
Nonlinear Analysis ( ) –

Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

The limit as p → +∞ of the first eigenvalue for the
p-Laplacian with mixed Dirichlet and Robin boundary
conditions
Julio D. Rossi a,∗, Nicolas Saintier a,b
a Departamento de Matemática, FCEyN, Univ. de Buenos Aires, C.P. 1428, Buenos Aires, Argentina
b Instituto de Ciencias, Univ. Gral Sarmiento, Juan María Gutierrez 1150, Los Polvorines, Pcia de Buenos Aires, Argentina

a r t i c l e i n f o

Communicated by Enzo Mitidieri

MSC:
35J60
35P30

Keywords:
Eigenvalue problems
First variations
Infinity Laplacian

a b s t r a c t

We analyze the behavior as p → ∞ of the first eigenvalue of the p-Laplacian with mixed
boundary conditions of Dirichlet–Robin type. We find a nontrivial limit that we associate
to a variational principle involving L∞-norms. Moreover, we provide a geometrical charac-
terization of the limit value as well as a description of it using optimal mass transportation
techniques. Our results interpolate between the pure Dirichlet case and the mixed Dirich-
let–Neumann case.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction and description of the main results

Let U ⊂ Rn be a smooth, bounded, open and connected set. In order to consider mixed boundary conditions, we split the
boundary of U as ∂U = Γ1 ∪Γ2, with Γ1 ∩Γ2 = ∅ and |Γ1| > 0. In this paper we deal with the first eigenvalue, that we will
call λp, of the p-Laplacian with Dirichlet condition on Γ1 and Robin condition on Γ2 namely the smallest λ such that there is
a nontrivial solution to the following problem,−∆pu = λ|u|p−2u in U,

u = 0 on Γ1,

|∇u|p−2∂νu + αp
|u|p−2u = 0 on Γ2.

(1)

Here α is a non-negative parameter. Notice that when α = +∞, the boundary condition become u = 0 in all ∂U (a pure
Dirichlet condition) and when α = 0 we have a mixed Dirichlet–Neumann boundary condition.

Our main goal is to compute the limit as p → ∞ of this problem and look at its dependence on the parameter α.
To start our analysis we remark that λp has the following variational formulation:

λp = inf
u∈Xp


U

|∇u|p + αp


Γ2

|u|p : ∥u∥Lp(U) = 1


(2)

where

Xp =


u ∈ W 1,p

Γ1
(U), u ≥ 0


,
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and

W 1,p
Γ1

(U) =


u ∈ W 1,p(U), u = 0 on Γ1


.

Note that the infimum is attained since we assumed that |Γ1| > 0. Also notice that if we regard λp as a function of
α, α ∈ [0, +∞) → λp(α), then λp(α) is non-decreasing with limα→+∞ λp = λp,D the first Dirichlet eigenvalue for the
p-Laplacian in U .

We expect the limit problem of (2) as p → ∞ to be

λ∞ = inf
u∈X, ∥u∥L∞(U)=1

max

∥∇u∥L∞(U), α∥u∥L∞(Γ2)


(3)

where X :=


u ∈ W 1,∞(U), u = 0 on Γ1, u ≥ 0 in U


. Notice that when we let α → +∞ in (3) with Γ1 = ∂U we obtain

lim
α→+∞

λ∞(α) = λ∞,D = inf
u∈W1,∞

0 (U), ∥u∥L∞(U)=1
∥∇u∥L∞(U)

that is the first eigenvalue of the infinity Laplacian, ∆∞u = DuD2uDuwith Dirichlet boundary conditions. This value, λ∞,D,
turns out to be the limit of (λp,D)

1/p as p → ∞, see [1]. Our first result says that this kind of limit can be also computed for
any nonnegative α.

Theorem 1. There holds that

lim
p→+∞

(λp)
1/p

= λ∞.

Moreover the positive, normalized extremals for λp, up converge uniformly in Ū along subsequences pj → ∞ to u ∈ X which is
a minimizer for (3) and a viscosity solution tomin {|Du| − λ∞u, −∆∞u} = 0 in U,

u = 0 on Γ1,
min{|Du| − αu, −∂νu} = 0 on Γ2.

Our next goal is to characterize this limit value λ∞. The value of λ∞ results in the interplay between α, the geometry of
U and the sets Γ1, Γ2. We consider the (possibly empty) set

A :=


x ∈ Ū, d(x, Γ1) ≥

1
α

+ d(x, Γ2)

.

Notice that if A ≠ ∅ then the set

A′
:=


x ∈ Ū, d(x, Γ1) =

1
α

+ d(x, Γ2)


is also not empty. Indeed the function f (x) =
1
α

+d(x, Γ2)−d(x, Γ1) is continuous, less than or equal to 0 on A, and greater
than or equal to 0 if d(x, Γ1) ≪ 1 (we are using here the fact that U is connected to apply the mean value theorem). Our
next result gives a geometrical characterization of λ∞.

Theorem 2. It holds that

λ∞ =


min
x∈Ū

1
d(x, Γ1)

, if A = ∅,

min
x∈A

1
1
α

+ d(x, Γ2)
= min

x∈A′

1
1
α

+ d(x, Γ2)
, if A ≠ ∅.

(4)

Notice thatwhenα = +∞, which corresponds to pureDirichlet boundary conditions on thewhole ∂U , thenA = A′
= ∅

and we recover the result of [1], λ−1
∞

= λ−1
∞,D = maxx∈Ū d(x, ∂U). In the case of Neumann boundary conditions i.e. Γ1 = ∅

and α = 0 then A = ∅ and d(x, Γ1) = d(x, ∅) = +∞ for any x ∈ Ū so that λ∞ = 0 which is consistent with the fact the
1st eigenvalue of ∆p with Neumann boundary conditions is 0.

We will first give a simple proof in the case where U is convex by using a test-function argument based proof which we
were not able to extend to the general case. In fact the result for a arbitrary connected domain will be a consequence of an
optimal mass transport formulation of λ∞ that we now introduce.

To continue our analysis we have to recall some notions and notations from optimal mass transport theory. Recall that
the Monge–Kantorovich distanceW1(µ, ν) between two probability measures µ and ν over Ū is defined by

W1(µ, ν) = max
v∈W1,∞(U), ∥∇v∥∞≤1


U

v (dµ − dν). (5)
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Recently the authors in [2] relate λ∞,D with the Monge–Kantorovich distanceW1. They proved that

λ−1
∞,D = max

µ∈P(U)
W1(µ, P(∂U)), (6)

where P(U) and P(∂U) denote the set of probability measures over Ū and ∂U . Notice that the maximum is easily seen to be
reached at δx where x ∈ U is a most inner point.

In our case we are also able to give a characterization for λ∞ in terms of a maximization problem involving W1 but this
time we get an extra term involving the total variation of a measure on Γ2.

Theorem 3. It holds that

1
λ∞

= max
σ∈P(Ū)

inf
ν∈P(∂U)


W1(σ , ν) +

1
α

ν(Γ2)

. (7)

Moreover, the measures up−1
p dx weakly converge (up to a subsequence) as p → +∞ to a probability measure f∞ which

attains the maximum in (7).

Notice that when α = +∞, which corresponds to Dirichlet boundary conditions, then we recover the result of [2], who
showed that (6) holds.

As a corollary of this characterization in terms of optimal transportation, we can extend the result stated in Theorem 2
for the value of λ∞ to the case where U is not convex. We prefer to present our results in this order (even if Theorem 2 is not
initially proved in its full generality) for readability of the whole paper (the proof of Theorem 2 in the convex case is much
simpler).

Let us end the introduction with a brief description of the previous bibliography and the main ideas and techniques used
to prove our results. First, as by now classical results, we mention that the limit as p → ∞ of the first eigenvalue λp,D
of the p-Laplacian with Dirichlet boundary condition was studied in [3,1] (see also [4] for an anisotropic version). For its
dependence with respect to the domain we refer to [5]. The limit operator that appears here, the infinity-Laplacian is given
by the limit as p → ∞ of the p-Laplacian, in the sense that solutions to ∆pvp = 0 with a Dirichlet data vp = f on ∂Ω

converge as p → ∞ to the solution to ∆∞v = 0 with v = f on ∂Ω in the viscosity sense (see [6–8]). This operator appears
naturally when one considers absolutely minimizing Lipschitz extensions in Ω of a boundary data f (see [9,6,10]).

The case of a Steklov boundary condition (here the eigenvalue appears in the boundary condition) has also been
investigated recently. Indeed in [11] (see also [12] for a slightly different problem) it is studied the behavior as p → +∞ of
the so-called variational eigenvalues λk,p,S, k ≥ 1, of the p-Laplacian with a Steklov boundary condition. In particular it is
proved that

lim
p→+∞

λ
1/p
1,p,S = 1 and λ2,∞,S := lim

p→+∞
λ
1/p
2,p,S =

2
diam(U, Rn)

,

where here diam(U, Rn) denotes the diameter of U for the usual Euclidean distance in Rn.
For pure Neumann eigenvalues, we quote [13,14]. In those references it is considered the limit for the second eigenvalue

(the first one is zero). It is proved that in this case λ∞ := limp→+∞ λ
1/p
p = 2/diam(U), where diam(U) denotes the diameter

of U with respect to the geodesic distance in U . In addition, the regularity of λ∞ as a function of the domain U is studied
in [14] and in [13] it is proved that there are no nonzero eigenvalues below λ∞, so that λ∞ is indeed the first nontrivial
eigenvalue for the infinity-Laplacian with Neumann boundary conditions.

Concerning ideas and methods used in the proofs we use classical variational ideas to obtain the limit of (λp)
1/p and

viscosity techniques and to find the limit PDE problemwe use viscosity techniques as in [1] (we refer to [8] for the definition
of a viscosity solution). The characterization of λ∞ given in Theorem 2 follows using cones as test functions in the variational
formulation. Finally, mass transport techniques (we refer to [15]) and gamma-convergence of functionals are used to show
the more general characterization of λ∞ given in Theorem 3, see [2,14] for similar arguments in different contexts.

The paper is organized as follows. In Section 2 we deal with the limit as p → ∞ and prove Theorem 1. In Section 3 we
prove Theorem 2 that characterizes λ∞ in geometrical terms in the cases of a convex domain U . In Section 4 we use optimal
transport ideas to obtain Theorem 3. As a corollary, we eventually prove Theorem 2 for a general connected domain in the
last section.

2. Proof of Theorem 1

For the proof of Theorem 1 we will use the following lemma.

Lemma 1. For any f , g ∈ L∞(U) there holds

lim
p→+∞


∥f ∥Lp(U) + ∥g∥Lp(U)

 1
p

= max{∥f ∥L∞(U), ∥g∥L∞(U)}.
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Proof. The result is a direct consequence of the inequalities

max{∥f ∥p
Lp(U), ∥g∥

p
Lp(U)} ≤ ∥f ∥p

Lp(U) + ∥g∥p
Lp(U)

≤ 2max{∥f ∥p
Lp(U), ∥g∥

p
Lp(U)}.

In fact, from the previous inequalities, we get

lim
p→+∞

max{∥f ∥Lp(U), ∥g∥Lp(U)} ≤ lim
p→+∞


∥f ∥Lp(U) + ∥g∥Lp(U)

 1
p

≤ lim
p→+∞

2
1
p max{∥f ∥Lp(U), ∥g∥Lp(U)}.

We conclude using that

lim
p→+∞

∥f ∥Lp(U) = ∥f ∥L∞(U)

and

lim
p→+∞

∥g∥Lp(U) = ∥g∥L∞(U). �

Now let us proceed with the proof of Theorem 1.

Proof of Theorem 1. Let u ∈ X then u ∈ ∩p Xp. From the variational characterization of λp we have

(λp)
1/p

≤
1

∥u∥Lp(U)


U

|∇u|p + αp


Γ2

|u|p
1/p

.

Hence, using the previous lemma we get

lim sup
p→∞

(λp)
1/p

≤ max

∥∇u∥L∞(U), α∥u∥L∞(Γ2)


for any u ∈ X . Therefore, we conclude that

lim sup
p→∞

(λp)
1/p

≤ λ∞.

In addition, we get that, for up an eigenfunction associated to λp in Xp it holds that

lim sup
p→∞

∥∇up∥Lp(U) ≤ λ∞.

Therefore, we have that {up} is uniformly bounded (independently of p) inW 1,p(U). Then, for any fixed q we obtain

∥∇up∥Lq(U) ≤ ∥∇up∥Lp(U)|U|
p−q
qp ≤ C

with C independent of p. Hence, by a diagonal procedure, we can extract a subsequence pj → ∞ such that

upj → u

uniformly in U and weakly in everyW 1,q(U), q ∈ N. This limit u verifies that

∥∇u∥Lq(U) ≤ lim sup
p→∞

∥∇up∥Lq(U) ≤ lim sup
p→∞

∥∇up∥Lp(U)|U|
p−q
qp ≤ λ∞|U|

1
q

and then we get

∥∇u∥L∞(U) ≤ λ∞.

Moreover, we have

α∥up∥Lq(Γ2) ≤


αp

∥up∥
p
Lp(Γ2)

|Γ2|
p−q
q

1/p
≤


λp|Γ2|

p−q
q

1/p
,

then

α∥u∥Lq(Γ2) ≤ lim sup
p→∞

α∥up∥Lq(Γ2) ≤ lim sup
p→∞

α∥up∥Lq(Γ2) ≤ λ∞|Γ2|
1
q

and we conclude that

α∥u∥L∞(Γ2) ≤ λ∞.
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Hence

max

∥∇u∥L∞(U), α∥u∥L∞(Γ2)


≤ λ∞.

Now, we only have to observe that from the uniform convergence we get that u ∈ X , and then we conclude that u is a
minimizer of (3). In addition, our previous calculations show that

λ∞ ≤ lim inf
p→∞

(λp)
1
p .

Now, concerning the equation verified by the limit of up, u, we have that, from the fact that up are viscosity solutions to
∆pu = λp|u|p−2u and that (λp)

1/p converges to λ∞ we conclude as in [1] that the limit u is a viscosity solution to

min {|Du| − λ∞u, −∆∞u} = 0.

That u = 0 on Γ1 is immediate from uniform convergence in U and the fact that up verify the same condition.
On Γ2 we have

|∇u|p−2∂νu + αp
|u|p−2u = 0,

therefore, passing to the limit in the viscosity sense as done in [16] we obtain

min{|Du| − αu, −∂νu} = 0.

This ends the proof. �

3. Proof of Theorem 2 for convex domains

Along this section we assume that U is convex.

Proof of Theorem 2. Using the variational characterization (3) proved in the previous section, we estimate λ∞ from above
by using as test-function a truncated cone of the form

u(x) =


1 − a|x − x0|


+

where a > 0 and x0 ∈ Ū . Then

u ≡ 0 on Γ1 iff a ≥
1

d(x0, Γ1)

∥∇u∥L∞(U) = a,

and ∥u∥L∞(Γ2) =


1 − ad(x0, Γ2)


+

.

It follows that

λ∞ ≤ infmax{a, α[1 − ad(x0, Γ2)]+}

where the infimum is taken over all the x0 ∈ Ū and a > 0 such that a ≥ 1/d(x0, Γ1). Examining the two possibilities for the
max, we obtain easily the upper bound for λ∞.

To prove the lower bound we argue as follows: for any x0 ∈ Ū , and any Lipschitz function u ∈ X with u(x0) = 1, we have

1 ≥ ∥u∥L∞(Γ2) ≥


1 − ∥∇u∥∞d(x0, Γ2)


+

.

Thus

λ∞ ≥ infmax

∥∇u∥L∞(U), α


1 − ∥∇u∥L∞(U)d(x0, Γ2)


+


where the infimum is taken over all u ∈ W 1,∞(Ū) such that u = 0 in Γ1, ∥u∥L∞(U) = 1 and ∥∇u∥L∞(U) ≥

1
d(x0,Γ1)

for
any x0 ∈ {u = 1}. From this point the argument concludes as for the previous case just analyzing the possibilities for the
max. �

4. Proof of Theorem 3

The proof follows the lines of [2] (see also [14] for the pure Neumann boundary case).
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We begin rewriting the variational formulation (2) of λp as

1 = sup


U
|u|p : u ∈ W 1,p

Γ1
(U) s.t.


U

|∇u|p + αp


Γ2

|u|p = λp


.

We are thus lead to consider the functions Gp : C(Ū) × M(Ū) → R, p ≥ 1, defined by

Gp(v, σ ) =

−


v dσ if v ∈ W 1,p

Γ1
(U),


U

|∇v|
p
+ αp


Γ2

|v|
p

≤ λp
p, and σ ∈ Lp

′

(U) with

U

|σ |
p′

≤ 1,

+∞ otherwise.

Notice that the pair (up, u
p−1
p dx) is an extremal for Gp so that minGp = −1. Indeed for any admissible pair (v, σ ) ∈

W 1,p
Γ1

(U) × Lp
′

(U), we have

−Gp(v, σ ) =


U

vσ ≤ ∥v∥p∥σ∥p′ ≤ λ−1/p
p


U

|∇v|
p
+ αp


Γ2

|v|
p
1/p

≤ 1 =


U
up
p

(we used successively Hölder’s inequality, the definition of λp and the fact that v is admissible). In view of Lemma 1, we
introduce the formal limit functional G∞ : C(Ū) × M(Ū) → R of the Gp by

G∞(v, σ ) =

−


v dσ if v ∈ W 1,∞

Γ1
(U),max{∥∇u∥∞, α∥v∥L∞(Γ2)} ≤ λ∞, and |σ |(Ū) ≤ 1,

+∞ otherwise.

The convergence of the functionals Gp to G∞ can be justified using the notion of Γ -convergence. Recall that a sequence
of functionals Fn : X → [0, +∞] defined over a metric space X is said to Γ -converge to a functional F∞ : X → [0, +∞] if
the following two conditions hold:

• for every x ∈ X and every sequence (xn)n ⊂ X converging to x, F(x) ≤ lim inf F(xn),
and

• for any x ∈ X , there exists a sequence (xn)n ⊂ X converging to x such that F(x) ≥ lim sup F(xn).

An easy but important consequence of the definition, thatwewill use later, is the fact that if xn is aminimizer of Fn then every
cluster point of the sequence (xn) is a minimizer of F∞. We refer e.g. to [17,18] for a detailed account on Γ -convergence.

Proposition 4.1. The functionals Gp Γ -converge as p → +∞ to G∞.

Proof. The proof is very similar to [2] (see also [14] for the pure Neumann boundary case). We briefly sketch it for the
reader’s convenience.

Assume that (vp, σp) ∈ C(Ū) × M(Ū) converges to (v, σ ). We have to prove that

lim inf
p→+∞

Gp(vp, σp) ≥ G(v, σ ). (8)

We can assume that Gp(vp, σp) < ∞. Then we have
U

vpσp dx −


U

v dσ =


U
(vp − v)σp dx +


U

v (σp dx − dσ) → 0

as p → +∞. Indeed the first integral on the right hand side can be bounded by ∥vp−v∥∞∥σp∥p′ |U|
1
p = o(1). Independently

U
|σ | =


U

|σp| dx + o(1) ≤ ∥σp∥p′ |U|
1
p + o(1) ≤ 1 + o(1)

so that

U |σ | ≤ 1. Moreover taking limit in α∥vp∥Lp(Γ2) ≤ λp yields α∥v∥L∞(Γ2) ≤ λ∞. Eventually, for any φ ∈ Lp

′

(U, Rn)
such that ∥φ∥p′ ≤ 1 we have

U
φ∇v dx = −


U

v divφ dx = −


U

vp divφ dx + o(1) =


U

φ∇vp dx + o(1)

≤ ∥∇vp∥p + o(1) ≤ λ
1
p
p + o(1) = λ∞ + o(1),

where the o(1) does not depend on φ. Taking the supremum over all such φ we obtain ∥∇v∥p ≤ λ∞ + o(1), so that
∥∇v∥∞ ≤ λ∞. It follows that (v, σ ) is admissible for G∞.
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We now fix a pair (v, σ ) admissible for G∞. We have to find some pair (vp, σp) admissible for Gp which converges to
(v, σ ) and such that

lim sup
p→+∞

Gp(vp, σp) ≤ G∞(v, σ ).

We define

vp =
λ

1
p
p

λ∞(|U| + |Γ2|)
1
p
v.

Then vp ∈ W 1,p(U), vp → v uniformly, and

U |∇vp|

p
+ αp


Γ2

|vp|
p

≤ λ
p
p.

In order to define σp by regularizing σ by convolution, we first need to adjust a little. Let n⃗ be the unit inner normal vector
to U that we extend in a smooth way to Rn with compact support in a neighborhood of ∂U . We consider Tε : Ū → Ū2ε :=

{x ∈ Ū, dist(x, ∂U) ≥ 2ε} defined by Tε(x) = x+2εn⃗. Let σε = Tε♯σ be the push-forward of σ by Tε i.e.

f dσε =


f ◦Tε dσ

for any f ∈ C(Ū2ε). Observe that supp σε ⊂ Ū2ε and also that


|σε| ≤ 1 since
|σε| = sup

∥φ∥L∞(U2ε)≤1


φ dσε = sup

∥φ∥L∞(U2ε)≤1


φ ◦ Tε dσ

≤


d|σ | ≤ 1.

Moreover

σε → σ weakly in the sense of measure.

Indeed for any φ ∈ C(Ū), φ dσε −


φ dσ

 ≤

 φ(x + 2εn⃗) − φ(x)
 dσ(x) = o(1)

since the integrand goes to 0 uniformly in x ∈ Ū . Denote by ρε the usual mollifying functions (i.e. ρε(x) = ε−nρ(x/ε) where
ρ is a smooth function compactly supported in the unit ball of Rn with


ρ = 1). Then

ρε ∗ σε − σε → 0 weakly in the sense of measure.

This follows from the fact that ∥φ ∗ ρε − φ∥L∞(U2ε) → 0 for any φ ∈ C(Ū). Hence

ρε ∗ σε ⇀ σ weakly in the sense of measure. (9)

We now regularize σε considering

σ̃ε := σε ∗ ρ̃ε ∈ C∞(U)

with

ρ̃ε :=
ρε

∥ρε∥p′

, ε = 1/p.

Then ∥ρε∥p′ → 1 since ∥ρε∥p′ = ε−n/p
∥ρ∥p′ → ∥ρε∥1 = 1. It then follows that σ̃ε ⇀ σ . Moreover σ̃ε is admissible for Gp

since, by the Holder inequality and recalling (9),

∥σ̃ε∥
p′

p′ ≤


|σε|

 1
p−1


ρ̃ε(x − y)p

′

dx d|σε|(y) = ∥ρ̃ε∥
p′

p′


|σε|

 p
p−1

≤ 1.

It follows that (σε, vp) is admissible for Gp and converges to (v, σ ). As before we have Gp(vp, σε) → G∞(v, σ ). �

Recall that from Theorem 1, up converge in C(Ū) up to a subsequence to some u∞ ∈ C(Ū), ∥u∥∞ = 1. Moreover, up to a
subsequence, themeasures up−1

p dx converge weakly to some probability measure σ∞. Indeed since Ū is compact, it suffices,
according to the Prokhorov theorem, to show that

lim
p→+∞


Ū
up−1
p dx = 1.

This follows from
Ū
up−1
p dx ≤ ∥up∥p|U|

1/p
→ 1
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and, for p > n,

1 =


Ū
up−1
p up dx ≤ ∥up∥∞


Ū
up−1
p dx = (1 + o(1))


Ū
up−1
p dx.

As a consequence of the Γ -convergence of Gp to G∞ and the fact that (up, u
p−1
p dx) is a minimizer of Gp, we obtain that

(u∞, σ∞) is a minimizer of G∞ with G∞(u∞, σ∞) = limp→+∞ Gp(up, u
p−1
p dx) = −1. Since σ∞ ∈ P(Ū) and u∞ is an

extremal for λ∞, we can thus write

1 = max


v dσ ; v ∈ W 1,∞
Γ1

(U),max{∥∇v∥∞, α∥v∥L∞(Γ2)} = λ∞, σ ∈ P(Ū)


i.e.

λ−1
∞

= max


v dσ ; v ∈ W 1,∞
Γ1

(U),max{∥∇v∥∞, α∥v∥L∞(Γ2)} = 1, σ ∈ P(Ū)

. (10)

An approximation argument shows that we can replace W 1,∞
Γ1

(U) by C1(U) ∩ CΓ1(Ū) where CΓ1(Ū) = {u ∈ C(Ū) : u =

0 on Γ1}.

Proposition 4.2. Given v ∈ W 1,∞
Γ1

(U), max{∥∇v∥∞, α∥v∥L∞(Γ2)} ≤ 1, there exist vk ∈ C1(U) ∩ CΓ1(Ū), max{∥∇vk∥∞,

α∥vk∥L∞(Γ2)} ≤ 1, such that vk → v uniformly in Ū .

Proof. The proof uses ideas from [2]. We first extend v in a neighborhood of ∂U by antisymmetric reflection across ∂U so
that the extended function v̄ is Lipschitz with ∥∇v̄∥∞ = ∥∇v∥∞ ≤ 1. We then apply the same method as in [2] consisting
in introducing the function θε(t) = (t − sgn(t)ε)1|t|≥ε and then regularizing θε ◦ v̄ by convolution with the usual mollifying
functions. Observe that ∥∇(θε ◦ v̄)∥∞ ≤ ∥∇v̄∥∞ ≤ 1 and that θε ◦ v̄ = 0 in the ε-neighborhood {x ∈ Rn, dist(x, Γ1) < ε}
of Γ1 since v̄ is 1-Lipschitz. Note also that |θ(t)| = (|t| − ε)1|t|≥ε so that on Γ2, |θε ◦ v̄| ≤ (α−1

− ε)+. Hence |θε ◦ v̄| ≤ α−1

in the ε-neighborhood of Γ2. It follows from these three comments that the regularizing of θε ◦ v̄ is adequate. �

Denoting by Res : C(Ū) → C(Γ2) the restriction operator, Au = ∇u the derivation operator with domain C1(U), and
B(R) the closed ball of radius R centered at 0 in C(Ū), B = B(1), we can rewrite (10) as

1
λ∞

= max
σ∈P(Ū)

max
u∈C(Ū)


(σ , u) − (χB(1/α) ◦ Res)(u) − (χB ◦ A)(u) − χCΓ1 (U)(u)


.

Recalling the definition of the Legendre transform, we eventually obtain

1
λ∞

= max
σ∈P(Ū)


(χB(1/α) ◦ Res) + (χB ◦ A) + χCΓ1 (U)

∗

(σ ). (11)

The inf-convolution f�g of two proper lower semi-continuous (lsc) convex functions f , g : E → R (E denotes a normed
space—we will take E = C(Ū) here) is defined by (f�g)(x) = infy∈E f (y) + g(x − y). This operation is commutative and
associative. Moreover f�g is a proper lsc convex function with domain Dom(f ) + Dom(g), and its Legendre transform is
(f�g)∗ = f ∗

+ g∗. Eventually, if 0 belongs to the interior of Dom(f ) − Dom(g) then (f + g)∗ = f ∗�g∗ (see [19, Section 3.9
p. 42]). This last assumption is trivially satisfied here since any neighborhood of 0 in C(Ū) is contained in C1(Ū) + C(Ū).

We can thus rewrite (11) as
1

λ∞

= max
σ∈P(Ū)


(χB(1/α) ◦ Res)∗�(χB ◦ A)∗�χ∗

CΓ1 (U)


(σ )

= max
σ∈P(Ū)

inf

(χB(1/α) ◦ Res)∗(µ1) + (χB ◦ A)∗(µ2) + χ∗

CΓ1 (U)(µ3)

, (12)

where the inf is taken over all triple of measures µ1, µ2, µ3 ∈ M(Ū) such that σ = µ1 + µ2 + µ3. To pursue further we
need to compute the various Legendre transforms involved in this expression. This is the content of the next proposition.

Proposition 4.3. There holds for µ ∈ M(Ū),

χ∗

CΓ1 (U)(µ) =


0 if suppµ ⊂ Γ1
+∞ otherwise (13)

and

(χB ◦ A)∗(µ) = inf


Ū
|σ | : σ ∈ M(Ū, Rn) s.t. − div σ = µ in D ′(Rn)


=


W1(µ

+, µ−) if µ(Ū) = 0,
+∞ otherwise. (14)
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Moreover,

(χB(1/α) ◦ Res)∗(µ) =


1
α

|µ|(Γ2) if suppµ ⊂ Γ2

+∞ otherwise.
(15)

Proof. These computations are more or less classical. We sketch them here for the reader’s convenience.
First, the definition of the Legendre transform gives

χ∗

CΓ1 (U)(µ) = sup
u∈C(Ū)

(µ, u) − χCΓ1 (U)(u)

= sup
u∈C(Ū), u=0 on Γ1


Ū
u dµ (16)

from which we deduce (13).
We now prove (14). The second equality in (14) is well-known. It remains to prove the first one. We recall the following

result concerning the Legendre transform: if E and F are two normed space, L : E → F linear with domain Dom(L) and
f : E → R is convex, consider the function (LF)(y) = inf {f (x) : x ∈ Dom(L) s.t. Lx = y}, y ∈ F . Then Lf is convex with
(Lf )∗ = f ∗

◦ L∗ in the domain Dom(L∗) of the adjoint L∗
: F∗

→ E∗ of L.
Notice that the adjoint A∗

: M(Ū) → M(Ū) of A is defined by A∗µ = −divµ in theweak sense (i.e. (A∗µ, u) = (µ, ∇u) =
∇u dµ for any u ∈ Dom(A) = C1(Ū)) with domain Dom(A∗) = {µ ∈ M(Ū), −div µ ∈ Mb(Rn)}.
In a similar way as in (16), it can be seen that χ∗

B (σ ) =


|σ |, so that the inf in (14) can be written as (A∗χ∗

B )(µ). Then
taking f = χ∗

B , L = A∗ and noticing that χB is convex lsc (because B is convex and closed), so that χ∗∗

B = χB, we obtain
χB ◦ A∗∗

= (A∗χ∗

B )∗. Observe that A∗∗
= A on Dom(A) so that χB ◦ A = (A∗χ∗

B )∗ on Dom(A).
Observe thatA∗χ∗

B , which is the r.h.s. of (14), is lsc for theweak convergence (and thus also for the strong i.e. total variation
convergence) in the sense that if µn, µ ∈ M(Ū) verify µn → µ weakly then

lim inf
n→+∞

(A∗χ∗

B )(µn) ≥ (A∗χ∗

B )(µ).

Indeedwe can assume that (A∗χ∗

B )(µn) ≤ Cste. Then taking σn ∈ M(Ū, Rn) s.t.−div σn = µn and A∗χ∗

B (µn) =


|σn|+o(1),
we have


|σn| ≤ C . Then applying the Prokhorov theorem toσ+

n andσ−, wehave, up to a subsequence, thatσn → σ weakly.
In particular −div σ = µ and lim infn→+∞


|σn| ≥


|σ | ≥ (A∗χ∗

B )(σ ) from which we deduce the result.
We thus have that A∗χ∗

B is convex lsc so that A∗χ∗

B = (A∗χ∗

B )∗∗. Hence (χB ◦ A)∗ = A∗χ∗

B which is exactly (14).
The proof of (15) is similar. We have as before that for any µ ∈ M(Ū),

(χB(1/α) ◦ Res)∗(µ) = (Res∗χ∗

B(1/α))(µ) = inf{(χ∗

B(1/α))(σ ) : Res∗(σ ) = µ}

with Res : C(Ū) → C(Γ2) and Res∗ : C(Γ2)
∗

= M(Γ2) → C(Ū)∗ = M(Ū) is given by

(Res∗(σ ), v) = (σ , Res(v)) = (σ , v|Γ2) =


Γ2

v dσ

for any σ ∈ C(Γ2)
∗, v ∈ C(Ū). Moreover χB(1/α) : C(Γ2) → R and for any σ ∈ C(Γ2)

∗,

χ∗

B(1/α)(σ ) = sup
v∈C(Γ2)

(σ , v) − χB(1/α)(v) = sup
v∈C(Γ2),∥v∥L∞(Γ2)≤1/α


Γ2

v dσ

=
1
α

sup
v∈C(Γ2),∥v∥L∞(Γ2)≤1


Γ2

v dσ

=
1
α


Γ2

|σ |.

Thus

(χB(1/α) ◦ Res)∗(µ) = inf
 1

α


Γ2

|σ | : σ ∈ C(Γ2)
∗ s.t.


Γ2

u dσ =


Ū
u dµ for all u ∈ C(Ū)


.

Consider an admissible measure σ . Then for any A ⊂ Ū ,

σ(A ∩ Γ2) =


Γ 2

1A dσ =


Ū
1A dµ = µ(A).

It follows that there cannot exist A ⊂ Ū \ Γ2 s.t. µ(A) ≠ 0 i.e. supp µ ⊂ Γ2, and then σ = µ. Hence (χB(1/α) ◦ Res)∗(µ) =
1
α
|µ|(Γ2) if suppµ ⊂ Γ2. Otherwise there does not exist any admissible σ and the inf is +∞. �
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Using the previous proposition, we can rewrite (16) as
1

λ∞

= max
σ∈P(Ū)

inf(χB ◦ A)∗(µ2) +
1
α

|µ1|(Γ2),

where the inf is taken over all triple of measures µ1, µ2, µ3 ∈ M(Ū) such that σ = µ1 + µ2 + µ3, supp µ3 ⊂ Γ1,
supp µ1 ⊂ Γ2, µ2(Ū) = 0. Letting ν = µ1 + µ3 = σ − µ2, we have |µ1|(Γ2) = |ν|(Γ2) = ν+(Γ2) + ν−(Γ2) since µ1 and
µ3 have disjoint support. Moreover, since µ2(Ū) = 0 i.e. (σ + ν−)(Ū) = ν+(Ū), we have

(χB ◦ A)∗(µ2) = (χB ◦ A)∗(σ − ν)

= inf


Ū
|σ̃ | : σ̃ ∈ M(Ū, Rn) s.t. − div σ̃ = (σ + ν−) − ν+ in D ′(Rn)


= W1(σ + ν−, ν+).

We thus obtain
1

λ∞

= max
σ∈P(Ū)

inf
ν∈M(∂U), ν(∂U)=1

W1(σ + ν−, ν+) +
1
α

ν+(Γ2) +
1
α

ν−(Γ2).

To conclude the proof of (7), it suffices to verify that the inf can be taken over non-negative ν. This is a consequence of the
following proposition:

Proposition 4.4. For any σ ∈ P(Ū),

inf
ν1,ν2∈M+(∂U), ν2(∂U)=ν1(∂U)+1

W1(σ + ν1, ν2) = inf
ν∈P(∂U)

W1(σ , ν).

The proof of this lemma is based on the following lemma:

Lemma 2. Consider probability measures µε, µ ∈ P(Rn) such that

lim
ε→0

W1(µε, µ) = 0,

and a subset A ⊂ P(Rn) compact w.r.t. the convergence in distanceW1. Then limε→0 W1(µε, A) = W1(µ, A)whereW1(µ, A) =

infν∈A W1(µ, ν).

Observe that the compactness assumption is satisfied for A = P(K)where K ⊂ Rn is compact in view of Prokhorov theorem
and the fact that W1 matrices the weak convergence in P(K) (because K is bounded).

Proof of Lemma 2. Consider νδ ∈ A s.t. limδ→0 W1(νδ, µ) = W1(µ, A). Then passing to the limit inW1(µε, A) ≤ W1(µε, νδ)
yields lim supε→0 W1(µε, A) ≤ W1(µ, νδ) for any δ, so that lim supε→0 W1(µε, A) ≤ W1(µ, A).

To prove the opposite inequality we consider νε ∈ A such that W1(µε, νε) = W1(µε, A) + o(1). Since A is compact, we
can assume up to a subsequence that there exists ν ∈ A s.t. W1(νε, ν) → 0. SinceW1(µε, µ) → 0, we obtain

lim
ε→0

W1(µε, A) = lim
ε→0

W1(µε, νε) = W1(µ, ν) ≥ W1(µ, A)

which ends the proof of the lemma. �

We now prove Proposition 4.4.

Proof of Proposition 4.4. The ≤ inequality is clear (take ν1 = 0). To prove the opposite inequality, we first assume that
supp σ ⊂ U . Given any ν1, ν2, any transfer plan π ∈ Π(σ + ν1, ν2) (i.e. π ∈ P(Ū) has marginals σ + ν1 and ν2) can be
written as

π = π̃ + π̄ , π̃ ∈ Π(σ , ν̃2), π̄ ∈ Π(ν1, ν̄2)

for some decomposition ν2 = ν̃2 + ν̄2 with ν̃2, ν̄2 ∈ M+(∂U), ν̃2(∂U) = 1, ν̄2(∂U) = ν1(∂U). It follows that

W1(σ + ν1, ν2) = inf
π∈Π(σ+ν1,ν2)


Ū×Ū

d(x, y) dπ(x, y)

= inf
ν2=ν̃2+ν̄2, π̃∈Π(σ ,ν̃2), π̄∈Π(ν1,ν̄2)


Ū×Ū

d(x, y) dπ̃(x, y) +


Ū×Ū

d(x, y) dπ̄(x, y)

≥ inf
ν2=ν̃2+ν̄2

W1(σ , ν̃2) + W1(ν1, ν̄2).

Then

inf
ν1,ν2∈M+(∂U), ν2(∂U)=ν1(∂U)+1

W1(σ + ν1, ν2) ≥ inf
ν1,ν2∈M+(∂U), ν2(∂U)=ν1(∂U)+1

inf
ν2=ν̃2+ν̄2

W1(σ , ν̃2) + W1(ν1, ν̄2)

which is clearly greater than or equal to infν̃2∈P(∂U) W1(σ , ν̃2). This proves the ≥ inequality when supp σ ⊂ U .
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In the general case we have supp σ ⊂ Ū . We consider σε = Tε♯σ the push-forward of σ under Tε(x) = x − εn⃗ where n⃗
denotes some smooth extension of the unit exterior normal to a neighborhood of ∂U . Then supp σε ⊂ U so that

inf
ν1,ν2∈M+(∂U), ν2(∂U)=ν1(∂U)+1

W1(σε + ν1, ν2) = W1(σε, P(∂U)).

To pass to the limit as ε → 0, we use Lemma 2. Just notice that σε → σ weakly as measure i.e. W1(σε, σ ) → 0 since U is
bounded, and A = P(∂U) is compact for the weak convergence. We then have W1(σε, P(∂U)) → W1(σ , P(∂U)). Observe
also that the first part of the proof of Proposition 4.4, which does not use the compactness assumption, yields

lim sup
ε→0

inf
ν1,ν2∈M+(∂U), ν2(∂U)=ν1(∂U)+1

W1(σε + ν1, ν2) ≤ inf
ν1,ν2∈M+(∂U), ν2(∂U)=ν1(∂U)+1

W1(σ + ν1, ν2).

The result follows. �

To end the proof of Theorem 3, we verify that themax in (7) is attained by f∞, theweak limit as p → +∞ of themeasures
fp = up−1

p dx (which exists up to a subsequence). Notice that up is the unique minimizer of the functional Fp : W 1,p
Γ1

(U) → R
defined by

Fp(u) =
1

pλp


U

|∇u|p +
αp

pλp


Γ2

|u|p − (fp, u).

Indeed the associated Euler–Lagrange equation, which has a unique solution since Fp is strictly convex, is the equation
∆pu = λpfp with the boundary conditions of (1), which admits up as a solution.

Writing Fp as

Fp(u) =


U

 ∇u

p1/pλ1/p
p

p +


Γ2

 αu

p1/pλ1/p
p

p − (fp, u),

we can prove, as in Proposition 4.1, that Fp Γ -converge as p → +∞ to the functional F∞ : C(Ū) → R defined by

F∞(u) =


−(f∞, u), if u ∈ W 1,∞

Γ1
(U), ∥∇u∥∞ ≤ λ∞, and α∥u∥L∞(Γ2) ≤ λ∞

+∞ otherwise.

Since

inf Fp = Fp(up) =
1
p

− 1,

we obtain that

F∞(u∞) = inf F∞ = lim
p→+∞

inf Fp = −1.

Hence

−1 = min

−(f∞, u) + χB(1/α)(u|Γ1/λ∞) + χB(∇u/λ∞) + χCΓ1 (Ū)(u)


,

i.e.

−
1

λ∞

= min

−(f∞, u) + χB(1/α)(u|Γ1) + χB(∇u) + χCΓ1 (Ū)(u)


.

Then
1

λ∞

= max
u∈C(Ū)


(f∞, u) − χB(1/α)(u|Γ1) − χB(∇u) − χC (u)


=


(χB(1/α) ◦ Res) + (χB ◦ A) + χCΓ1 (Ū)

∗

(f∞).

Since f∞ ∈ P(∂U), we obtain in view of (11) that f∞ is extremal in (7).

5. Proof of Theorem 2 for connected domains

Let φ(σ , ν) = W1(σ , ν) +
1
α
ν(Γ2), σ , ν ∈ P(∂U). SinceW1 is convex in (σ , ν) (see e.g. [15, Theorem 4.8]), we see that φ

is convex. It easily follows that the functionΦ(σ ) = infν∈P(∂U) φ(σ , ν), σ ∈ P(Ū) is also convex. Indeed given σ1, σ2 ∈ P(Ū)

and any ν1, ν2 ∈ P(Ū), we have

Φ(tσ1 + (1 − t)σ2) ≤ φ(tσ1 + (1 − t)σ2, tν1 + (1 − t)ν2)

≤ tφ(σ1, ν1) + (1 − t)φ(σ2, ν2).

The result follows taking the infimum in ν1, ν2.
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Since Φ is convex, it attains its maximum at an extreme point of the convex compact P(Ū) i.e. at some Dirac mass δx,
x ∈ Ū:

1
λ∞

= max
x∈Ū

inf
ν∈P(∂U)

W1(δx, ν) +
1
α

ν(Γ2).

It is well-known thatW1(δx, ν) =

Ū d(x, y) dν(y) for any x ∈ Ū . This follows from the fact that the uniqueπ ∈ P(Ū × Ū)

with marginals δx and ν is π = δx ⊗ ν. Indeed such a π must have support in {x} × supp ν so that for any A, B ⊂ Ū ,
π(A × B) = 0 = (δx ⊗ ν)(A × B) if x ∉ A, and if x ∈ A,

π(A × B) = π({x} × B) = π(X × B) = ν(B) = (δx ⊗ ν)(A × B).

Given x ∈ Ū , we consider x1 ∈ Γ1 and x2 ∈ Γ2 such that d(x, Γi) = d(x, xi), i = 1, 2. We write ν ∈ P(∂U) as ν = ν1 + ν2
where νi = ν|Γi , i = 1, 2. Then

W1(δx, ν) =


∂U

d(x, y) dν(y) =


Γ1

d(x, y) dν1(y) +


Γ2

d(x, y) dν2(y)

≥ d(x, Γ1)ν1(Γ1) + d(x, Γ2)ν2(Γ2)

= W1(δx1 , βδx1 + (1 − β)δx2),

where β = ν1(Γ1). We thus have

1
λ∞

= max
x∈Ū

inf
0≤β≤1

βd(x, Γ1) + (1 − β)d(x, Γ2) +
1 − β

α
.

We deduce Theorem 2 noticing that for any x ∈ Ū , the inf in β isd(x, Γ2) +
1
α

if d(x, Γ1) − d(x, Γ2) −
1
α

≥ 0 i.e. x ∈ A

d(x, Γ1) otherwise.
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