16] J. Garcia-Azorero, J.J. Manfredi, I. Peral, J.D. Rossi, The Neumann problem for the ∞-Laplacian and the Monge-Kantorovich mass transfer problem, Nonlinear Anal. TMA 66 (2) (2007) 349-366.
[17] A. Braides, Γ-Convergence for Beginners, Oxford University Press, 2002.
[18] G. Dal Maso, An Introduction to Γ-Convergence, Birkhäuser, Basel, 1993.
[19] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, in: Lecture Notes in Mathematics, vol. 1364, Springer, 1989.

[^0]: * Corresponding author. Tel.: +54 34652577160.

 E-mail addresses: jrossi@dm.uba.ar (J.D. Rossi), nsaintie@dm.uba.ar (N. Saintier).

