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1. Introduction and description of the main results

Let U C R" be a smooth, bounded, open and connected set. In order to consider mixed boundary conditions, we split the
boundary of U as 0U = I'1 U I, with I'1 N 15 = P and || > 0. In this paper we deal with the first eigenvalue, that we will
call A, of the p-Laplacian with Dirichlet condition on Iy and Robin condition on I'; namely the smallest A such that there is
a nontrivial solution to the following problem,

—Apu = AulP%u inU,
u=0 on 7, (M
IVulP23,u +”|ufP2u=0 onI}.
Here « is a non-negative parameter. Notice that when @ = 400, the boundary condition become u = 0 in all 0U (a pure
Dirichlet condition) and when @ = 0 we have a mixed Dirichlet-Neumann boundary condition.

Our main goal is to compute the limit as p — oo of this problem and look at its dependence on the parameter «.
To start our analysis we remark that A, has the following variational formulation:

inf {/qulp—i—a"/ ul? - ||u||Lp(U):1} )
UEXp U e

>
<
Il

X, — {u e W), uz 0},
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and

WE(U) = {u € W'"P(U), u=0on rl}.

1

Note that the infimum is attained since we assumed that |/| > 0. Also notice that if we regard A, as a function of
a, o € [0,400) — Ay(a), then Ap(r) is non-decreasing with limy_, o0 Ap = A, p the first Dirichlet eigenvalue for the
p-Laplacian in U.

We expect the limit problem of (2) as p — oo to be

in max{ IVullie wy, Ol||“||L°°(Fz)} ®
ueX, flullpoo yy=1

where X = {u e W), u=0on1}, u>0in U}. Notice that when we let « — +o00 in (3) with I'; = 90U we obtain

lim Aee(@) = Aoop = inf I Vull oo w)
a—+00 ueWOI’OO(U)- lull oo (y=1

that is the first eigenvalue of the infinity Laplacian, Ay u = DuD*uDu with Dirichlet boundary conditions. This value, A« p,
turns out to be the limit of (AP,D)I/" asp — o0, see [1]. Our first result says that this kind of limit can be also computed for
any nonnegative «.

Theorem 1. There holds that
lim (A7 = Aeo.

p—>+00
Moreover the positive, normalized extremals for Ap, u, converge uniformly in U along subsequences pj — oo tou € X which is
a minimizer for (3) and a viscosity solution to

min {|Du| — Aooll, —Asou} =0 inU,
u=20 on Iy,
min{|Du| — au, —o,u} =0 on 5.

Our next goal is to characterize this limit value A,. The value of A, results in the interplay between «, the geometry of
U and the sets I, I;. We consider the (possibly empty) set

_ 1
A= {x eU, dx, In) > — +d(x, FZ)}.
o
Notice that if A4 # ¢ then the set
- 1
A= {x eU, dix, I) = — +d(x, Fz)]
o

is also not empty. Indeed the function f (x) = % +d(x, I3) —d(x, I'7) is continuous, less than or equal to 0 on »4, and greater
than or equal to 0 if d(x, I]) < 1 (we are using here the fact that U is connected to apply the mean value theorem). Our
next result gives a geometrical characterization of A .

Theorem 2. It holds that

min ————, if A=90,
g d(x, I
g = 4 20 AT . (4)

1
min ——— — min s — if A @.
xed L +d(x, ) xed g +d(x, T) e

Notice that when o = +00, which corresponds to pure Dirichlet boundary conditions on the whole 9U, then A = A’ = ¢
and we recover the result of [1], o) = A}, = max,j d(x, 3U). In the case of Neumann boundary conditions i.e. 'y =

and o = 0then A = @ and d(x, I'1) = d(x, @) = 4oo for any x € U so that L, = 0 which is consistent with the fact the
1st eigenvalue of A, with Neumann boundary conditions is 0.

We will first give a simple proof in the case where U is convex by using a test-function argument based proof which we
were not able to extend to the general case. In fact the result for a arbitrary connected domain will be a consequence of an
optimal mass transport formulation of A, that we now introduce.

To continue our analysis we have to recall some notions and notations from optimal mass transport theory. Recall that
the Monge-Kantorovich distance W, (u, v) between two probability measures i and v over U is defined by

Wi, v) = max / v (dp — dv). (5)
u

veW ), | Volloo<1
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Recently the authors in [2] relate A, p with the Monge-Kantorovich distance W;. They proved that

7] _
doop = Mrgp%) Wi (u, P(3U)), (6)

where P(U) and P(9U) denote the set of probability measures over U and dU. Notice that the maximum is easily seen to be
reached at §, where x € U is a most inner point.

In our case we are also able to give a characterization for A, in terms of a maximization problem involving W, but this
time we get an extra term involving the total variation of a measure on 5.

Theorem 3. It holds that

1 1
— = max inf {W1(0, V) + fv([‘z)}. 7)
)\.oo oeP(U) vePU) o

Moreover, the measures ug_l dx weakly converge (up to a subsequence) as p — -+00 to a probability measure f., which
attains the maximum in (7).

Notice that when o = +00, which corresponds to Dirichlet boundary conditions, then we recover the result of [2], who
showed that (6) holds.

As a corollary of this characterization in terms of optimal transportation, we can extend the result stated in Theorem 2
for the value of A, to the case where U is not convex. We prefer to present our results in this order (even if Theorem 2 is not
initially proved in its full generality) for readability of the whole paper (the proof of Theorem 2 in the convex case is much
simpler).

Let us end the introduction with a brief description of the previous bibliography and the main ideas and techniques used
to prove our results. First, as by now classical results, we mention that the limit as p — oo of the first eigenvalue A, p
of the p-Laplacian with Dirichlet boundary condition was studied in [3,1] (see also [4] for an anisotropic version). For its
dependence with respect to the domain we refer to [5]. The limit operator that appears here, the infinity-Laplacian is given
by the limit as p — oo of the p-Laplacian, in the sense that solutions to Apv, = 0 with a Dirichlet data v, = f on 9§
converge as p — oo to the solution to A, v = 0 with v = f on 92 in the viscosity sense (see [6-8]). This operator appears
naturally when one considers absolutely minimizing Lipschitz extensions in §2 of a boundary data f (see [9,6,10]).

The case of a Steklov boundary condition (here the eigenvalue appears in the boundary condition) has also been
investigated recently. Indeed in [11] (see also [12] for a slightly different problem) it is studied the behavior as p — +o0 of
the so-called variational eigenvalues A p s, k > 1, of the p-Laplacian with a Steklov boundary condition. In particular it is
proved that

N — fim AP 2
pim tips =1 and Aoces = U0 Aops = Gamw, "
where here diam(U, R") denotes the diameter of U for the usual Euclidean distance in R".

For pure Neumann eigenvalues, we quote [13,14]. In those references it is considered the limit for the second eigenvalue
(the first one is zero). It is proved that in this case A, = lim,_, 1 All,/p = 2/diam(U), where diam(U) denotes the diameter
of U with respect to the geodesic distance in U. In addition, the regularity of A, as a function of the domain U is studied
in [14] and in [13] it is proved that there are no nonzero eigenvalues below A, so that A, is indeed the first nontrivial
eigenvalue for the infinity-Laplacian with Neumann boundary conditions.

Concerning ideas and methods used in the proofs we use classical variational ideas to obtain the limit of (Ap)l/” and
viscosity techniques and to find the limit PDE problem we use viscosity techniques as in [1] (we refer to [8] for the definition
of a viscosity solution). The characterization of A, given in Theorem 2 follows using cones as test functions in the variational
formulation. Finally, mass transport techniques (we refer to [15]) and gamma-convergence of functionals are used to show
the more general characterization of A, given in Theorem 3, see [2,14] for similar arguments in different contexts.

The paper is organized as follows. In Section 2 we deal with the limit as p — oo and prove Theorem 1. In Section 3 we
prove Theorem 2 that characterizes A, in geometrical terms in the cases of a convex domain U. In Section 4 we use optimal
transport ideas to obtain Theorem 3. As a corollary, we eventually prove Theorem 2 for a general connected domain in the
last section.

2. Proof of Theorem 1
For the proof of Theorem 1 we will use the following lemma.

Lemma 1. Forany f, g € L°°(U) there holds
1
. p
Jtim (W lww + lglsw)” = max(if o I8hso)-
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Proof. The result is a direct consequence of the inequalities
max{[If 0. €150y} < If Iniery + 1€ NEb )

2max{[If 15w 18115 w))-

In fact, from the previous inequalities, we get

IA

1
. . P
lim max{||fllrw. lIgllrw} < lim (”f”LP(U) + ”g”LP(U))

p—>—+o0 p—>+00

< lim 27 max(If o). lglro)
We conclude using that
pEToo Ifllrw) = Ifllew)
and

lim gl = Igllew). O
p—>+o0

Now let us proceed with the proof of Theorem 1.

Proof of Theorem 1. Let u € X then u € N, X,,. From the variational characterization of A, we have

1 1/p
O)? < ———( [ IVuP+a” [ Juf) .
p
llullewy Mo I

Hence, using the previous lemma we get

limsup(,)"/P < maxl||Vu||Loo(U), a||u||Lm(r2)}

p—o00
for any u € X. Therefore, we conclude that

lim sup(Ap)]/p < Aoo-

p—>00
In addition, we get that, for u, an eigenfunction associated to A, in X, it holds that

limsup [[Vuplpw) < Aoo-
p—>o0

Therefore, we have that {u,} is uniformly bounded (independently of p) in WULP(U). Then, for any fixed g we obtain

pP—a
IVupllawy < IVupllpwy Ul ® < C
with C independent of p. Hence, by a diagonal procedure, we can extract a subsequence p; — oo such that
Up —> U

uniformly in U and weakly in every W'9(U), q € N. This limit u verifies that

) ) p=a 1
IVulliawy < limsup |[Vupllawy < limsup [Viyllpw) U] # < Aoo|UJ9
p—>o0 p—>0o0

and then we get
IVullie ) < Aoo-

Moreover, we have

v p p—q\ 1/p p—aq\ 1/p
@luplincryy = (@ Nutpllry 17317 ) = (3l 1217 )
then

) ) 1
allulliacry) < limsupallupliag,) < limsupolupllamy) < Aol
p—00 p—00

and we conclude that

allulliory) < Aso-

boundary conditions, Nonlinear Analysis (2014), http://dx.doi.org/10.1016/j.na.2014.09.005
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Hence
max { | Vallie), @l | < o

Now, we only have to observe that from the uniform convergence we get that u € X, and then we conclude that u is a
minimizer of (3). In addition, our previous calculations show that

1
Aoo < liminf(Ap)P.
p—00
Now, concerning the equation verified by the limit of up,, u, we have that, from the fact that u,, are viscosity solutions to
Apll = Ap |u|P~2u and that (kp)]/p converges to A, we conclude as in [1] that the limit u is a viscosity solution to
min {|Du| — Ao, — Ao} = 0.

That u = 0 on I is immediate from uniform convergence in U and the fact that up verify the same condition.
On I; we have

IVulP~29,u + o |ulP2u =0,
therefore, passing to the limit in the viscosity sense as done in [16] we obtain
min{|Du| — ou, —o,u} = 0.

This ends the proof. O

3. Proof of Theorem 2 for convex domains

Along this section we assume that U is convex.

Proof of Theorem 2. Using the variational characterization (3) proved in the previous section, we estimate )\, from above
by using as test-function a truncated cone of the form

ux) = (1 —alx — xo|)
+
where a > 0 and xo € U. Then

u=0 only iff a> —
d(xo, I'1)
IVullewy = a,
and [Jullo(ry) = (1 — ad(xo, rz))+.
It follows that
hoo < infmax{a, a[1 — ad(xg, )14}

where the infimum is taken over all the X, € U and a > 0 such thata > 1/d(xo, I'1). Examining the two possibilities for the
max, we obtain easily the upper bound for A .. B
To prove the lower bound we argue as follows: for any xq € U, and any Lipschitz function u € X with u(xy) = 1, we have

12 fulliecry 2 (1 IVullado, 1))
Thus
hoo 2 infmax{ Va1 = | Vulimwdta. 1)}

where the infimum is taken over all u € W' (U) such that u = 0 in I, |[ullj@) = 1and ||Vu|ew, > m for
any xo € {u = 1}. From this point the argument concludes as for the previous case just analyzing the possibilities for the
max. O

4. Proof of Theorem 3

The proof follows the lines of [2] (see also [ 14] for the pure Neumann boundary case).
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We begin rewriting the variational formulation (2) of 1, as

1= sup{/ [uff :ue W};p(U) s.t. / |Vu|p+a”/ [ufP :Ap}.
1) u b))

We are thus lead to consider the functions G, : C(U) x M(U) — R, p > 1, defined by

—/vda ifv e WrP(U), / |Vv|”—|—ot"/ v’ < A2, and ¢ € [¥ (U) with / o <1,
U n U

+o00 otherwise.

Gp(v,0) =

Notice that the pair (u,, uﬁfl dx) is an extremal for G, so that minG, = —1. Indeed for any admissible pair (v, o) €
Wll-;p(U) x [P (U), we have

1/p
~Gwor = [vo = Wlploly <[ 1veP v [ )
u u I

51:/u§
U

(we used successively Hélder’s inequality, the definition of A, and the fact that v is admissible). In view of Lemma 1, we
introduce the formal limit functional G, : C(U) x M(U) — R of the G, by

—/vdrf if v e Wi (U), max{|| Vulloo, @l|v]l=(r5)} < Ao, and o |(U) < 1,
Goo(v,0) = !
+o00 otherwise.

The convergence of the functionals G, to G, can be justified using the notion of I"-convergence. Recall that a sequence
of functionals F,, : X — [0, +00] defined over a metric space X is said to I"-converge to a functional F, : X — [0, +o00] if
the following two conditions hold:

e for every x € X and every sequence (x,), C X converging to x, F(x) < liminf F(x,),
and
e forany x € X, there exists a sequence (x,), C X converging to x such that F(x) > lim sup F(x;).

An easy but important consequence of the definition, that we will use later, is the fact that if x, is a minimizer of F,, then every
cluster point of the sequence (x;) is a minimizer of F.. We refer e.g. to [17,18] for a detailed account on I"-convergence.
Proposition 4.1. The functionals G, I"-converge as p — +00 t0 G.

Proof. The proof is very similar to [2] (see also [14] for the pure Neumann boundary case). We briefly sketch it for the
reader’s convenience. _ _
Assume that (vp, 0,) € C(U) x M(U) converges to (v, o). We have to prove that

liminf G,(vp, 0p) > G(v, 0). (8)

p—>+0o0

We can assume that G,(vp, 0p) < oo. Then we have

/vpopdx—/vda:/(vp—v)opdx—{—fv(apdx—da)—>0
U U U U

asp — +o0.Indeed the first integral on the right hand side can be bounded by ||vp—v||oo||ap||p/|U|% = 0(1). Independently
1
/ lo] = / lopldx +0(1) = lloplly [UIP +0(1) =1+ 0(1)
U ]

so that fu lo| < 1. Moreover taking limit in a||v,l|ip(ry) < Ap yields a||v||o(r,) < As. Eventually, for any ¢ € Lp/(U, R™)
such that ||¢|,y < 1 we have

/¢Vvdx= —/vdiv¢dx=—fvpdivqbdx—i-o(l)=/¢vadx+o(1)
U U ] U

1

IVupllp +0(1) < &) +0(1) = Aoo +0(1),

where the o(1) does not depend on ¢. Taking the supremum over all such ¢ we obtain [|[Vv|[, < A + o(1), so that
IVu|loo < Aoo. It follows that (v, o) is admissible for G.

IA
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We now fix a pair (v, o) admissible for G,.. We have to find some pair (v,, o) admissible for G, which converges to
(v, o) and such that

limsup G,(vp, 0p) < Goo(v, 0).
p——+00

We define
1
)\4 p
Vp = —plv.
Aoo(IU] + T3P
Then v, € W' (U), v, — v uniformly, and [, [Vv, [P + oP frz [vplP < A
In order to define o}, by regularizing o by convolution, we first need to adjust a little. Let ii be the unit inner normal vector
to U that we extend in a smooth way to R" with compact support in a neighborhood of 9U. We consider T, : U — Uy, =
{x € U, dist(x, dU) > 2¢} defined by T, (x) = x+2¢ii. Leto, = T.fio be the push-forward of o by T, i.e. [ f do, = [ foT. do
for any f € C(Us,). Observe that supp o, C Us, and also that f log| < 1since

/|05| = sup /qbdag = sup /q§ oT.do
B0 ) =1 B0 u,,) =1

/MMsl

o, — o weakly in the sense of measure.

Indeed for any ¢ € C(U),

IA

Moreover

\/ ¢ do, — / bdo| < f\mx + 2¢ii) — $ ()| do (x) = 0(1)
since the integrand goes to 0 uniformly in x € U. Denote by p, the usual mollifying functions (i.e. p, (X) = £ " p(x/€) where
p is a smooth function compactly supported in the unit ball of R" with f p = 1). Then
pe ¥ 0, — 0, — 0 weakly in the sense of measure.
This follows from the fact that ||¢ * p. — @|l1o(w,,) — O for any ¢ € C(U). Hence
pe ¥ 0, — o weakly in the sense of measure. 9)
We now regularize o, considering
0, =0, x p, € CP(U)
with
~ . Pe
& )
Il oe

e =1/p.

Then || o;ll;y — 1since [lo;lly = 8_"/p||,0||p/ — |lpell1 = 1.1t then follows that 6, — o. Moreover &, is admissible for G,
since, by the Holder inequality and recalling (9),

1 _p_
~ / —1 - / - / —1
6l = ([ 10n0) ™" [ et axdiontn) = i ([ 1onl) ™ < 1.

It follows that (o, vp) is admissible for G, and converges to (v, o). As before we have G,(vp, ;) = G (v, 0). O

Recall that from Theorem 1, u, converge in C(U) up to a subsequence to some uy, € C(U), ||ullsc = 1. Moreover, up to a

subsequence, the measures u[1 dx converge weakly to some probability measure o.. Indeed since U is compact, it suffices,
according to the Prokhorov theorem, to show that

lim | wbldx=1.
p—>+oo Ji

This follows from

L%AWSMMWW%1
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and, forp > n,

1= /L_]ugflup dx < ||up||00/0u54 dx = (1 _;’_0(1))/0”571 dx.

As a consequence of the I"-convergence of G, to G, and the fact that (up, uﬁfl dx) is a minimizer of G,, we obtain that
(Uso, o) is @ minimizer of Go, With G (Uso, 00) = limy_, o0 Gp(Up, u,’;*] dx) = —1.Since 0, € P(U) and u is an
extremal for Ao, we can thus write

1= max{/ vdo; v € WEX(U), max{[|Vvlloo, allvllie(ry)} = hoos 0 € P(U)}

)‘;ol = max{/ vdo;v e W}ioo(u), max{[|Vvllee, allv|ior)} = 1,0 € P(U)}. (10)

An approximation argument shows that we can replace W};OO(U) by C'(U) N Cr, (U) where Cr,(U) = {u € C(U) : u =
Oon I}.

Proposition 4.2. Given v € W}fo(U), max{[| V|, allvllio(ryy} < 1, there exist vy € cl(uy n Cr, (0), max{||Vglloos
allvelliee(ry } < 1, such that v, — v uniformly in U.

Proof. The proof uses ideas from [2]. We first extend v in a neighborhood of dU by antisymmetric reflection across dU so
that the extended function v is Lipschitz with || V¥ = [|VV]lec < 1. We then apply the same method as in [2] consisting
in introducing the function 6, (t) = (t — sgn(t)¢) 1>, and then regularizing 6, o v by convolution with the usual mollifying
functions. Observe that || V(6; 0 V)]lec < ||VV]lec < 1and that 8, o v = 0in the e-neighborhood {x € R", dist(x, I'}) < ¢}
of I'y since v is 1-Lipschitz. Note also that [0 (t)| = (|t| — &) 1)z, so thaton I, 0, 0 | < (¢! — ). Hence |0 0 0| < o~
in the e-neighborhood of I5. It follows from these three comments that the regularizing of 6, o v is adequate. O

Denoting by Res : C(U) — C(I3%) the restriction operator, Au = Vu the derivation operator with domain C'(U), and
B(R) the closed ball of radius R centered at 0 in C(U), B = B(1), we can rewrite (10) as
1

— = max max (. W) = (/e 0 Re$)(W) = (x5 0 M) = xcr, )W) |
oo oeP() ueC @)

Recalling the definition of the Legendre transform, we eventually obtain

1 *
— = max ((XB(l/a) oRes) + (xg 0 A) + xcp, (U)) (o). (11)
)\oo oeP(U)

The inf-convolution fOg of two proper lower semi-continuous (Isc) convex functions f, g : E — R (E denotes a normed
space—we will take E = C(U) here) is defined by (fOg)(x) = inf,c¢ f(y) + g(x — y). This operation is commutative and
associative. Moreover fJg is a proper Isc convex function with domain Dom(f) 4+ Dom(g), and its Legendre transform is
(fOg)* = f* 4+ g*. Eventually, if 0 belongs to the interior of Dom(f) — Dom(g) then (f + g)* = f*0Og* (see [19, Section 3.9
p. 42]). This last assumption is trivially satisfied here since any neighborhood of 0 in C(U) is contained in C'(U) 4+ C(U).

We can thus rewrite (11) as

1
— = max (e © Res) D08 0 A OX ) @)
Ao oeP(U) 1
= max infl( (o) © Res)” (111) + Ot 0 A)* (02 + Xy, 0y (1)) (12)
[AS

where the inf is taken over all triple of measures w1, w2, U3 € M(U) such that o = w1 4+ u2 + ws. To pursue further we
need to compute the various Legendre transforms involved in this expression. This is the content of the next proposition.

Proposition 4.3. There holds for ;. € M(U),

_ 0 ifsuppu C I
X;n o = :—l—oo otherwise (13)
and
(xp 0 AV () = inf[ﬁ lo|: o € M(U,R") st. —dive = uin :o/(R")}
u
— Wl (/,L+, /1«7) if M(U) = 07 (14)
+00 otherwise.
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Moreover,

1 .
&|,U«|(F2) if suppu C I

+00 otherwise.

(XB(1/a) © Res)* () = (15)

Proof. These computations are more or less classical. We sketch them here for the reader’s convenience.
First, the definition of the Legendre transform gives

Xé}l (U)(M) = sup (w, u) — Xcr, @)
uec(@)

= sup / udu (16)
ueC(U), u=0on Iy JU
from which we deduce (13).

We now prove (14). The second equality in (14) is well-known. It remains to prove the first one. We recall the following
result concerning the Legendre transform: if E and F are two normed space, L : E — F linear with domain Dom(L) and
f  E — Ris convex, consider the function (LF)(y) = inf{f(x) : x € Dom(L) s.t. Lx = y},y € F. Then Lf is convex with
(Lf)* = f* o L* in the domain Dom(L*) of the adjoint L* : F* — E* of L.

Notice that the adjoint A* : M(U) — M(U) of Ais defined by A*u = —div p in the weak sense (i.e. (A", u) = (u, Vu) =
[ Vudu for any u € Dom(A) = C'(U)) with domain Dom(A*) = {u € M(U), —div 1 € Mp(R")}.

In a similar way as in (16), it can be seen that x; (o) = f |o], so that the inf in (14) can be written as (A* x;)(w). Then
taking f = x4, L = A* and noticing that x is convex Isc (because B is convex and closed), so that x;* = xs, we obtain
xg 0 A™* = (A*x;)*. Observe that A** = A on Dom(A) so that xz o A = (A*xz)* on Dom(A).

Observe that A* x5, whichis ther.h.s. of (14), is Isc for the weak convergence (and thus also for the strong i.e. total variation
convergence) in the sense that if u,, u € M(U) verify u, — u weakly then

. . EE S * %
lim inf(A™xg) (1n) = (A" Xp) (W)
Indeed we can assume that (A* x;)(n) < Cste. Then taking o, € MU, R") s.t.—dive, = nand A* x5 () = f |oa|40(1),

we have f |o| < C.Then applying the Prokhorov theorem to o, and o ~, we have, up to a subsequence, that o, — o weakly.

In particular —divo = p and liminf,_, f log| > f lo| > (A*xz) (o) from which we deduce the result.
We thus have that A* x is convex Isc so that A* ;' = (A" xz)*". Hence (xz o A)* = A* x5 which is exactly (14).
The proof of (15) is similar. We have as before that for any u© € M(U),

(XB(1/a) © ReS)™ (1) = (Res™ Xp1/0)) (W) = INf{(Xp(1/0))(0) : Res™(0) = p}
with Res : C(U) — C(I}) and Res* : C(I3)* = M(I,) — C(U)* = M(U) is given by

(Res*(0), v) = (o, Res(v)) = (0, vp) = f vdo

r

forany o € C(I})*, v € C(U). Moreover XB(1/a) : C(I2) — Randforany o € C(I3)*,

Xbajay(@) = SUP (0, v) — XB(1/a) (V) = oip / vdo
o veC(Iy), vl (ryy<1/a I 1y
1
_ 1 sup vdo
& veC(D) vl <11
S lo].
)

Thus
1 _
(X3(1/a) © Res) (1) = infl— 0] : 0 € C(I)* sit. / udo = / wdp forallu e C(U)].
o e Iy U
Consider an admissible measure . Then for any A C U,
ag(ANTY) =/ Iado = / Tadu = u(A).
r U

It follows that there cannot exist A C U \ I} s.t. u(A) # Oie.supp u C I3, and then o = . Hence (xp(1/a) © Res)*(u) =
£|,u|(1“2) if supp u C I5. Otherwise there does not exist any admissible o and the infis +co. O
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Using the previous proposition, we can rewrite (16) as
1 i 1
— = max inf(xg 0 A)*(u2) + —|u1|(I3),
Ao oeP(l) o

where the inf is taken over all triple of measures w1, 2, u3 € M) such that 0 = uq + pa + ps, supp s C I,
supp i1 C I, o (U) = 0. Letting v = g + i3 = 0 — pp, we have |uq|(13) = [v|(I) = v (I3) + v~ (I3) since 147 and
w3 have disjoint support. Moreover, since u,(U) = 0i.e. (o +v™)(U) = v+ (U), we have

(xg o A)*(u2) = (xpo A)* (o —v)
inf[/: 16]:6 € M(U,R") s.t. —divé = (o +v-) —vFin :D’(R")}
u

= Wi +v,vh).

We thus obtain

1
— = max inf
Moo aeP() vEM(IU), v(dU)=1

T 1
Wi(oc +v7,v )—i—&v (F2)+av ().

To conclude the proof of (7), it suffices to verify that the inf can be taken over non-negative v. This is a consequence of the
following proposition:
Proposition 4.4. Forany o € P(U),

inf Wi(o +v1,10) = inf Wy(o,v).
v1,V2€M4 (3U), v (aU)=v1(0U)+1 veP(aU)

The proof of this lemma is based on the following lemma:
Lemma 2. Consider probability measures ., u € P(R™) such that
lim Wi (i, p) =0,
e—0
and a subset A C P(R™) compact w.r.t. the convergence in distance W. Then lim,_,o W1 (i, A) = W1 (i, A) where W1 (u, A) =
inf,eq Wi, v).

Observe that the compactness assumption is satisfied for A = P(K) where K C R" is compact in view of Prokhorov theorem
and the fact that W, matrices the weak convergence in P(K) (because K is bounded).

Proof of Lemma 2. Consider vs € As.t.lims_.o W;(vs, u) = Wy(u, A). Then passing to the limitin Wy (., A) < Wi(ue, vs)
yields lim sup,_, o W7 (e, A) < Wi(u, vs) for any 8, so that lim sup,_, o W1 (e, A) < Wi(w, A).

To prove the opposite inequality we consider v, € A such that Wy (u,, v.) = W1(u., A) + o(1). Since A is compact, we
can assume up to a subsequence that there exists v € A s.t. Wy (v,, v) — 0. Since W1 (u,, ) — 0, we obtain

Ell_r)r(l) W](MFaA) = é!l_l;r(l) Wl(/"l’éw v&‘) = Wl(l‘l’a U) > Wl(l’(’sA)

which ends the proof of the lemma. O
We now prove Proposition 4.4.

Proof of Proposition 4.4. The < inequality is clear (take vy = 0). To prove the opposite inequality, we first assume that
suppo C U. Given any vy, v,, any transfer plan & € IT(c + vy, v;) (i.e. # € P(U) has marginals o + v; and v,) can be
written as

N:ﬁ-f—ﬁ, ﬁen(ﬂ,ﬁz),ﬁen(\)l,f)z)

for some decomposition v, = ¥, + v, with 1,, 1, € M, (3U), 1,(dU) = 1, v,(aU) = v1(aU). It follows that

Wi(o + v, 1) inf / _d(x,y)dm(x,y)
u

well(o+v1,v2) U

= inf / d(x,y) dmw(x,y) + f d(x,y) dm(x,y)
vy=Up+ip, Tl (0,V), T (v1,12) Jix [ UxO

> inf  Wi(o, bp) + Wi(vq, 12).

V=V +p
Then

inf Wi(o + vy, 1) > inf inf Wi (o, 172) + Wi(vq, vy)
v1,V2€M4 (3U), v2(aU)=v1(dVU)+1 v1,V2€M4 (3U), v2 (3U)=v1(AU)+1 vy=0p+y

which is clearly greater than or equal to infj,cp3uy W1(0o, V). This proves the > inequality when supp o C U.
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In the general case we have supp o C U. We consider o, = T.fio the push-forward of o under T, (x) = x — &7l where 7
denotes some smooth extension of the unit exterior normal to a neighborhood of dU. Then supp o, C U so that

inf Wi(oe + v1, v2) = Wi(oe, P(3U)).
v1,12€M4 (0U), vz (dU)=v1(dU)+1

To pass to the limit as ¢ — 0, we use Lemma 2. Just notice that o, — ¢ weakly as measure i.e. W;(o,, 6) — 0 since U is
bounded, and A = P(dU) is compact for the weak convergence. We then have W; (o, P(dU)) — W;(o, P(3U)). Observe
also that the first part of the proof of Proposition 4.4, which does not use the compactness assumption, yields

lim sup inf Wi(oe + v1, 1) < inf Wi(o + vq, 12).
=0 V1,V2€M4(0U), vp(0U)=vq(dU)+1 v1,12€M4 (0U), vz (dU)=v1(dU)+1

The result follows. O

To end the proof of Theorem 3, we verify that the max in (7) is attained by f.,, the weak limit as p — +o00 of the measures

f, = ub™" dx (which exists up to a subsequence). Notice that 1, is the unique minimizer of the functional F, : W};p U)—"R
defined by

Fy(u) = — /|Vu|f’+“p P = (o)
P prp Ju pA P

14 p JI

Indeed the associated Euler-Lagrange equation, which has a unique solution since F, is strictly convex, is the equation
Apu = Apf, with the boundary conditions of (1), which admits u, as a solution.
Writing F, as

Ry /\ Vi \p+/|““ "~ G
W= [ |—— ——| = (),
0= o+ gl %

we can prove, as in Proposition 4.1, that F, I"-converge as p — oo to the functional F : C(U) — R defined by

=, ifue WETU), [ Villas < Ao, and alfullioir) < Aoo
Fyo(u) = 1

+oo otherwise.
Since
. 1
infF, = Fy(up) = — — 1,
p
we obtain that

Fo(us) = infF = lim infF, = —1.

p—>—+00
Hence
1= min{—(fom u) + XB(1/a) Uy /Aoo) + x8(VU/Aso) + Xcr, (U)(U)},
ie.
1 .
- = mm[—(foo, u) + xp1/a)WUry) + xs(Vu) + Xcr, (U)(U)]-
o0
Then
1
— = max {(faos W) = 5010 W) = 16(V) = 2}
Aoo  uec(l)

*
= ((XB(l/a) oRes) + (xs 0 A) + Xcp, (U)) (foo)-

Since f,, € P(dU), we obtain in view of (11) that f,, is extremal in (7).
5. Proof of Theorem 2 for connected domains

Let¢p(o,v) = Wi(o,v) + %v(]"z), o, v € P(dU). Since Wy is convex in (o, v) (see e.g.[15, Theorem 4.8]), we see that ¢
is convex. It easily follows that the function @ (o) = inf,epu) ¢ (0, v),0 € P(U) is also convex. Indeed given 4, 0, € P(U)
and any vq, v, € P(U), we have
@(tor + (1 —t)oz) < ¢(tor + (1 —t)oa, tvy + (1 — t)vy)
< tg(or, v1) + (1 — Dd(o2, v2).
The result follows taking the infimum in vy, v;.
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Since @ is convex, it attains its maximum at an extreme point of the convex compact P(U) i.e. at some Dirac mass &y,
xeU:

1 1
— =max inf W;(6, v) + —v(l3).
Aoo xel veP(dU) o

It is well-known that W1 (8, v) = fU d(x, y) dv(y) forany x € U. This follows from the fact that the unique = € P(U x U)

with marginals 8, and v is 7 = & ® v. Indeed such a 7 must have support in {x} x supp v so that for any A,B C U,
T(AXB)=0= (8, QVv)(A X B)ifx €A andifx € A,

7(AxB)=7({x} x B) =7 (X x B) = v(B) = (6 ® v)(A x B).
Givenx € U, we considerx; € I'yandx, € I such thatd(x, I7) = d(x, x;), i = 1, 2. We write v € P(3U) as v = vy + v,
where v; = v;, i =1, 2. Then

W1(8x, v) =/ d(x,y)dv(v)=f d(X,y)dvl(V)Jr/ d(x, y) dvy(y)
au

In I3
> d(x, I')vi(I) + d(x, [2)va(132)
= W18y, By + (1 — B)dy,),
where 8 = v{(I7). We thus have
i =max inf Bd(x, 1)+ (1 — B)dx, ) + ﬂ
Ao xell 0=p=1 o

We deduce Theorem 2 noticing that for any x € U, the infin 8 is

1 1
dix, ) + — ifdx, I7) —d(x, I3) — — >0ie.x € A4
o o

d(x, I'y) otherwise.
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