Nonlinear Analysis 🛛 (💵 🖿 🖤 🖿 🖿

FISEVIER

Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

The limit as $p \rightarrow +\infty$ of the first eigenvalue for the *p*-Laplacian with mixed Dirichlet and Robin boundary conditions

Julio D. Rossi^{a,*}, Nicolas Saintier^{a,b}

^a Departamento de Matemática, FCEyN, Univ. de Buenos Aires, C.P. 1428, Buenos Aires, Argentina ^b Instituto de Ciencias, Univ. Gral Sarmiento, Juan María Gutierrez 1150, Los Polvorines, Pcia de Buenos Aires, Argentina

ARTICLE INFO

Communicated by Enzo Mitidieri

MSC: 35J60 35P30

Keywords: Eigenvalue problems First variations Infinity Laplacian

ABSTRACT

We analyze the behavior as $p \to \infty$ of the first eigenvalue of the *p*-Laplacian with mixed boundary conditions of Dirichlet–Robin type. We find a nontrivial limit that we associate to a variational principle involving L^{∞} -norms. Moreover, we provide a geometrical characterization of the limit value as well as a description of it using optimal mass transportation techniques. Our results interpolate between the pure Dirichlet case and the mixed Dirichlet–Neumann case.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction and description of the main results

Let $U \subset \mathbb{R}^n$ be a smooth, bounded, open and connected set. In order to consider mixed boundary conditions, we split the boundary of U as $\partial U = \Gamma_1 \cup \Gamma_2$, with $\Gamma_1 \cap \Gamma_2 = \emptyset$ and $|\Gamma_1| > 0$. In this paper we deal with the first eigenvalue, that we will call λ_p , of the *p*-Laplacian with Dirichlet condition on Γ_1 and Robin condition on Γ_2 namely the smallest λ such that there is a nontrivial solution to the following problem,

$$\begin{cases} -\Delta_p u = \lambda |u|^{p-2} u & \text{in } U, \\ u = 0 & \text{on } \Gamma_1, \\ |\nabla u|^{p-2} \partial_\nu u + \alpha^p |u|^{p-2} u = 0 & \text{on } \Gamma_2. \end{cases}$$
(1)

Here α is a non-negative parameter. Notice that when $\alpha = +\infty$, the boundary condition become u = 0 in all ∂U (a pure Dirichlet condition) and when $\alpha = 0$ we have a mixed Dirichlet-Neumann boundary condition.

Our main goal is to compute the limit as $p \to \infty$ of this problem and look at its dependence on the parameter α . To start our analysis we remark that λ_p has the following variational formulation:

$$\lambda_{p} = \inf_{u \in X_{p}} \left\{ \int_{U} |\nabla u|^{p} + \alpha^{p} \int_{\Gamma_{2}} |u|^{p} : \|u\|_{L^{p}(U)} = 1 \right\}$$
(2)

where

$$X_p = \left\{ u \in W^{1,p}_{\Gamma_1}(U), \ u \ge 0 \right\},$$

* Corresponding author. Tel.: +54 34652577160. *E-mail addresses:* jrossi@dm.uba.ar (J.D. Rossi), nsaintie@dm.uba.ar (N. Saintier).

http://dx.doi.org/10.1016/j.na.2014.09.005 0362-546X/© 2014 Elsevier Ltd. All rights reserved.

J.D. Rossi, N. Saintier / Nonlinear Analysis 🛚 (💵 💵 – 💵

and

$$W^{1,p}_{\Gamma_1}(U) = \left\{ u \in W^{1,p}(U), \ u = 0 \text{ on } \Gamma_1 \right\}.$$

Note that the infimum is attained since we assumed that $|\Gamma_1| > 0$. Also notice that if we regard λ_p as a function of α , $\alpha \in [0, +\infty) \rightarrow \lambda_p(\alpha)$, then $\lambda_p(\alpha)$ is non-decreasing with $\lim_{\alpha \to +\infty} \lambda_p = \lambda_{p,D}$ the first Dirichlet eigenvalue for the *p*-Laplacian in *U*.

We expect the limit problem of (2) as $p \to \infty$ to be

$$\lambda_{\infty} = \inf_{u \in X, \, \|u\|_{L^{\infty}(U)} = 1} \max \left\{ \|\nabla u\|_{L^{\infty}(U)}, \, \alpha \|u\|_{L^{\infty}(\Gamma_{2})} \right\}$$
(3)

where $X := \left\{ u \in W^{1,\infty}(U), u = 0 \text{ on } \Gamma_1, u \ge 0 \text{ in } U \right\}$. Notice that when we let $\alpha \to +\infty$ in (3) with $\Gamma_1 = \partial U$ we obtain

$$\lim_{\alpha \to +\infty} \lambda_{\infty}(\alpha) = \lambda_{\infty,D} = \inf_{u \in W_0^{1,\infty}(U), \, \|u\|_{L^{\infty}(U)} = 1} \|\nabla u\|_{L^{\infty}(U)}$$

that is the first eigenvalue of the infinity Laplacian, $\Delta_{\infty} u = DuD^2 uDu$ with Dirichlet boundary conditions. This value, $\lambda_{\infty,D}$, turns out to be the limit of $(\lambda_{p,D})^{1/p}$ as $p \to \infty$, see [1]. Our first result says that this kind of limit can be also computed for any nonnegative α .

Theorem 1. There holds that

$$\lim_{p\to+\infty} (\lambda_p)^{1/p} = \lambda_\infty.$$

Moreover the positive, normalized extremals for λ_p , u_p converge uniformly in \overline{U} along subsequences $p_j \to \infty$ to $u \in X$ which is a minimizer for (3) and a viscosity solution to

$$\begin{cases} \min \{ |Du| - \lambda_{\infty} u, -\Delta_{\infty} u \} = 0 & \text{in } U, \\ u = 0 & \text{on } \Gamma_1, \\ \min \{ |Du| - \alpha u, -\partial_{\nu} u \} = 0 & \text{on } \Gamma_2. \end{cases}$$

Our next goal is to characterize this limit value λ_{∞} . The value of λ_{∞} results in the interplay between α , the geometry of U and the sets Γ_1 , Γ_2 . We consider the (possibly empty) set

$$\mathcal{A} := \Big\{ x \in \overline{U}, \ d(x, \Gamma_1) \geq \frac{1}{\alpha} + d(x, \Gamma_2) \Big\}.$$

Notice that if $\mathcal{A} \neq \emptyset$ then the set

$$\mathcal{A}' := \left\{ x \in \overline{U}, \ d(x, \Gamma_1) = \frac{1}{\alpha} + d(x, \Gamma_2) \right\}$$

is also not empty. Indeed the function $f(x) = \frac{1}{\alpha} + d(x, \Gamma_2) - d(x, \Gamma_1)$ is continuous, less than or equal to 0 on A, and greater than or equal to 0 if $d(x, \Gamma_1) \ll 1$ (we are using here the fact that U is connected to apply the mean value theorem). Our next result gives a geometrical characterization of λ_{∞} .

Theorem 2. It holds that

$$\lambda_{\infty} = \begin{cases} \min_{x \in \bar{U}} \frac{1}{d(x, \Gamma_1)}, & \text{if } \mathcal{A} = \emptyset, \\ \min_{x \in \mathcal{A}} \frac{1}{\frac{1}{\alpha} + d(x, \Gamma_2)} = \min_{x \in \mathcal{A}'} \frac{1}{\frac{1}{\alpha} + d(x, \Gamma_2)}, & \text{if } \mathcal{A} \neq \emptyset. \end{cases}$$
(4)

Notice that when $\alpha = +\infty$, which corresponds to pure Dirichlet boundary conditions on the whole ∂U , then $\mathcal{A} = \mathcal{A}' = \emptyset$ and we recover the result of [1], $\lambda_{\infty}^{-1} = \lambda_{\infty,D}^{-1} = \max_{x \in \overline{U}} d(x, \partial U)$. In the case of Neumann boundary conditions i.e. $\Gamma_1 = \emptyset$ and $\alpha = 0$ then $\mathcal{A} = \emptyset$ and $d(x, \Gamma_1) = d(x, \emptyset) = +\infty$ for any $x \in \overline{U}$ so that $\lambda_{\infty} = 0$ which is consistent with the fact the 1st eigenvalue of Δ_p with Neumann boundary conditions is 0.

We will first give a simple proof in the case where U is convex by using a test-function argument based proof which we were not able to extend to the general case. In fact the result for a arbitrary connected domain will be a consequence of an optimal mass transport formulation of λ_{∞} that we now introduce.

To continue our analysis we have to recall some notions and notations from optimal mass transport theory. Recall that the Monge–Kantorovich distance $W_1(\mu, \nu)$ between two probability measures μ and ν over \overline{U} is defined by

$$W_{1}(\mu,\nu) = \max_{\nu \in W^{1,\infty}(U), \|\nabla\nu\|_{\infty} \le 1} \int_{U} \nu (d\mu - d\nu).$$
(5)

<u>ARTICLE IN PRESS</u>

J.D. Rossi, N. Saintier / Nonlinear Analysis 🛚 (💵 💷 – 💵

Recently the authors in [2] relate $\lambda_{\infty,D}$ with the Monge–Kantorovich distance W_1 . They proved that

$$\lambda_{\infty,D}^{-1} = \max_{\mu \in P(U)} W_1(\mu, P(\partial U)),\tag{6}$$

where P(U) and $P(\partial U)$ denote the set of probability measures over \overline{U} and ∂U . Notice that the maximum is easily seen to be reached at δ_x where $x \in U$ is a most inner point.

In our case we are also able to give a characterization for λ_{∞} in terms of a maximization problem involving W_1 but this time we get an extra term involving the total variation of a measure on Γ_2 .

Theorem 3. It holds that

$$\frac{1}{\lambda_{\infty}} = \max_{\sigma \in P(\bar{U})} \inf_{\nu \in P(\partial U)} \Big\{ W_1(\sigma, \nu) + \frac{1}{\alpha} \nu(\Gamma_2) \Big\}.$$
(7)

Moreover, the measures u_p^{p-1} dx weakly converge (up to a subsequence) as $p \to +\infty$ to a probability measure f_{∞} which attains the maximum in (7).

Notice that when $\alpha = +\infty$, which corresponds to Dirichlet boundary conditions, then we recover the result of [2], who showed that (6) holds.

As a corollary of this characterization in terms of optimal transportation, we can extend the result stated in Theorem 2 for the value of λ_{∞} to the case where *U* is not convex. We prefer to present our results in this order (even if Theorem 2 is not initially proved in its full generality) for readability of the whole paper (the proof of Theorem 2 in the convex case is much simpler).

Let us end the introduction with a brief description of the previous bibliography and the main ideas and techniques used to prove our results. First, as by now classical results, we mention that the limit as $p \to \infty$ of the first eigenvalue $\lambda_{p,D}$ of the *p*-Laplacian with Dirichlet boundary condition was studied in [3,1] (see also [4] for an anisotropic version). For its dependence with respect to the domain we refer to [5]. The *limit operator* that appears here, the infinity-Laplacian is given by the limit as $p \to \infty$ of the *p*-Laplacian, in the sense that solutions to $\Delta_p v_p = 0$ with a Dirichlet data $v_p = f$ on $\partial \Omega$ converge as $p \to \infty$ to the solution to $\Delta_{\infty} v = 0$ with v = f on $\partial \Omega$ in the viscosity sense (see [6–8]). This operator appears naturally when one considers absolutely minimizing Lipschitz extensions in Ω of a boundary data *f* (see [9,6,10]).

The case of a Steklov boundary condition (here the eigenvalue appears in the boundary condition) has also been investigated recently. Indeed in [11] (see also [12] for a slightly different problem) it is studied the behavior as $p \to +\infty$ of the so-called variational eigenvalues $\lambda_{k,p,S}$, $k \ge 1$, of the *p*-Laplacian with a Steklov boundary condition. In particular it is proved that

$$\lim_{p \to +\infty} \lambda_{1,p,S}^{1/p} = 1 \quad \text{and} \quad \lambda_{2,\infty,S} := \lim_{p \to +\infty} \lambda_{2,p,S}^{1/p} = \frac{2}{\operatorname{diam}(U, \mathbb{R}^n)}$$

where here diam (U, \mathbb{R}^n) denotes the diameter of *U* for the usual Euclidean distance in \mathbb{R}^n .

For pure Neumann eigenvalues, we quote [13,14]. In those references it is considered the limit for the second eigenvalue (the first one is zero). It is proved that in this case $\lambda_{\infty} := \lim_{p \to +\infty} \lambda_p^{1/p} = 2/\operatorname{diam}(U)$, where $\operatorname{diam}(U)$ denotes the diameter of U with respect to the geodesic distance in U. In addition, the regularity of λ_{∞} as a function of the domain U is studied in [14] and in [13] it is proved that there are no nonzero eigenvalues below λ_{∞} , so that λ_{∞} is indeed the first nontrivial eigenvalue for the infinity-Laplacian with Neumann boundary conditions.

Concerning ideas and methods used in the proofs we use classical variational ideas to obtain the limit of $(\lambda_p)^{1/p}$ and viscosity techniques and to find the limit PDE problem we use viscosity techniques as in [1] (we refer to [8] for the definition of a viscosity solution). The characterization of λ_{∞} given in Theorem 2 follows using cones as test functions in the variational formulation. Finally, mass transport techniques (we refer to [15]) and gamma-convergence of functionals are used to show the more general characterization of λ_{∞} given in Theorem 3, see [2,14] for similar arguments in different contexts.

The paper is organized as follows. In Section 2 we deal with the limit as $p \to \infty$ and prove Theorem 1. In Section 3 we prove Theorem 2 that characterizes λ_{∞} in geometrical terms in the cases of a convex domain *U*. In Section 4 we use optimal transport ideas to obtain Theorem 3. As a corollary, we eventually prove Theorem 2 for a general connected domain in the last section.

2. Proof of Theorem 1

For the proof of Theorem 1 we will use the following lemma.

Lemma 1. For any $f, g \in L^{\infty}(U)$ there holds

$$\lim_{p \to +\infty} \left(\|f\|_{L^{p}(U)} + \|g\|_{L^{p}(U)} \right)^{\frac{1}{p}} = \max\{\|f\|_{L^{\infty}(U)}, \|g\|_{L^{\infty}(U)}\}.$$

Please cite this article in press as: J.D. Rossi, N. Saintier, The limit as $p \rightarrow +\infty$ of the first eigenvalue for the *p*-Laplacian with mixed Dirichlet and Robin boundary conditions, Nonlinear Analysis (2014), http://dx.doi.org/10.1016/j.na.2014.09.005

4

ARTICLE IN PRESS

J.D. Rossi, N. Saintier / Nonlinear Analysis 🛚 (💵 💷 – 💵

Proof. The result is a direct consequence of the inequalities

$$\begin{split} \max\{\|f\|_{L^p(U)}^p, \|g\|_{L^p(U)}^p\} &\leq \|f\|_{L^p(U)}^p + \|g\|_{L^p(U)}^p\\ &\leq 2\max\{\|f\|_{L^p(U)}^p, \|g\|_{L^p(U)}^p\}. \end{split}$$

In fact, from the previous inequalities, we get

 $\lim_{p \to +\infty} \max\{\|f\|_{L^{p}(U)}, \|g\|_{L^{p}(U)}\} \le \lim_{p \to +\infty} \left(\|f\|_{L^{p}(U)} + \|g\|_{L^{p}(U)}\right)^{\frac{1}{p}} \le \lim_{p \to +\infty} 2^{\frac{1}{p}} \max\{\|f\|_{L^{p}(U)}, \|g\|_{L^{p}(U)}\}.$

We conclude using that

$$\lim_{n \to +\infty} \|f\|_{L^p(U)} = \|f\|_{L^\infty(U)}$$

and

 $\lim_{n \to +\infty} \|g\|_{L^{p}(U)} = \|g\|_{L^{\infty}(U)}. \quad \Box$

Now let us proceed with the proof of Theorem 1.

Proof of Theorem 1. Let $u \in X$ then $u \in \bigcap_p X_p$. From the variational characterization of λ_p we have

$$(\lambda_p)^{1/p} \leq \frac{1}{\|u\|_{L^p(U)}} \Big(\int_U |\nabla u|^p + \alpha^p \int_{\Gamma_2} |u|^p \Big)^{1/p}.$$

Hence, using the previous lemma we get

$$\limsup_{p\to\infty} (\lambda_p)^{1/p} \le \max\left\{ \|\nabla u\|_{L^{\infty}(U)}, \ \alpha \|u\|_{L^{\infty}(\Gamma_2)} \right\}$$

for any $u \in X$. Therefore, we conclude that

$$\limsup_{p\to\infty} (\lambda_p)^{1/p} \leq \lambda_\infty.$$

In addition, we get that, for u_p an eigenfunction associated to λ_p in X_p it holds that

$$\limsup_{p\to\infty}\|\nabla u_p\|_{L^p(U)}\leq\lambda_\infty.$$

Therefore, we have that $\{u_p\}$ is uniformly bounded (independently of p) in $W^{1,p}(U)$. Then, for any fixed q we obtain

$$\|\nabla u_p\|_{L^q(U)} \le \|\nabla u_p\|_{L^p(U)} |U|^{\frac{p-q}{qp}} \le C$$

with *C* independent of *p*. Hence, by a diagonal procedure, we can extract a subsequence $p_j \rightarrow \infty$ such that

$$u_{p_i} \rightarrow u$$

uniformly in \overline{U} and weakly in every $W^{1,q}(U), q \in \mathbb{N}$. This limit *u* verifies that

$$\|\nabla u\|_{L^{q}(U)} \leq \limsup_{p \to \infty} \|\nabla u_{p}\|_{L^{q}(U)} \leq \limsup_{p \to \infty} \|\nabla u_{p}\|_{L^{p}(U)} \|U\|^{\frac{p-q}{qp}} \leq \lambda_{\infty} \|U|^{\frac{1}{q}}$$

and then we get

 $\|\nabla u\|_{L^{\infty}(U)} \leq \lambda_{\infty}.$

Moreover, we have

$$\alpha \|u_p\|_{L^q(\Gamma_2)} \le \left(\alpha^p \|u_p\|_{L^p(\Gamma_2)}^p |\Gamma_2|^{\frac{p-q}{q}}\right)^{1/p} \le \left(\lambda_p |\Gamma_2|^{\frac{p-q}{q}}\right)^{1/p},$$

then

$$\alpha \|u\|_{L^q(\Gamma_2)} \leq \limsup_{p \to \infty} \alpha \|u_p\|_{L^q(\Gamma_2)} \leq \limsup_{p \to \infty} \alpha \|u_p\|_{L^q(\Gamma_2)} \leq \lambda_{\infty} |\Gamma_2|^{\frac{1}{q}}$$

and we conclude that

 $\alpha \|u\|_{L^{\infty}(\Gamma_2)} \leq \lambda_{\infty}.$

Please cite this article in press as: J.D. Rossi, N. Saintier, The limit as $p \rightarrow +\infty$ of the first eigenvalue for the *p*-Laplacian with mixed Dirichlet and Robin boundary conditions, Nonlinear Analysis (2014), http://dx.doi.org/10.1016/j.na.2014.09.005

J.D. Rossi, N. Saintier / Nonlinear Analysis 🛚 (💵 💷)

Hence

$$\max\left\{\|\nabla u\|_{L^{\infty}(U)}, \, \alpha \|u\|_{L^{\infty}(\Gamma_2)}\right\} \leq \lambda_{\infty}.$$

Now, we only have to observe that from the uniform convergence we get that $u \in X$, and then we conclude that u is a minimizer of (3). In addition, our previous calculations show that

$$\lambda_{\infty} \leq \liminf_{p \to \infty} (\lambda_p)^{\frac{1}{p}}$$

Now, concerning the equation verified by the limit of u_p , u, we have that, from the fact that u_p are viscosity solutions to $\Delta_p u = \lambda_p |u|^{p-2} u$ and that $(\lambda_p)^{1/p}$ converges to λ_∞ we conclude as in [1] that the limit u is a viscosity solution to

 $\min\{|Du|-\lambda_{\infty}u,-\Delta_{\infty}u\}=0.$

That u = 0 on Γ_1 is immediate from uniform convergence in \overline{U} and the fact that u_p verify the same condition. On Γ_2 we have

$$|\nabla u|^{p-2}\partial_{\nu}u + \alpha^p |u|^{p-2}u = 0,$$

therefore, passing to the limit in the viscosity sense as done in [16] we obtain

$$\min\{|Du|-\alpha u, -\partial_{\nu}u\}=0.$$

This ends the proof. \Box

3. Proof of Theorem 2 for convex domains

Along this section we assume that U is convex.

Proof of Theorem 2. Using the variational characterization (3) proved in the previous section, we estimate λ_{∞} from above by using as test-function a truncated cone of the form

$$u(x) = \left(1 - a|x - x_0|\right)_+$$

where a > 0 and $x_0 \in \overline{U}$. Then

$$u \equiv 0 \quad \text{on } \Gamma_1 \quad \text{iff} \quad a \ge \frac{1}{d(x_0, \Gamma_1)}$$
$$\|\nabla u\|_{L^{\infty}(U)} = a,$$

and
$$\|u\|_{L^{\infty}(\Gamma_2)} = \left(1 - ad(x_0, \Gamma_2)\right)_+$$

It follows that

$$\lambda_{\infty} \leq \inf \max\{a, \alpha [1 - ad(x_0, \Gamma_2)]_+\}$$

where the infimum is taken over all the $x_0 \in \overline{U}$ and a > 0 such that $a \ge 1/d(x_0, \Gamma_1)$. Examining the two possibilities for the max, we obtain easily the upper bound for λ_{∞} .

To prove the lower bound we argue as follows: for any $x_0 \in \overline{U}$, and any Lipschitz function $u \in X$ with $u(x_0) = 1$, we have

$$1 \geq \|u\|_{L^{\infty}(\Gamma_2)} \geq \left(1 - \|\nabla u\|_{\infty} d(x_0, \Gamma_2)\right)_+.$$

Thus

$$\lambda_{\infty} \geq \inf \max \left\{ \|\nabla u\|_{L^{\infty}(U)}, \alpha \left(1 - \|\nabla u\|_{L^{\infty}(U)} d(x_0, \Gamma_2)\right)_+ \right\}$$

where the infimum is taken over all $u \in W^{1,\infty}(\overline{U})$ such that u = 0 in Γ_1 , $||u||_{L^{\infty}(U)} = 1$ and $||\nabla u||_{L^{\infty}(U)} \ge \frac{1}{d(x_0,\Gamma_1)}$ for any $x_0 \in \{u = 1\}$. From this point the argument concludes as for the previous case just analyzing the possibilities for the max. \Box

4. Proof of Theorem 3

The proof follows the lines of [2] (see also [14] for the pure Neumann boundary case).

6

ARTICLE IN PRESS

J.D. Rossi, N. Saintier / Nonlinear Analysis 🛚 (💵 🎟) 💵 – 💵

We begin rewriting the variational formulation (2) of λ_p as

$$1 = \sup\left\{\int_{U} |u|^{p} : u \in W^{1,p}_{\Gamma_{1}}(U) \text{ s.t. } \int_{U} |\nabla u|^{p} + \alpha^{p} \int_{\Gamma_{2}} |u|^{p} = \lambda_{p}\right\}.$$

We are thus lead to consider the functions $G_p : C(\overline{U}) \times M(\overline{U}) \to \mathbb{R}, \ p \ge 1$, defined by

$$G_p(v,\sigma) = \begin{cases} -\int v \, d\sigma & \text{if } v \in W_{\Gamma_1}^{1,p}(U), \ \int_U |\nabla v|^p + \alpha^p \int_{\Gamma_2} |v|^p \le \lambda_p^p, \text{ and } \sigma \in L^{p'}(U) \text{ with } \int_U |\sigma|^{p'} \le 1 \\ +\infty & \text{otherwise.} \end{cases}$$

Notice that the pair $(u_p, u_p^{p-1} dx)$ is an extremal for G_p so that $\min G_p = -1$. Indeed for any admissible pair $(v, \sigma) \in W_{\Gamma_1}^{1,p}(U) \times L^{p'}(U)$, we have

$$\begin{aligned} -G_p(v,\sigma) &= \int_U v\sigma \le \|v\|_p \|\sigma\|_{p'} \le \lambda_p^{-1/p} \Big(\int_U |\nabla v|^p + \alpha^p \int_{\Gamma_2} |v|^p \Big)^{1/p} \\ &\le 1 = \int_U u_p^p \end{aligned}$$

(we used successively Hölder's inequality, the definition of λ_p and the fact that v is admissible). In view of Lemma 1, we introduce the formal limit functional $G_{\infty} : C(\bar{U}) \times M(\bar{U}) \rightarrow \mathbb{R}$ of the G_p by

$$G_{\infty}(v,\sigma) = \begin{cases} -\int v \, d\sigma & \text{if } v \in W_{\Gamma_1}^{1,\infty}(U), \max\{\|\nabla u\|_{\infty}, \alpha \|v\|_{L^{\infty}(\Gamma_2)}\} \le \lambda_{\infty}, \text{ and } |\sigma|(\bar{U}) \le 1 \\ +\infty & \text{otherwise.} \end{cases}$$

The convergence of the functionals G_p to G_∞ can be justified using the notion of Γ -convergence. Recall that a sequence of functionals $F_n : X \to [0, +\infty]$ defined over a metric space X is said to Γ -converge to a functional $F_\infty : X \to [0, +\infty]$ if the following two conditions hold:

- for every $x \in X$ and every sequence $(x_n)_n \subset X$ converging to $x, F(x) \leq \liminf F(x_n)$, and
- for any $x \in X$, there exists a sequence $(x_n)_n \subset X$ converging to x such that $F(x) \ge \limsup F(x_n)$.

An easy but important consequence of the definition, that we will use later, is the fact that if x_n is a minimizer of F_n then every cluster point of the sequence (x_n) is a minimizer of F_∞ . We refer e.g. to [17,18] for a detailed account on Γ -convergence.

Proposition 4.1. The functionals $G_p \Gamma$ -converge as $p \to +\infty$ to G_∞ .

Proof. The proof is very similar to [2] (see also [14] for the pure Neumann boundary case). We briefly sketch it for the reader's convenience.

Assume that $(v_p, \sigma_p) \in C(\overline{U}) \times M(\overline{U})$ converges to (v, σ) . We have to prove that

$$\liminf_{p \to +\infty} G_p(v_p, \sigma_p) \ge G(v, \sigma).$$
(8)

We can assume that $G_p(v_p, \sigma_p) < \infty$. Then we have

$$\int_{U} v_p \sigma_p \, dx - \int_{U} v \, d\sigma = \int_{U} (v_p - v) \sigma_p \, dx + \int_{U} v \, (\sigma_p \, dx - d\sigma) \to 0$$

as $p \to +\infty$. Indeed the first integral on the right hand side can be bounded by $||v_p - v||_{\infty} ||\sigma_p||_{p'} |U|^{\frac{1}{p}} = o(1)$. Independently

$$\int_{U} |\sigma| = \int_{U} |\sigma_{p}| \, dx + o(1) \le \|\sigma_{p}\|_{p'} |U|^{\frac{1}{p}} + o(1) \le 1 + o(1)$$

so that $\int_{U} |\sigma| \leq 1$. Moreover taking limit in $\alpha \|v_p\|_{L^p(\Gamma_2)} \leq \lambda_p$ yields $\alpha \|v\|_{L^{\infty}(\Gamma_2)} \leq \lambda_{\infty}$. Eventually, for any $\phi \in L^{p'}(U, \mathbb{R}^n)$ such that $\|\phi\|_{p'} \leq 1$ we have

$$\int_{U} \phi \nabla v \, dx = -\int_{U} v \operatorname{div} \phi \, dx = -\int_{U} v_p \operatorname{div} \phi \, dx + o(1) = \int_{U} \phi \nabla v_p \, dx + o(1)$$

$$\leq \|\nabla v_p\|_p + o(1) \leq \lambda_p^{\frac{1}{p}} + o(1) = \lambda_{\infty} + o(1),$$

where the o(1) does not depend on ϕ . Taking the supremum over all such ϕ we obtain $\|\nabla v\|_p \leq \lambda_{\infty} + o(1)$, so that $\|\nabla v\|_{\infty} \leq \lambda_{\infty}$. It follows that (v, σ) is admissible for G_{∞} .

J.D. Rossi, N. Saintier / Nonlinear Analysis 🛚 (💵 🎟) 💵 – 💵

We now fix a pair (v, σ) admissible for G_{∞} . We have to find some pair (v_p, σ_p) admissible for G_p which converges to (v, σ) and such that

$$\limsup_{p \to +\infty} G_p(v_p, \sigma_p) \le G_\infty(v, \sigma).$$

We define

$$v_p = \frac{\lambda_p^{\frac{1}{p}}}{\lambda_{\infty}(|U| + |\Gamma_2|)^{\frac{1}{p}}}v$$

Then $v_p \in W^{1,p}(U)$, $v_p \to v$ uniformly, and $\int_U |\nabla v_p|^p + \alpha^p \int_{\Gamma_2} |v_p|^p \le \lambda_p^p$.

In order to define σ_p by regularizing σ by convolution, we first need to adjust a little. Let \vec{n} be the unit inner normal vector to U that we extend in a smooth way to \mathbb{R}^n with compact support in a neighborhood of ∂U . We consider $T_{\varepsilon} : \vec{U} \to \vec{U}_{2\varepsilon} :=$ $\{x \in \vec{U}, \text{ dist}(x, \partial U) \ge 2\varepsilon\}$ defined by $T_{\varepsilon}(x) = x + 2\varepsilon \vec{n}$. Let $\sigma_{\varepsilon} = T_{\varepsilon} \sharp \sigma$ be the push-forward of σ by T_{ε} i.e. $\int f \, d\sigma_{\varepsilon} = \int f \circ T_{\varepsilon} \, d\sigma$ for any $f \in C(\vec{U}_{2\varepsilon})$. Observe that supp $\sigma_{\varepsilon} \subset \vec{U}_{2\varepsilon}$ and also that $\int |\sigma_{\varepsilon}| \le 1$ since

$$\int |\sigma_{\varepsilon}| = \sup_{\|\phi\|_{L^{\infty}(U_{2\varepsilon})} \le 1} \int \phi \, d\sigma_{\varepsilon} = \sup_{\|\phi\|_{L^{\infty}(U_{2\varepsilon})} \le 1} \int \phi \circ T_{\varepsilon} \, d\sigma$$
$$\leq \int d|\sigma| \le 1.$$

Moreover

 $\sigma_{\varepsilon} \rightarrow \sigma$ weakly in the sense of measure.

Indeed for any $\phi \in C(\overline{U})$,

$$\left|\int \phi \, d\sigma_{\varepsilon} - \int \phi \, d\sigma\right| \leq \int \left|\phi(x + 2\varepsilon \vec{n}) - \phi(x)\right| \, d\sigma(x) = o(1)$$

since the integrand goes to 0 uniformly in $x \in \overline{U}$. Denote by ρ_{ε} the usual mollifying functions (i.e. $\rho_{\varepsilon}(x) = \varepsilon^{-n}\rho(x/\varepsilon)$ where ρ is a smooth function compactly supported in the unit ball of \mathbb{R}^n with $\int \rho = 1$). Then

 $\rho_{\varepsilon} * \sigma_{\varepsilon} - \sigma_{\varepsilon} \to 0$ weakly in the sense of measure.

This follows from the fact that $\|\phi * \rho_{\varepsilon} - \phi\|_{L^{\infty}(U_{2\varepsilon})} \to 0$ for any $\phi \in C(\overline{U})$. Hence

 $\rho_{\varepsilon} * \sigma_{\varepsilon} \rightharpoonup \sigma$ weakly in the sense of measure.

We now regularize σ_{ε} considering

$$\tilde{\sigma}_{\varepsilon} := \sigma_{\varepsilon} * \tilde{\rho}_{\varepsilon} \in C^{\infty}(U)$$

with

$$ilde{
ho}_{arepsilon} \coloneqq rac{
ho_{arepsilon}}{\|
ho_{arepsilon}\|_{p'}}, \quad arepsilon = 1/p.$$

Then $\|\rho_{\varepsilon}\|_{p'} \to 1$ since $\|\rho_{\varepsilon}\|_{p'} = \varepsilon^{-n/p} \|\rho\|_{p'} \to \|\rho_{\varepsilon}\|_{1} = 1$. It then follows that $\tilde{\sigma}_{\varepsilon} \rightharpoonup \sigma$. Moreover $\tilde{\sigma}_{\varepsilon}$ is admissible for G_{p} since, by the Holder inequality and recalling (9),

$$\|\tilde{\sigma}_{\varepsilon}\|_{p'}^{p'} \leq \left(\int |\sigma_{\varepsilon}|\right)^{\frac{1}{p-1}} \int \tilde{\rho}_{\varepsilon} (x-y)^{p'} dx d|\sigma_{\varepsilon}|(y) = \|\tilde{\rho}_{\varepsilon}\|_{p'}^{p'} \left(\int |\sigma_{\varepsilon}|\right)^{\frac{p}{p-1}} \leq 1.$$

It follows that $(\sigma_{\varepsilon}, v_p)$ is admissible for G_p and converges to (v, σ) . As before we have $G_p(v_p, \sigma_{\varepsilon}) \to G_{\infty}(v, \sigma)$.

Recall that from Theorem 1, u_p converge in $C(\overline{U})$ up to a subsequence to some $u_{\infty} \in C(\overline{U})$, $||u||_{\infty} = 1$. Moreover, up to a subsequence, the measures $u_p^{p-1} dx$ converge weakly to some probability measure σ_{∞} . Indeed since \overline{U} is compact, it suffices, according to the Prokhorov theorem, to show that

$$\lim_{p\to+\infty}\int_{\bar{U}}u_p^{p-1}\,dx=1$$

This follows from

$$\int_{\bar{U}} u_p^{p-1} \, dx \le \|u_p\|_p |U|^{1/p} \to 1$$

Please cite this article in press as: J.D. Rossi, N. Saintier, The limit as $p \rightarrow +\infty$ of the first eigenvalue for the *p*-Laplacian with mixed Dirichlet and Robin boundary conditions, Nonlinear Analysis (2014), http://dx.doi.org/10.1016/j.na.2014.09.005

(9)

J.D. Rossi, N. Saintier / Nonlinear Analysis 🛚 (💵 💷 – 💵

and, for p > n,

$$1 = \int_{\bar{U}} u_p^{p-1} u_p \, dx \le \|u_p\|_{\infty} \int_{\bar{U}} u_p^{p-1} \, dx = (1 + o(1)) \int_{\bar{U}} u_p^{p-1} \, dx.$$

As a consequence of the Γ -convergence of G_p to G_∞ and the fact that $(u_p, u_p^{p-1} dx)$ is a minimizer of G_p , we obtain that $(u_\infty, \sigma_\infty)$ is a minimizer of G_∞ with $G_\infty(u_\infty, \sigma_\infty) = \lim_{p \to +\infty} G_p(u_p, u_p^{p-1} dx) = -1$. Since $\sigma_\infty \in P(\tilde{U})$ and u_∞ is an extremal for λ_∞ , we can thus write

$$1 = \max\left\{\int v \, d\sigma; \, v \in W_{\Gamma_1}^{1,\infty}(U), \, \max\{\|\nabla v\|_{\infty}, \, \alpha \|v\|_{L^{\infty}(\Gamma_2)}\} = \lambda_{\infty}, \, \sigma \in P(\bar{U})\right\}$$

i.e.

$$\lambda_{\infty}^{-1} = \max\left\{\int v \, d\sigma; \, v \in W_{\Gamma_1}^{1,\infty}(U), \, \max\{\|\nabla v\|_{\infty}, \, \alpha \|v\|_{L^{\infty}(\Gamma_2)}\} = 1, \, \sigma \in P(\bar{U})\right\}.$$
(10)

An approximation argument shows that we can replace $W_{\Gamma_1}^{1,\infty}(U)$ by $C^1(U) \cap C_{\Gamma_1}(\bar{U})$ where $C_{\Gamma_1}(\bar{U}) = \{u \in C(\bar{U}) : u = 0 \text{ on } \Gamma_1\}$.

Proposition 4.2. Given $v \in W_{\Gamma_1}^{1,\infty}(U)$, $\max\{\|\nabla v\|_{\infty}, \alpha \|v\|_{L^{\infty}(\Gamma_2)}\} \leq 1$, there exist $v_k \in C^1(U) \cap C_{\Gamma_1}(\overline{U})$, $\max\{\|\nabla v_k\|_{\infty}, \alpha \|v\|_{L^{\infty}(\Gamma_2)}\} \leq 1$, such that $v_k \to v$ uniformly in \overline{U} .

Proof. The proof uses ideas from [2]. We first extend v in a neighborhood of ∂U by antisymmetric reflection across ∂U so that the extended function \bar{v} is Lipschitz with $\|\nabla \bar{v}\|_{\infty} = \|\nabla v\|_{\infty} \le 1$. We then apply the same method as in [2] consisting in introducing the function $\theta_{\varepsilon}(t) = (t - \operatorname{sgn}(t)\varepsilon)\mathbf{1}_{|t|\geq\varepsilon}$ and then regularizing $\theta_{\varepsilon} \circ \bar{v}$ by convolution with the usual mollifying functions. Observe that $\|\nabla (\theta_{\varepsilon} \circ \bar{v})\|_{\infty} \le \|\nabla \bar{v}\|_{\infty} \le 1$ and that $\theta_{\varepsilon} \circ \bar{v} = 0$ in the ε -neighborhood $\{x \in \mathbb{R}^n, \operatorname{dist}(x, \Gamma_1) < \varepsilon\}$ of Γ_1 since \bar{v} is 1-Lipschitz. Note also that $|\theta(t)| = (|t| - \varepsilon)\mathbf{1}_{|t|\geq\varepsilon}$ so that on $\Gamma_2, |\theta_{\varepsilon} \circ \bar{v}| \le (\alpha^{-1} - \varepsilon)_+$. Hence $|\theta_{\varepsilon} \circ \bar{v}| \le \alpha^{-1}$ in the ε -neighborhood of Γ_2 . It follows from these three comments that the regularizing of $\theta_{\varepsilon} \circ \bar{v}$ is adequate. \Box

Denoting by Res : $C(\overline{U}) \rightarrow C(\Gamma_2)$ the restriction operator, $Au = \nabla u$ the derivation operator with domain $C^1(U)$, and B(R) the closed ball of radius R centered at 0 in $C(\overline{U})$, B = B(1), we can rewrite (10) as

$$\frac{1}{\lambda_{\infty}} = \max_{\sigma \in P(\bar{U})} \max_{u \in C(\bar{U})} \Big\{ (\sigma, u) - (\chi_{B(1/\alpha)} \circ \operatorname{Res})(u) - (\chi_B \circ A)(u) - \chi_{C_{\Gamma_1}(U)}(u) \Big\}.$$

Recalling the definition of the Legendre transform, we eventually obtain

$$\frac{1}{\lambda_{\infty}} = \max_{\sigma \in P(\bar{U})} \left((\chi_{B(1/\alpha)} \circ \operatorname{Res}) + (\chi_B \circ A) + \chi_{C_{\Gamma_1}(U)} \right)^* (\sigma).$$
(11)

The inf-convolution $f \Box g$ of two proper lower semi-continuous (lsc) convex functions $f, g : E \to \mathbb{R}$ (E denotes a normed space—we will take $E = C(\overline{U})$ here) is defined by $(f \Box g)(x) = \inf_{y \in E} f(y) + g(x - y)$. This operation is commutative and associative. Moreover $f \Box g$ is a proper lsc convex function with domain Dom(f) + Dom(g), and its Legendre transform is $(f \Box g)^* = f^* + g^*$. Eventually, if 0 belongs to the interior of Dom(f) - Dom(g) then $(f + g)^* = f^* \Box g^*$ (see [19, Section 3.9 p. 42]). This last assumption is trivially satisfied here since any neighborhood of 0 in $C(\overline{U})$ is contained in $C^1(\overline{U}) + C(\overline{U})$.

We can thus rewrite (11) as

$$\frac{1}{\lambda_{\infty}} = \max_{\sigma \in P(\tilde{U})} \left((\chi_{B(1/\alpha)} \circ \operatorname{Res})^* \Box (\chi_B \circ A)^* \Box \chi^*_{\mathcal{C}_{\Gamma_1}(U)} \right) (\sigma)$$
$$= \max_{\sigma \in P(\tilde{U})} \inf \left((\chi_{B(1/\alpha)} \circ \operatorname{Res})^* (\mu_1) + (\chi_B \circ A)^* (\mu_2) + \chi^*_{\mathcal{C}_{\Gamma_1}(U)} (\mu_3) \right),$$
(12)

where the inf is taken over all triple of measures $\mu_1, \mu_2, \mu_3 \in M(\overline{U})$ such that $\sigma = \mu_1 + \mu_2 + \mu_3$. To pursue further we need to compute the various Legendre transforms involved in this expression. This is the content of the next proposition.

Proposition 4.3. There holds for $\mu \in M(\overline{U})$,

$$\chi^*_{\mathcal{C}_{\Gamma_1}(U)}(\mu) = \begin{cases} 0 & \text{if supp } \mu \subset \Gamma_1 \\ +\infty & \text{otherwise} \end{cases}$$
(13)

and

$$(\chi_B \circ A)^*(\mu) = \inf \left\{ \int_{\bar{U}} |\sigma| : \sigma \in M(\bar{U}, \mathbb{R}^n) \text{ s.t. } - \operatorname{div} \sigma = \mu \text{ in } \mathcal{D}'(\mathbb{R}^n) \right\}$$
$$= \begin{cases} W_1(\mu^+, \mu^-) & \text{if } \mu(\bar{U}) = 0, \\ +\infty & \text{otherwise.} \end{cases}$$
(14)

I.D. Rossi, N. Saintier / Nonlinear Analysis [())]

Moreover,

$$(\chi_{B(1/\alpha)} \circ \operatorname{Res})^*(\mu) = \begin{cases} \frac{1}{\alpha} |\mu|(\Gamma_2) & \text{if supp } \mu \subset \Gamma_2 \\ +\infty & \text{otherwise.} \end{cases}$$
(15)

Proof. These computations are more or less classical. We sketch them here for the reader's convenience. First, the definition of the Legendre transform gives

$$\chi^*_{C_{\Gamma_1}(U)}(\mu) = \sup_{u \in C(\bar{U})} (\mu, u) - \chi_{C_{\Gamma_1}(U)}(u)$$

=
$$\sup_{u \in C(\bar{U}), u=0 \text{ on } \Gamma_1} \int_{\bar{U}} u \, d\mu$$
(16)

from which we deduce (13).

We now prove (14). The second equality in (14) is well-known. It remains to prove the first one. We recall the following result concerning the Legendre transform: if *E* and *F* are two normed space, $L : E \to F$ linear with domain Dom(*L*) and $f : E \to \mathbb{R}$ is convex, consider the function $(LF)(y) = \inf\{f(x) : x \in Dom(L) \text{ s.t. } Lx = y\}, y \in F$. Then *Lf* is convex with $(Lf)^* = f^* \circ L^*$ in the domain Dom(*L**) of the adjoint $L^* : F^* \to E^*$ of *L*.

Notice that the adjoint $A^* : M(\overline{U}) \to M(\overline{U})$ of \overline{A} is defined by $A^*\mu = -\operatorname{div} \mu$ in the weak sense (i.e. $(A^*\mu, u) = (\mu, \nabla u) = \int \nabla u \, d\mu$ for any $u \in \operatorname{Dom}(A) = C^1(\overline{U})$) with domain $\operatorname{Dom}(A^*) = \{\mu \in M(\overline{U}), -\operatorname{div} \mu \in M_b(\mathbb{R}^n)\}.$

In a similar way as in (16), it can be seen that $\chi_B^*(\sigma) = \int |\sigma|$, so that the inf in (14) can be written as $(A^*\chi_B^*)(\mu)$. Then taking $f = \chi_B^*$, $L = A^*$ and noticing that χ_B is convex lsc (because *B* is convex and closed), so that $\chi_B^{**} = \chi_B$, we obtain $\chi_B \circ A^{**} = (A^*\chi_B^*)^*$. Observe that $A^{**} = A$ on Dom(*A*) so that $\chi_B \circ A = (A^*\chi_B^*)^*$ on Dom(*A*).

Observe that $\tilde{A}^* \chi_B^*$, which is the r.h.s. of (14), is lsc for the weak convergence (and thus also for the strong i.e. total variation convergence) in the sense that if μ_n , $\mu \in M(\bar{U})$ verify $\mu_n \to \mu$ weakly then

$$\liminf_{n \to +\infty} (A^* \chi_B^*)(\mu_n) \ge (A^* \chi_B^*)(\mu)$$

Indeed we can assume that $(A^*\chi_B^*)(\mu_n) \leq Cste$. Then taking $\sigma_n \in M(\overline{U}, \mathbb{R}^n)$ s.t. $-\operatorname{div} \sigma_n = \mu_n$ and $A^*\chi_B^*(\mu_n) = \int |\sigma_n| + o(1)$, we have $\int |\sigma_n| \leq C$. Then applying the Prokhorov theorem to σ_n^+ and σ^- , we have, up to a subsequence, that $\sigma_n \to \sigma$ weakly. In particular $-\operatorname{div} \sigma = \mu$ and $\liminf_{n \to +\infty} \int |\sigma_n| \geq \int |\sigma| \geq (A^*\chi_B^*)(\sigma)$ from which we deduce the result.

In particular $-\operatorname{div} \sigma = \mu$ and $\liminf_{n \to +\infty} \int |\sigma_n| \ge \int |\sigma| \ge (\ddot{A}^* \chi_B^*)(\sigma)$ from which we deduce the result. We thus have that $A^* \chi_B^*$ is convex lsc so that $A^* \chi_B^* = (A^* \chi_B^*)^{**}$. Hence $(\chi_B \circ A)^* = A^* \chi_B^*$ which is exactly (14).

The proof of (15) is similar. We have as before that for any $\mu \in M(\overline{U})$,

 $(\chi_{B(1/\alpha)} \circ \operatorname{Res})^*(\mu) = (\operatorname{Res}^*\chi^*_{B(1/\alpha)})(\mu) = \inf\{(\chi^*_{B(1/\alpha)})(\sigma) : \operatorname{Res}^*(\sigma) = \mu\}$

with Res : $C(\bar{U}) \to C(\Gamma_2)$ and Res^{*} : $C(\Gamma_2)^* = M(\Gamma_2) \to C(\bar{U})^* = M(\bar{U})$ is given by

$$(\operatorname{Res}^*(\sigma), v) = (\sigma, \operatorname{Res}(v)) = (\sigma, v_{|\Gamma_2}) = \int_{\Gamma_2} v \, d\sigma$$

for any $\sigma \in C(\Gamma_2)^*$, $v \in C(\overline{U})$. Moreover $\chi_{B(1/\alpha)} : C(\Gamma_2) \to \mathbb{R}$ and for any $\sigma \in C(\Gamma_2)^*$,

$$\chi^*_{B(1/\alpha)}(\sigma) = \sup_{v \in C(\Gamma_2)} (\sigma, v) - \chi_{B(1/\alpha)}(v) = \sup_{v \in C(\Gamma_2), \|v\|_{L^{\infty}(\Gamma_2)} \le 1/\alpha} \int_{\Gamma_2} v \, d\sigma$$
$$= \frac{1}{\alpha} \sup_{v \in C(\Gamma_2), \|v\|_{L^{\infty}(\Gamma_2)} \le 1} \int_{\Gamma_2} v \, d\sigma$$
$$= \frac{1}{\alpha} \int_{\Gamma_2} |\sigma|.$$

Thus

$$(\chi_{B(1/\alpha)} \circ \operatorname{Res})^*(\mu) = \inf \Big\{ \frac{1}{\alpha} \int_{\Gamma_2} |\sigma| : \sigma \in C(\Gamma_2)^* \text{ s.t. } \int_{\Gamma_2} u \, d\sigma = \int_{\bar{U}} u \, d\mu \text{ for all } u \in C(\bar{U}) \Big\}.$$

Consider an admissible measure σ . Then for any $A \subset \overline{U}$,

$$\sigma(A\cap\Gamma_2)=\int_{\Gamma^2}\mathbf{1}_A\,d\sigma=\int_{\bar{U}}\mathbf{1}_A\,d\mu=\mu(A).$$

It follows that there cannot exist $A \subset \overline{U} \setminus \Gamma_2$ s.t. $\mu(A) \neq 0$ i.e. supp $\mu \subset \Gamma_2$, and then $\sigma = \mu$. Hence $(\chi_{B(1/\alpha)} \circ \text{Res})^*(\mu) = \frac{1}{\alpha} |\mu|(\Gamma_2)$ if supp $\mu \subset \Gamma_2$. Otherwise there does not exist any admissible σ and the inf is $+\infty$. \Box

Please cite this article in press as: J.D. Rossi, N. Saintier, The limit as $p \rightarrow +\infty$ of the first eigenvalue for the *p*-Laplacian with mixed Dirichlet and Robin boundary conditions, Nonlinear Analysis (2014), http://dx.doi.org/10.1016/j.na.2014.09.005

J.D. Rossi, N. Saintier / Nonlinear Analysis 🛚 (💵 🎟) 💵 – 💵

Using the previous proposition, we can rewrite (16) as

$$\frac{1}{\lambda_{\infty}} = \max_{\sigma \in P(\bar{U})} \inf(\chi_B \circ A)^*(\mu_2) + \frac{1}{\alpha} |\mu_1|(\Gamma_2),$$

where the inf is taken over all triple of measures $\mu_1, \mu_2, \mu_3 \in M(\overline{U})$ such that $\sigma = \mu_1 + \mu_2 + \mu_3$, supp $\mu_3 \subset \Gamma_1$, supp $\mu_1 \subset \Gamma_2, \mu_2(\overline{U}) = 0$. Letting $\nu = \mu_1 + \mu_3 = \sigma - \mu_2$, we have $|\mu_1|(\Gamma_2) = |\nu|(\Gamma_2) = \nu^+(\Gamma_2) + \nu^-(\Gamma_2)$ since μ_1 and μ_3 have disjoint support. Moreover, since $\mu_2(\overline{U}) = 0$ i.e. $(\sigma + \nu^-)(\overline{U}) = \nu^+(\overline{U})$, we have

$$\begin{aligned} (\chi_B \circ A)^*(\mu_2) &= (\chi_B \circ A)^*(\sigma - \nu) \\ &= \inf \left\{ \int_{\bar{U}} |\tilde{\sigma}| : \tilde{\sigma} \in M(\bar{U}, \mathbb{R}^n) \text{ s.t.} - \operatorname{div} \tilde{\sigma} = (\sigma + \nu^-) - \nu^+ \text{ in } \mathcal{D}'(\mathbb{R}^n) \right\} \\ &= W_1(\sigma + \nu^-, \nu^+). \end{aligned}$$

We thus obtain

$$\frac{1}{\lambda_{\infty}} = \max_{\sigma \in P(\bar{U})} \inf_{\nu \in \mathcal{M}(\partial U), \ \nu(\partial U)=1} W_1(\sigma + \nu^-, \nu^+) + \frac{1}{\alpha} \nu^+(\Gamma_2) + \frac{1}{\alpha} \nu^-(\Gamma_2).$$

To conclude the proof of (7), it suffices to verify that the inf can be taken over non-negative ν . This is a consequence of the following proposition:

Proposition 4.4. For any $\sigma \in P(\overline{U})$,

$$\inf_{\nu_1,\nu_2 \in M_+(\partial U), \nu_2(\partial U) = \nu_1(\partial U) + 1} W_1(\sigma + \nu_1, \nu_2) = \inf_{\nu \in P(\partial U)} W_1(\sigma, \nu).$$

The proof of this lemma is based on the following lemma:

Lemma 2. Consider probability measures $\mu_{\varepsilon}, \mu \in P(\mathbb{R}^n)$ such that

 $\lim_{\varepsilon \to 0} W_1(\mu_\varepsilon, \mu) = 0,$

and a subset $A \subset P(\mathbb{R}^n)$ compact w.r.t. the convergence in distance W_1 . Then $\lim_{\varepsilon \to 0} W_1(\mu_\varepsilon, A) = W_1(\mu, A)$ where $W_1(\mu, A) = \inf_{\nu \in A} W_1(\mu, \nu)$.

Observe that the compactness assumption is satisfied for A = P(K) where $K \subset \mathbb{R}^n$ is compact in view of Prokhorov theorem and the fact that W_1 matrices the weak convergence in P(K) (because K is bounded).

Proof of Lemma 2. Consider $v_{\delta} \in A$ s.t. $\lim_{\delta \to 0} W_1(v_{\delta}, \mu) = W_1(\mu, A)$. Then passing to the limit in $W_1(\mu_{\varepsilon}, A) \leq W_1(\mu_{\varepsilon}, v_{\delta})$ yields $\lim \sup_{\varepsilon \to 0} W_1(\mu_{\varepsilon}, A) \leq W_1(\mu, v_{\delta})$ for any δ , so that $\limsup_{\varepsilon \to 0} W_1(\mu_{\varepsilon}, A) \leq W_1(\mu, A)$.

To prove the opposite inequality we consider $v_{\varepsilon} \in A$ such that $W_1(\mu_{\varepsilon}, v_{\varepsilon}) = W_1(\mu_{\varepsilon}, A) + o(1)$. Since A is compact, we can assume up to a subsequence that there exists $v \in A$ s.t. $W_1(v_{\varepsilon}, v) \to 0$. Since $W_1(\mu_{\varepsilon}, A) \to 0$, we obtain

$$\lim_{\varepsilon \to 0} W_1(\mu_{\varepsilon}, A) = \lim_{\varepsilon \to 0} W_1(\mu_{\varepsilon}, \nu_{\varepsilon}) = W_1(\mu, \nu) \ge W_1(\mu, A)$$

which ends the proof of the lemma. \Box

We now prove Proposition 4.4.

Proof of Proposition 4.4. The \leq inequality is clear (take $\nu_1 = 0$). To prove the opposite inequality, we first assume that supp $\sigma \subset U$. Given any ν_1 , ν_2 , any transfer plan $\pi \in \Pi(\sigma + \nu_1, \nu_2)$ (i.e. $\pi \in P(U)$ has marginals $\sigma + \nu_1$ and ν_2) can be written as

 $\pi=\tilde{\pi}+\bar{\pi},\quad \tilde{\pi}\in\Pi(\sigma,\tilde{\nu}_2),\; \bar{\pi}\in\Pi(\nu_1,\bar{\nu}_2)$

for some decomposition $v_2 = \tilde{v}_2 + \tilde{v}_2$ with \tilde{v}_2 , $\tilde{v}_2 \in M_+(\partial U)$, $\tilde{v}_2(\partial U) = 1$, $\tilde{v}_2(\partial U) = v_1(\partial U)$. It follows that

$$\begin{split} W_{1}(\sigma + \nu_{1}, \nu_{2}) &= \inf_{\pi \in \Pi(\sigma + \nu_{1}, \nu_{2})} \int_{\bar{U} \times \bar{U}} d(x, y) \, d\pi(x, y) \\ &= \inf_{\nu_{2} = \bar{\nu}_{2} + \bar{\nu}_{2}, \, \bar{\pi} \in \Pi(\sigma, \bar{\nu}_{2}), \, \bar{\pi} \in \Pi(\nu_{1}, \bar{\nu}_{2})} \int_{\bar{U} \times \bar{U}} d(x, y) \, d\tilde{\pi}(x, y) + \int_{\bar{U} \times \bar{U}} d(x, y) \, d\bar{\pi}(x, y) \\ &\geq \inf_{\nu_{2} = \bar{\nu}_{2} + \bar{\nu}_{2}} W_{1}(\sigma, \, \tilde{\nu}_{2}) + W_{1}(\nu_{1}, \, \bar{\nu}_{2}). \end{split}$$

Then

$$\inf_{\nu_1,\nu_2 \in M_+(\partial U), \nu_2(\partial U) = \nu_1(\partial U) + 1} W_1(\sigma + \nu_1, \nu_2) \ge \inf_{\nu_1,\nu_2 \in M_+(\partial U), \nu_2(\partial U) = \nu_1(\partial U) + 1} \inf_{\nu_2 = \tilde{\nu}_2 + \tilde{\nu}_2} W_1(\sigma, \tilde{\nu}_2) + W_1(\nu_1, \tilde{\nu}_2)$$

which is clearly greater than or equal to $\inf_{\tilde{\nu}_2 \in P(\partial U)} W_1(\sigma, \tilde{\nu}_2)$. This proves the \geq inequality when supp $\sigma \subset U$.

Please cite this article in press as: J.D. Rossi, N. Saintier, The limit as $p \rightarrow +\infty$ of the first eigenvalue for the *p*-Laplacian with mixed Dirichlet and Robin boundary conditions, Nonlinear Analysis (2014), http://dx.doi.org/10.1016/j.na.2014.09.005

J.D. Rossi, N. Saintier / Nonlinear Analysis 🛚 (💵 💷)

In the general case we have supp $\sigma \subset \overline{U}$. We consider $\sigma_{\varepsilon} = T_{\varepsilon} \sharp \sigma$ the push-forward of σ under $T_{\varepsilon}(x) = x - \varepsilon \vec{n}$ where \vec{n} denotes some smooth extension of the unit exterior normal to a neighborhood of ∂U . Then supp $\sigma_{\varepsilon} \subset U$ so that

$$\inf_{\nu_1,\nu_2 \in M_+(\partial U), \nu_2(\partial U) = \nu_1(\partial U) + 1} W_1(\sigma_{\varepsilon} + \nu_1, \nu_2) = W_1(\sigma_{\varepsilon}, P(\partial U)).$$

To pass to the limit as $\varepsilon \to 0$, we use Lemma 2. Just notice that $\sigma_{\varepsilon} \to \sigma$ weakly as measure i.e. $W_1(\sigma_{\varepsilon}, \sigma) \to 0$ since *U* is bounded, and $A = P(\partial U)$ is compact for the weak convergence. We then have $W_1(\sigma_{\varepsilon}, P(\partial U)) \to W_1(\sigma, P(\partial U))$. Observe also that the first part of the proof of Proposition 4.4, which does not use the compactness assumption, yields

 $\limsup_{\varepsilon \to 0} \inf_{\nu_1, \nu_2 \in M_+(\partial U), \nu_2(\partial U) = \nu_1(\partial U) + 1} W_1(\sigma_\varepsilon + \nu_1, \nu_2) \leq \inf_{\nu_1, \nu_2 \in M_+(\partial U), \nu_2(\partial U) = \nu_1(\partial U) + 1} W_1(\sigma + \nu_1, \nu_2).$

The result follows. \Box

To end the proof of Theorem 3, we verify that the max in (7) is attained by f_{∞} , the weak limit as $p \to +\infty$ of the measures $f_p = u_p^{p-1} dx$ (which exists up to a subsequence). Notice that u_p is the unique minimizer of the functional $F_p : W_{\Gamma_1}^{1,p}(U) \to \mathbb{R}$ defined by

$$F_p(u) = \frac{1}{p\lambda_p} \int_U |\nabla u|^p + \frac{\alpha^p}{p\lambda_p} \int_{\Gamma_2} |u|^p - (f_p, u)$$

Indeed the associated Euler–Lagrange equation, which has a unique solution since F_p is strictly convex, is the equation $\Delta_p u = \lambda_p f_p$ with the boundary conditions of (1), which admits u_p as a solution.

Writing F_p as

$$F_p(u) = \int_U \left| \frac{\nabla u}{p^{1/p} \lambda_p^{1/p}} \right|^p + \int_{\Gamma_2} \left| \frac{\alpha u}{p^{1/p} \lambda_p^{1/p}} \right|^p - (f_p, u),$$

we can prove, as in Proposition 4.1, that $F_p \Gamma$ -converge as $p \to +\infty$ to the functional $F_{\infty} : C(\overline{U}) \to \mathbb{R}$ defined by

$$F_{\infty}(u) = \begin{cases} -(f_{\infty}, u), & \text{if } u \in W_{\Gamma_1}^{1,\infty}(U), \|\nabla u\|_{\infty} \le \lambda_{\infty}, \text{ and } \alpha \|u\|_{L^{\infty}(\Gamma_2)} \le \lambda_{\infty} \\ +\infty & \text{otherwise.} \end{cases}$$

Since

$$\inf F_p = F_p(u_p) = \frac{1}{p} - 1,$$

we obtain that

$$F_{\infty}(u_{\infty}) = \inf F_{\infty} = \lim_{p \to +\infty} \inf F_p = -1.$$

Hence

$$-1 = \min\left\{-(f_{\infty}, u) + \chi_{B(1/\alpha)}(u_{|\Gamma_1}/\lambda_{\infty}) + \chi_B(\nabla u/\lambda_{\infty}) + \chi_{C_{\Gamma_1}(\tilde{U})}(u)\right\},\$$

i.e.

$$-\frac{1}{\lambda_{\infty}}=\min\Big\{-(f_{\infty},u)+\chi_{B(1/\alpha)}(u_{|\Gamma_{1}})+\chi_{B}(\nabla u)+\chi_{C_{\Gamma_{1}}(\tilde{U})}(u)\Big\}.$$

Then

$$\frac{1}{\lambda_{\infty}} = \max_{u \in C(\bar{U})} \left\{ (f_{\infty}, u) - \chi_{B(1/\alpha)}(u_{|\Gamma_1}) - \chi_B(\nabla u) - \chi_C(u) \right\}$$
$$= \left((\chi_{B(1/\alpha)} \circ \operatorname{Res}) + (\chi_B \circ A) + \chi_{C_{\Gamma_1}(\bar{U})} \right)^* (f_{\infty}).$$

Since $f_{\infty} \in P(\partial U)$, we obtain in view of (11) that f_{∞} is extremal in (7).

5. Proof of Theorem 2 for connected domains

Let $\phi(\sigma, \nu) = W_1(\sigma, \nu) + \frac{1}{\alpha}\nu(\Gamma_2), \sigma, \nu \in P(\partial U)$. Since W_1 is convex in (σ, ν) (see e.g. [15, Theorem 4.8]), we see that ϕ is convex. It easily follows that the function $\Phi(\sigma) = \inf_{\nu \in P(\partial U)} \phi(\sigma, \nu), \sigma \in P(\bar{U})$ is also convex. Indeed given $\sigma_1, \sigma_2 \in P(\bar{U})$ and any $\nu_1, \nu_2 \in P(\bar{U})$, we have

$$\begin{aligned} \Phi(t\sigma_1 + (1-t)\sigma_2) &\leq \phi(t\sigma_1 + (1-t)\sigma_2, t\nu_1 + (1-t)\nu_2) \\ &\leq t\phi(\sigma_1, \nu_1) + (1-t)\phi(\sigma_2, \nu_2). \end{aligned}$$

The result follows taking the infimum in v_1 , v_2 .

Please cite this article in press as: J.D. Rossi, N. Saintier, The limit as $p \rightarrow +\infty$ of the first eigenvalue for the *p*-Laplacian with mixed Dirichlet and Robin boundary conditions, Nonlinear Analysis (2014), http://dx.doi.org/10.1016/j.na.2014.09.005

J.D. Rossi, N. Saintier / Nonlinear Analysis 🛚 (💵 💷)

Since Φ is convex, it attains its maximum at an extreme point of the convex compact $P(\overline{U})$ i.e. at some Dirac mass δ_x , $x \in \overline{U}$:

$$\frac{1}{\lambda_{\infty}} = \max_{x \in \bar{U}} \inf_{\nu \in P(\partial U)} W_1(\delta_x, \nu) + \frac{1}{\alpha} \nu(\Gamma_2).$$

It is well-known that $W_1(\delta_x, \nu) = \int_{\bar{U}} d(x, y) d\nu(y)$ for any $x \in \bar{U}$. This follows from the fact that the unique $\pi \in P(\bar{U} \times \bar{U})$ with marginals δ_x and ν is $\pi = \delta_x \otimes \nu$. Indeed such a π must have support in $\{x\} \times \text{supp } \nu$ so that for any $A, B \subset \bar{U}$, $\pi(A \times B) = 0 = (\delta_x \otimes \nu)(A \times B)$ if $x \notin A$, and if $x \in A$,

$$\pi (A \times B) = \pi (\{x\} \times B) = \pi (X \times B) = \nu(B) = (\delta_x \otimes \nu)(A \times B).$$

Given $x \in \overline{U}$, we consider $x_1 \in \Gamma_1$ and $x_2 \in \Gamma_2$ such that $d(x, \Gamma_i) = d(x, x_i)$, i = 1, 2. We write $v \in P(\partial U)$ as $v = v_1 + v_2$ where $v_i = v_{|\Gamma_i|}$, i = 1, 2. Then

$$W_{1}(\delta_{x}, \nu) = \int_{\partial U} d(x, y) \, d\nu(y) = \int_{\Gamma_{1}} d(x, y) \, d\nu_{1}(y) + \int_{\Gamma_{2}} d(x, y) \, d\nu_{2}(y)$$

$$\geq d(x, \Gamma_{1})\nu_{1}(\Gamma_{1}) + d(x, \Gamma_{2})\nu_{2}(\Gamma_{2})$$

$$= W_{1}(\delta_{x_{1}}, \beta\delta_{x_{1}} + (1 - \beta)\delta_{x_{2}}),$$

where $\beta = \nu_1(\Gamma_1)$. We thus have

$$\frac{1}{\lambda_{\infty}} = \max_{x \in \overline{U}} \inf_{0 \le \beta \le 1} \beta d(x, \Gamma_1) + (1 - \beta) d(x, \Gamma_2) + \frac{1 - \beta}{\alpha}.$$

We deduce Theorem 2 noticing that for any $x \in \overline{U}$, the inf in β is

$$\begin{cases} d(x, \Gamma_2) + \frac{1}{\alpha} & \text{if } d(x, \Gamma_1) - d(x, \Gamma_2) - \frac{1}{\alpha} \ge 0 \text{ i.e. } x \in \mathcal{A} \\ d(x, \Gamma_1) & \text{otherwise.} \end{cases}$$

References

- [1] P. Juutinen, P. Lindqvist, J.J. Manfredi, The ∞-eigenvalue problem, Arch. Ration. Mech. Anal. 148 (1999) 89–105.
- [2] T. Champion, L. De Pascale, C. Jimenez, The ∞-eigenvalue problem and a problem of optimal transportation, Commun. Appl. Anal. 13 (4) (2009) 547–565.
- [3] P. Juutinen, P. Lindqvist, On the higher eigenvalues for the ∞ -eigenvalue problem, Calc. Var. Partial Differential Equations 23 (2) (2005) 169–192.
- [4] M. Belloni, B. Kawohl, The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p → ∞, ESAIM Control Optim. Calc. Var. 10 (2004) 28-52.
 [5] J.C. Navarro, J.D. Rossi, N. Saintier, A. San Antolin, The dependence of the first eigenvalue of the infinity Laplacian with respect to the domain, Glasg. Math. J. 56 (2014) 241-249.
- [6] G. Aronsson, M.G. Crandall, P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. 41 (2004) 439–505.
- [7] T. Bhattacharya, E. Di Benedetto, J. Manfredi, Limits as $p \to \infty$ of $\Delta_p u_p = f$ and related extremal problems, Rend. Semin. Mat. Univ. Politec. Torino (1991) 15–68.
- [8] M.G. Crandall, H. Ishii, P.L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992) 1–67.
- [9] G. Aronsson, Extensions of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967) 551-561.
- [10] R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal. 123 (1993) 51–74.
- [11] J. Garcia-Azorero, J.J. Manfredi, I. Peral, J.D. Rossi, Steklov eigenvlue for the ∞-Laplacian, Rend. Lincei 17 (3) (2006) 199–210.
- [12] A. Le, On the first eigenvalue of the Steklov eigenvalue problem for the infinity Laplacian, Electron. J. Differential Equations 2006 (111) (2006) 1–9.
- [13] L. Esposito, B. Kawohl, C. Nitsch, C. Trombetti, The Neumann eigenvalue problem for the ∞ -Laplacian, Preprint.
- [14] J.D. Rossi, N. Saintier, On the first nontrivial eigenvalue of the ∞ -Laplacian with Neumann boundary conditions, Houston J. Math. (2014) in press.
- [15] C. Villani, Optimal Transport, Old and New, in: Grundlehren der Mathematischen Wissenschaften, vol. 338, Springer-Verlag, Berlin, 2009.
- [16] J. Garcia-Azorero, J.J. Manfredi, I. Peral, J.D. Rossi, The Neumann problem for the ∞-Laplacian and the Monge–Kantorovich mass transfer problem, Nonlinear Anal. TMA 66 (2) (2007) 349–366.
- [17] A. Braides, Γ -Convergence for Beginners, Oxford University Press, 2002.
- [18] G. Dal Maso, An Introduction to Γ-Convergence, Birkhäuser, Basel, 1993.
- [19] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, in: Lecture Notes in Mathematics, vol. 1364, Springer, 1989.

Please cite this article in press as: J.D. Rossi, N. Saintier, The limit as $p \rightarrow +\infty$ of the first eigenvalue for the *p*-Laplacian with mixed Dirichlet and Robin boundary conditions, Nonlinear Analysis (2014), http://dx.doi.org/10.1016/j.na.2014.09.005