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Abstract. We describe in this paper the asymptotic behaviour in Sobolev
spaces of sequences of solutions of critical equations involving the p-Laplacian
(see equations (Eα) below) on a compact Riemannian manifold (M, g) which
are invariant by a subgroup of the group of isometries of (M, g). We also
prove pointwise estimates.
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Let (M, g) be a smooth compact Riemannian n-manifold, G a closed sub-
group of the group of isometries Isomg(M) of (M, g) and k = minx∈M dim Gx,
where Gx denotes the orbit of a point x ∈ M under G. We say that a function
ψ : M → R is G-invariant if ψ(gx) = ψ(x) for any x ∈ M and g ∈ G. We consider
equations like

∆p,gu+ hαu
p−1 = fup∗−1 (Eα)

where 1 < p < n − k, ∆p,gu = −divg

(|∇u|p−2
g ∇u) is the p-Laplacian of u,

p∗ = (n−k)p
n−k−p is the critical exponent for the injection from the Sobolev space

Hp
1,G(M) of G-invariant functions in Lp(M) whose gradient is also in Lp(M),

into the Lebesgue spaces Lq
G(M) of G-invariant functions in Lq(M) (cf Hebey-

Vaugon [6]), f is a C1 G-invariant function, and (hα) is a sequence of continuous
G-invariant functions converging uniformly to some continousG-invariant function
h∞. The solutions we consider are in Hp

1 ; therefore, a solution to (Eα) has to be
taken in the distribution sense. We assume that the operator ∆p,g +h∞ is coercive

8
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in the sense that there exists λ > 0 such that for all u ∈ Hp
1,G(M),∫

M

(|∇u|pg + h∞|u|p) dvg ≥ λ‖u‖p
Hp

1
. (1)

In fact, we can easily prove that ∆p,g + h∞ is coercive if and only if there exists
λ > 0 such that for all u ∈ Hp

1,G(M),∫
M

(|∇u|pg + h∞|u|p) dvg ≥ λ‖u‖p
p.

A necessary condition for (Eα) to admit a positive solution u is maxM f > 0.
Indeed, multiplying (Eα) by u, integrating by parts and using the coercivity
assumption (1) yields ∫

M

fup∗
dvg ≥ λ‖uα‖p

Hp
1

+ o(1).

We then deduce that f must be positive somewhere, and then maxM f > 0. From
now on, we assume that maxM f > 0. We also consider the limit equation obtained
by letting formally α → +∞ in (Eα), namely

∆p,gu+ h∞up−1 = fup∗−1. (E∞)

For each α, let uα be a G-invariant weak positive solution of (Eα) and assume
that the sequence (uα) is bounded in Hp

1 . The purpose of this note is to describe
the asymptotic behavior of the uα’s. In the case where the group G is reduced to
the identity, it is known (see Saintier [9], Hebey-Robert [5], Struwe [10]) that uα

can be written as the sum of a weak solution of the limit equation (E∞) plus a
finite sum of “bubbles” plus a sequence of functions converging strongly to 0 in
Hp

1 . A bubble is a sequence of functions obtained by rescaling positive solution
of the Euclidean critical equation ∆p,ξu = uq−1 in R

n, q = np/(n − p), where
ξ is the Euclidean metric on R

n. We prove here (cf the theorem below) that
this decomposition still holds in the context of G-invariant functions under some
assumptions on the orbits of G (assumption (H) below) and with an extended
notion of bubble.

We now recall some known facts and fix some notations. We refer to Bredon
[1] for more details (see also Hebey-Vaugon [6] and Faget [2]). Let G′ be a closed
subgroup of Isomg(M). Then G′ is a Lie group. For each x ∈ M , we let x̄ = Π(x),
where Π : M → M/G′ is the canonical surjection, and denote by G′x = {gx, g ∈
G′} (resp. Sx = {g ∈ G′, gx = x}) the orbit (resp. the stabilizator) of x under
the action of G′. Then G′x is a compact submanifold of M naturally isomorphic
to the quotient group G′/Sx. An orbit G′x is said principal if its stabilizator is
minimal up to conjugacy i.e. for all y ∈ M , Sy contains a subgroup conjugate to
Sx. In particular, the principal orbits are of maximal dimension (but the converse
is false). If we denote by Ω the union of all the principal orbits, then Ω is a dense
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open subset of M and Ω/G′ is a smooth connected manifold which can be equiped
with a Riemaniann metric ḡ in such a way that the canonical surjection from Ω
to Ω/G′ is a Riemannian submersion. We then consider the metric g̃ belonging
to the conformal class of ḡ defined by

g̃ = v̄
2

n−k−p ḡ (2)

where v̄(x̄) = V ol(Π−1(x̄)) = V ol(G′x) denotes the volume of G′x computed with
respect to the induced metric. We will denote by Bḡ

x̄(r) and Bg̃
x̄(r) the geodesic

balls centered at x̄ of radius r for the metric ḡ and g̃ respectively. Given a Rie-
mannian manifold N , we denote by Hp

1 (N) the usual Sobolev space of functions
u ∈ Lp(N) such that ∇u ∈ Lp(N) with the norm ‖u‖p

Hp
1

= ‖u‖p
p + ‖∇u‖p

p, and by
◦
Hp

1 (N) the closure of C∞
c (N) for the norm ‖.‖Hp

1
. If G′ is a subgroup of isome-

tries of N , we let Lp
G′(N), Hp

1,G′(N) and
◦

Hp
1,G′ (N) be the space of G′-invariant

functions in Lp(N), Hp
1 (N) and

◦
Hp

1 (N) respectively:

Lp
G′(N) = {u ∈ Lp(N) s.t. ∀ g ∈ G′, u(gx) = u(x) a.e. in N} ,

Hp
1,G′(N) = {u ∈ Hp

1 (N) s.t. ∀ g ∈ G′, u(gx) = u(x) a.e. in N} ,
◦

Hp
1,G′ (N) =

{
u ∈

◦
Hp

1 (N) s.t. ∀ g ∈ G′, u(gx) = u(x) a.e. in N
}
,

We assume that k = minx∈M dim Gx ≥ 1 and make the following assumption on
the G-orbits of dimension k:
(H) for each G - orbit Gx0 of minimal dimension k, there exist δ > 0 and a closed
subgroup G′ of Isomg(M) such that

G′x0 = Gx0 (H1)

and, for all x ∈ BGx0(δ) := {y ∈ M, dg(y,Gx0) < δ},
G′x is principal and G′x ⊂ Gx. (H2)

We refer to Faget [2] for examples of manifolds and groups satisfying (H). In
particular, dim G′x = dim Gx0 = k for all x ∈ BGx0(δ) and we can consider the
Riemannian quotient (n−k)-manifold N := BGx0(δ)/G

′. We fix a smooth cut-off
function η ∈ C∞

c (Rn−k) with support in B0(2) such that 0 ≤ η ≤ 1 and η ≡ 1 in
B0(1). Given x̄1 ∈ N and δ′ ∈ (0, ig̃(x̄1)/2), we let

ηx̄1,δ′(x̄) = η

(
dg̃(x̄1, x̄)

δ′

)

for x̄ ∈ N . Here, ig̃(x̄1) denotes the injectivity radius of N at x̄1.
We now define a bubble in this context. Let (xα) be a sequence of points in

M converging to some x0 ∈ M such that Gx0 is of dimension k. Then assumption
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(H) provides us with a subgroup G′ of Isomg(M) and a δ > 0 such that (H1)
and (H2) hold. Let 2δ′ > 0 be inferior to the injectivity radius of the quotient
(n − k)-manifold N := BGx0(δ)/G

′. Consider also a sequence (Rα) ⊂ [0,+∞)
such that Rα → +∞. Given a positive solution u ∈ Hp

1 (Rn−k) of the Euclidean
equation

∆p,ξu = f(x0)V ol(Gx0)
−p

n−k−pup∗−1,

where ξ is the Euclidean metric, we define a bubble (B̄α) of centers (x̄α) and
weights (Rα) in the usual way by

B̄α(x̄) = ηx̄α,δ′(x̄)R
n−k−p

p
α u

(
Rαexp

−1
x̄α

(x̄)
)
, x̄ ∈ N. (3)

where exp is the exponential map of N for the metric g̃. We then define a bubble
B = (Bα) of centers (xα) and weights (Rα) as the G′-invariant function satisfying

Bα = B̄α ◦ Π

where Π : BGx0(δ) → N is the canonical surjection. A generalized bubble is
defined in the same way by considering a nontrivial, not necessarily positive,
solution u ∈ Hp

1 (Rn−k) of the Euclidean equation

∆p,ξu = f(x0)V ol(Gx0)
−p

n−k−p |u|p∗−2u. (4)

This definition clearly extends the usual definition of a bubble to the case of
G-invariant functions. We also define the energy E(B) of the (generalized) bubble
B by

E(B) =
1
p

∫
Rn−k

|∇u|pξdx− f(x0)V ol(Gx0)− p
n−k−p

p∗

∫
Rn−k

|u|p∗
dx. (5)

We can prove as in Saintier ([9] step 1.5) that

E(B) ≥ f(x0)− n−k−p
p V ol(Gx0)

1
n− k

K(n− k, p)k−n (6)

where K(n−k, p) denotes the best Sobolev constant for the injection of Hp
1 (Rn−k)

into Lp∗
(Rn−k), namely

1
K(n− k, p)

= inf
u∈C∞

c (Rn−k)\{0}

∫
Rn−k |∇u|pξ dx(∫

Rn−k |u|p∗ dx
)p/p∗ > 0.

If we denote by A the minimum volume of G-orbit of dimension k, we then have
the minoration

E(B) ≥
(
max

M
f
)− n−k−p

p

A
1

n− k
K(n− k, p)k−n (7)

which holds for any generalized bubble.
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Our result is then the following:

Theorem Let (M, g) be a Riemaniann manifold, G a closed subgroup of Isomg(M)
satisfying (H) and (uα) be a sequence of positive G-invariant solutions of (Eα)
bounded in Hp

1 (M). There exist u0 ∈ Hp
1,G(M) such that either u0 ≡ 0 or u0 is a

positive solution of (E∞), and there exist l bubbles Bi =
(
Bi

α

)
α
, i = 1 . . . l, such

that, up to a subsequence,

uα = u0 +
l∑

i=1

Bi
α + Sα (8)

where the sequence (Sα) ⊂ Hp
1 (M) converges strongly to 0 in Hp

1 , and

Iα
g (uα) = I∞

g (u0) +
k∑

i=1

E(Bi) + o(1) (9)

where Iα
g and I∞

g are the functional defined on Hp
1 (M) by (12) and (13) respec-

tively, and the energy E(Bi) of the bubble Bi is defined by (5).
Moreover, there exists a constant C > 0 independent of α and x ∈ M such that
for any α and any x ∈ M ,

Rα(x)
n−k−p

p

∣∣uα(x) − u0(x)
∣∣ ≤ C, and (10)

lim
R→∞

lim
α→+∞ sup

x∈M\Ωα(R)
Rα(x)

n−k−p
p

∣∣uα(x) − u0(x)
∣∣ = 0 (11)

where the (xi
α)α and (µi

α)α are the centers and the inverse of the weights of the bub-
ble Bi, Rα(x) = mini=1...l dg(Gxi

α, Gx) and, for R > 0, Ωα(R) = ∪k
i=1BGxi

α
(Rµi

α).
In the particular case where p ≤ 2, u0 = 0 and uα is a solution of (Eα), we can
prove that ∇f(xi) = 0 for any i, where xi = limα x

i
α.

The paper is organized as follow. The first section is devoted to the proof of
the Hp

1 -decomposition, i.e. the relations (8) and (9) for a Palais-Smale sequence
for the functional Iα

g defined by (12), whereas the second one deals with the proof
of the pointwise estimates (10) and (11).

1 Proof of the Hp
1 -decomposition for Palais-Smale

sequences

Let Iα
g be the functional defined on Hp

1 (M) by

Iα
g (u) =

1
p

∫
M

|∇u|pgdvg +
1
p

∫
M

hα|u|pdvg − 1
p∗

∫
M

f |u|p∗
dvg, (12)
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and (uα) ∈ Hp
1,G(M) be a Palais-Smale (P-S) sequence for Iα

g i.e. the sequence(
Iα
g (uα)

)
is bounded and DIα

g (uα) → 0 strongly in Hp
1 (M)′. We are going to

prove that the relations (8) and (9) hold for (uα) with generalized bubbles Bi.
We will then prove that if the uα are positive then the Bi are bubbles.

It follows from Saintier [9] that the sequence (uα) weakly converges, up to
a subsequence, to a solution u0 ∈ Hp

1 (M) of the limit equation (E∞). Since we
can also assume that the convergence holds almost everywhere, we have u0 ∈
Hp

1,G(M). Let vα = uα − u0 ∈ Hp
1,G(M). Then (cf Saintier [9]) (vα) weakly

converges to 0 in Hp
1 (M) and is a (P-S) sequence for the functional Ig defined on

Hp
1 (M) by

Ig(u) =
1
p

∫
M

|∇u|pgdvg − 1
p∗

∫
M

f |u|p∗
dvg.

Moreover
Ig(vα) = Iα

g (uα) − I∞
g (u0) + o(1)

where I∞
g is the functional defined on Hp

1 (M) by

I∞
g (u) =

1
p

∫
M

|∇u|pgdvg +
1
p

∫
M

h∞|u|pdvg − 1
p∗

∫
M

f |u|p∗
dvg. (13)

According to Faget [2], for any ε > 0, there exists a constant Cε > 0 such that for
any u ∈ Hp

1,G(M),

(∫
M

|u|p∗
dvg

) p
p∗

≤
(
K(n− k, p)p

A
p

n−k

+ ε

)∫
M

|∇u|pgdvg + Cε

∫
M

|u|pdvg, (14)

where A denotes the minimal volume of k-dimensional G-orbits. We can then
adapt Saintier ([9] step 1.4) to prove that if (wα) is a (P-S) sequence for Ig such
that

wα → 0 weakly in Hp
1 (M) and lim

α
Ig(wα) < ‖f‖− n−k−p

p∞ Aβ∗,

where β∗ = 1
(n−k)K(n−k,p)n−k , then

wα → 0 strongly in Hp
1 .

Using this remark and the minoration (6) of the energy of a bubble, we can prove
the theorem by induction by repeated use of the following lemma:

Lemma. Let (vα) be a (P-S) sequence for Ig converging to 0 in Hp
1 weakly but not

strongly. Then there exists a generalized bubble B = (Bα) such that wα := vα−Bα

is a (P-S) sequence for Ig weakly converging to 0 in Hp
1 . Moreover

Ig(wα) = Ig(vα) − E(B) + o(1).
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The remainder of this section is devoted to the proof of this Lemma. The
set of smooth G-invariant functions on M being dense in Hp

1,G(M) (see Hebey-
Vaugon [6]), we can assume that the vα’s are smooth. Independently, since the
vα’s don’t converge strongly to 0, the definition of a (P-S) sequence implies that∫

M

|∇vα|pgdvg = (n− k)β + o(1) (15)

and ∫
M

f |vα|p∗
dvg = (n− k)β + o(1)

for some β ≥ ‖f‖− n−k−p
p∞ Aβ∗ > 0. The compactness of M then gives the existence

of a point x0 ∈ M such that for any δ > 0 small enough,

lim sup
α→+∞

∫
BGx0 (δ)

f |vα|p∗
dvg > 0. (16)

The orbitGx0 is called orbit of concentration. We give some preliminary properties
of such an orbit:

Step 1.1 1) There are a finite number of concentration orbits. If Gx0 is one of
them, then dim Gx0 = k and f(x0) > 0. In the particular case where p ≤ 2,
u0 = 0 and uα is a solution of (Eα) for any α, we also have ∇f(x0) = 0. Moreover
Gx0 is an orbit of concentration if and only if for any δ > 0,

lim sup
α→+∞

∫
BGx0 (δ)

|∇vα|pgdvg > 0. (17)

2) Let Gx0 be an orbit of concentration for (vα). According to 1) and in view of
assumption (H), there exist δ0 > 0 and a subgroup G′ of Isomg(M) such that we
can consider the Riemannian quotient (n − k)-manifold (N := BGx0(δ0)/G

′, ḡ).
Then x̄0 is a point of concentration for (v̄α) in the sense that for any δ > 0 small,

lim sup
α→+∞

∫
Bg̃

x̄0
(δ)

|∇v̄α|pg̃dvg̃ > 0

where g̃ is defined by (2) and v̄α(x̄) = vα(x).

Proof. We first prove 1). Assume that Gx0 is an orbit of concentration of dimen-
sion k′ > k. Then there exists δ > 0 such that dim Gx ≥ k′ > k for any
x ∈ BGx0(δ) (see Faget [3] lemma 2). It thus follows from Hebey-Vaugon (corollary

2 of [6]) and the inequality (n−k′)p
n−k′−p > (n−k)p

n−k−p = p∗ that the injection
◦

Hp
1,G

(BGx0(δ
′)) ↪→ Lp∗

(BGx0(δ
′)) is compact for all δ′ ∈ (0, δ). Since vα → 0 weakly in

Hp
1 (M), we get a contradiction with (16). Hence Gx0 is of minimal dimension k.

Since (vα) is bounded in Hp
1,G(M), there exist two finite positive G-invariant

measures µ and ν such that |vα|p∗
dvg ⇀ ν and |∇vα|pgdvg ⇀ µ weakly in the sense
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of measure. Let ε > 0. According to Faget [2], there exists Cε > 0 such that for
any α and any G-invariant function φ ∈ C(M),(∫

M

|φvα|p∗
dvg

) 1
p∗

≤
(
K(n− k, p)

A
1

n−k

+ ε

)(∫
M

|∇(φvα)|pgdvg

) 1
p

(18)

+Cε

(∫
M

|φvα|pdvg

) 1
p

.

Passing to the limit in α and then in ε in this inequality we get(∫
M

|φ|p∗
dν

) 1
p∗

≤
(
K(n− k, p)

A
1

n−k

)(∫
M

|φ|pdµ
) 1

p

for any G-invariant function φ ∈ C(M). Lemma 1.1 in Lions [7] then gives the
existence of I ⊂ N, a sequence of points (xi)i∈I ⊂ M and two sequences of positive
reals (µi)i∈I and (νi)i∈I such that

|vα|p∗
dvg ⇀ ν =

∑
i∈I

νiδGxi ,

|∇vα|pgdvg ⇀ µ ≥
∑
i∈I

µiδGxi
, and

ν
p

p∗
i ≤ K(n− k, p)p

A
p

n−k

µi ∀ i ∈ I.

(19)

where δGxi is defined by δGxi
(φ) =

∫
G
φ(σxi)dm(σ) for φ ∈ C(M), m being the

Haar measure of G such that m(G) = 1 (in particular, if φ is G-invariant, then
δGxi

(φ) = φ(xi)). Let φ ∈ C(M). Then

o(1) = DIg(vα).(vαφ)

=
∫

M

|∇vα|pgφdvg +
∫

M

vα|∇vα|p−2(∇vα,∇φ)gdvg −
∫

M

fφ|vα|p∗
dvg.

By Hölder inequality, the second integral tends to 0. We thus get by passing to
the limit in the above expression that∫

M

φdµ =
∫

M

φfdν

for any φ ∈ C(M). Hence µ = fν. In particular µ(Gxi) =
∫

Gxi
fdν for any i ∈ I,

and thus µi ≤ f(xi)νi for any i ∈ I. This implies that f(xi) > 0 for any i ∈ I.
Using (19), we obtain

νi ≥ AK(n− k, p)k−n

f(xi)
n−k

p

≥ AK(n− k, p)k−n

(max f)
n−k

p

,

and

µi ≥ AK(n− k, p)k−n

f(xi)
n−k−p

p

≥ AK(n− k, p)k−n

(max f)
n−k−p

p
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for any i ∈ I. We now write using (15) that

(n− k)β =
∫

M

|∇vα|pgdvg + o(1) =
∑
i∈I

µi ≥ card(I)
AK(n− k, p)k−n

(max f)
n−k−p

p

which implies that I is finite i.e. (vα) has a finite number of orbits of concentration,
namely the Gxi, i ∈ I. Eventually,

µ = fν =
∑
i∈I

νif(xi)δGxi (20)

which implies the equivalent definition (17) of an orbit of concentration.
We assume that p ≤ 2, u0 ≡ 0 and DIα

g (uα) = 0. Note that it follows from
(19) and (20) that

lim
α→+∞

∫
M

ϕ|uα|p∗
dvg =

∑
i∈I

νiϕ(xi), (21)

lim
α→+∞

∫
M

ϕ|∇uα|pg dvg =
∑
i∈I

f(xi)νiϕ(xi) (22)

for all ϕ ∈ C0(M) G−invariant.
We fix i ∈ I and Gxi an orbit of concentration. We consider the group G′ given by
the hypothesis (H) taken at xi (note that an orbit of concentration has minimal
dimension and therefore we can appply (H)) and, given ε > 0, let η ≡ ηx̄i,ε.
We assume that ∇f(xi) = 0. We consider a smooth G′−invariant function φ with
compact support in BGxi

(δ) such that ∇φ(xi) = ∇f(xi) and ∇2φ(xi) = 0. We
let σ := |∇φ|p−2

g ∇φ. Since p ≤ 2, it follows from [12] that uα ∈ Hp
2 (M). In

particular, the function (σ,∇uα)g belongs to Hp
1 (M). We let ε > 0 such that

∇φ(x) = 0 for all x ∈ BGxi(ε/2) and we let η defined above. With (21), we get
that

1
p∗

∫
M

(σ,∇f)g|uα|p∗
dvg =

νi

p∗ |∇f(xi)|pg(xi) + o(1)

Independently, we have that

1
p∗

∫
M

(σ,∇f)g|uα|p∗
dvg =

1
p∗

∫
M

η(σ,∇f)g|uα|p∗
dvg + o(1)

=
−1
p∗

∫
M

div
(
η|uα|p∗ |∇φ|p−2

g ∇φ
)
f dvg + o(1)

=
1
p∗

∫
M

ηf |uα|p∗
∆pφdvg − 1

p∗

∫
M

|∇φ|p−2(∇φ,∇η)g|uα|p∗
f dvg

−
∫

M

ηf |uα|p∗−2uα(σ,∇uα)g dvg + o(1)

=
νi

p∗ η(xi)f(xi)∆pφ(xi) −
∫

M

|∇uα|p−2
g (∇uα,∇(η(σ,∇uα)g))g dvg

−
∫

M

hα|uα|p−2uαη(σ,∇uα)g dvg + o(1)
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Thanks to Hölder’s inequality, the last integral goes to 0, and straightforward
computations yield that ∆pφ(xi) = 0. We then get that

νi

p∗ |∇f(xi)|pg(xi) = −
∫

M

|∇uα|p−2
g (∇uα,∇(η(σ,∇uα)g))g dvg + o(1).

Passing to the quotient manifolds N := BG′xi(δ)/G
′ and using the G′−invariance,

we get that

νi

p∗ |∇f(xi)|pg(xi) = −
∫

N

|∇ūα|p−2
ḡ (∇ūα,∇(η̄(σ̄,∇ūα)ḡ))ḡ v̄ dvḡ + o(1),

where we have that η̄ ◦ Π = η, ūα ◦ Π = uα and σ̄ ◦ Π = σ. We have that

|∇ūα|p−2
ḡ (∇ūα,∇(η̄(σ̄,∇ūα)ḡ))ḡ =

1
p
η̄(σ̄,∇|∇ūα|pḡ)g

+|∇ūα|p−2
ḡ ∇iūα∇j ūα∇j(η̄σ̄j).

Using Cartan’s expansion of ḡ in the exponential chart at x̄i and noting that
∇σ(xi) = 0 (here, one uses that ∇2φ(xi) = 0), we get that

|∇ūα|p−2
ḡ (∇ūα,∇(η̄(σ̄,∇ūα)ḡ))ḡ =

1
p
η̄(σ̄,∇|∇ūα|pḡ)ḡ +O

(
dḡ(x̄i, x̄)|∇ūα|pḡ

)
.

With (22), we get that ∫
N

dḡ(x̄i, x̄)|∇ūα|pḡ = o(1)

when α → +∞. We then get that

νi

p∗ |∇f(xi)|pg(xi) = −1
p

∫
N

η̄(σ̄,∇|∇ūα|pḡ)ḡ v̄ dvḡ + o(1)

= −1
p

∫
M

η(σ,∇|∇uα|pg)g dvg + o(1)

= −1
p

∫
M

(η∆pφ− |∇φ|p−2
g (∇η,∇φ)g)|∇uα|pg dvg + o(1)

= −1
p
∆pφ(xi)f(xi)νi + o(1) = o(1)

since ∇2φ(xi) = 0. We then get that ∇f(xi) = 0, a contradiction with our initial
hypothesis. Then ∇f(xi) = 0 for all i ∈ I. This proof requires the use of (σ,∇uα)g

as a test-function and thus cannot work if we deal with (P-S) sequence since then
we need the uα to be bounded inHp

2 (which is irrevelant here because it implies the
strong convergence in Hp

1 of the uα to u0). This explains the restriction imposed
to get ∇f(xi) = 0.
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We now prove 2). According to 1), dim Gx0 = k. Assumption (H) then gives
δ0 > 0 and a subgroup G′ of Isomg(M) such that (H1) and (H2) are satisfied.
We have for δ ∈ (0, δ0)∫

BGx0 (δ)
|∇vα|pgdvg =

∫
Bḡ

x̄0
(δ)

|∇v̄α|pḡ v̄dvḡ =
∫

Bḡ
x̄0

(δ)
|∇v̄α|pg̃dvg̃,

where v̄α ◦ Π = vα, Π : BGx0(δ) → N being the canonical surjection. Let

m = inf
x̄∈Bḡ

x̄0
(δ)
v̄(x̄)

1
n−k−p and M = sup

x̄∈Bḡ
x̄0

(δ)
v̄(x̄)

1
n−k−p .

Then for any x̄ ∈ Bḡ
x̄0

(δ),

1
M
dḡ(x̄, x̄0) ≤ dg̃(x̄, x̄0) ≤ 1

m
dḡ(x̄, x̄0).

Hence ∫
BGx0 (δ)

|∇vα|pdvg ≤
∫

Bg̃
x̄0

( δ
m )

|∇v̄α|pg̃dvg̃

which proves the claim. �

Step 1.2 Let Gx0 be an orbit such that there exist δ0 > 0 and a subgroup
G′ ⊂ Isomg(M) satisfying (H1) and (H2). Then (v̄α) is a (P-S) sequence for the

functional Īg̃ defined on
◦
Hp

1 (N) by

Īg̃(ū) =
1
p

∫
N

|∇ū|pg̃dvg̃ − 1
p∗

∫
N

f̄ |ū|p∗
v̄− p

n−k−p dvg̃

where N = BGx0(δ0)/G
′, f̄ ◦ Π = f and Π : BGx0(δ0) → N is the canonical

surjection.

Proof. Let φ̄ ∈ C∞
c (N) and φ ∈ C∞

c (BGx0(δ0)) such that φ̄ ◦ Π = φ. Then

o(1)‖φ̄‖Hp
1 (N) = o(1)‖φ‖Hp

1 (M) = DIg(vα)φ

=
∫

BGx0 (δ0)
|∇vα|p−2

g (∇vα,∇φ)gdvg −
∫

BGx0 (δ0)
f |vα|p∗−2vαφdvg

=
∫

Bḡ
x̄0

(δ0)
|∇v̄α|p−2

ḡ (∇v̄α,∇φ̄)ḡ v̄dvḡ −
∫

Bḡ
x̄0

(δ0)
f̄ |v̄α|p∗−2v̄αφ̄v̄dvḡ

=
∫

Bḡ
x̄0

(δ0)
|∇v̄α|p−2

g̃ (∇v̄α,∇φ̄)g̃dvg̃

−
∫

Bḡ
x̄0

(δ0)
f̄ |v̄α|p∗−2v̄αφ̄v̄

− p
n−k−p dvg̃

= DĪg̃(v̄α).φ̄

�
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As explained above, there exists an orbit of concentration Gx0. According
to Step 1.1, dim Gx0 = k. Assumption (H) then gives δ0 > 0 and a subgroup
G′ ⊂ Isomg(M) satisfying (H1) and (H2) on BGx0(2δ0). We let N = BGx0(δ0)/G

′

and consider, for t > 0,

µα(t) = max
x̄∈N

∫
Bg̃

x̄(t)
|∇v̄α|pg̃dvg̃.

In view of Step 1.1, there exist λ0 such that, up to a subsequence, for any α

µα(δ0) ≥
∫

Bg̃
x̄0

(δ0)
|∇v̄α|pg̃dvg̃ ≥ λ0.

Since µα is continuous, we then get for any λ ∈ (0, λ0) the existence of tα ∈ (0, δ0)
and x̄α ∈ N , x̄α → x̄0, such that for any α

µα(tα) =
∫

Bg̃
x̄α

(tα)
|∇v̄α|pg̃dvg̃ = λ.

In view of to Step 1.2, (v̄α) is a (P-S) sequence for Īg̃ on
◦
Hp

1 (N). According

to Saintier [9], there exist a sequence Rα → +∞ and v ∈ Dp
1

(
R

n−k
)
, (where

Dp
1(Rn−k) is the completion of C∞

c (Rn−k) for the norm u �→ ‖∇u‖p) such that

ṽα → v in Hp
1,loc

(
R

n−k
)

(23)

and v ≡ 0, where, if ig̃(x̄0) denotes the injectivity radius of (N, g̃) at x̄0,

ṽα(x) = R
− n−k−p

p
α v̄α

(
expx̄α(R−1

α x)
)
, x ∈ B0 (Rαig̃(x̄0)) .

Actually, the analysis in [9] is performed with a constant function in front of |ū|p∗

in the functional Īg̃(ū). In our context here, f̄ v̄− p
n−k−p is not constant: however,

the analysis for the proof of the result above works the same.
We now prove that

Step 1.3 v is a solution of the Euclidean equation

∆p,ξv = f̄(x̄0)v̄(x̄0)− p
n−k−p |v|p∗−2v

= f(x0)V ol(Gx0)− p
n−k−p |v|p∗−2v

Proof. Let φ ∈ C∞
c

(
R

n−k
)

and R > 0 such that supp φ ⊂ B0(R). For α large
enough, we define φα ∈ C∞

c (N) by

φα(x̄) = R
n−k−p

p
α φ (Rαexpx̄α(x̄)) .
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Then (φα) is bounded in
◦
Hp

1 (N). Thus

o(1) = DĪg̃(v̄α)φα

=
∫

B0(R)
|∇ṽα|p−2

g̃α
(∇ṽα,∇φ)g̃α

dvg̃α

−
∫

B0(R)
|ṽα|p∗−2ṽαφv̄

(
expx̄α(R−1

α x)
)− p

n−k−p f̄
(
expx̄α(R−1

α x)
)
dvg̃α

where g̃α is the metric defined in the Euclidean ball B0(ig̃Rα) ⊂ R
n−k by

g̃α(x) =
(
exp∗

x̄α
g̃
)
(R−1

α x).

Since Rα → +∞, the g̃α converge locally uniformly to the Euclidean metric ξ.
Passing to the limit, we then get using (23) that∫

Rn−k

|∇v|p−2
ξ (∇v,∇φ)ξdx− f̄(x̄0)v̄(x̄0)− p

n−k−p

∫
Rn−k

|v|p∗−2vφdx = 0

which proves Step 1.3. �

For δ > 0 small, we let

B̄α(x̄) = ηx̄α,δ(x̄)R
n−k−p

p
α v

(
Rαexp

−1
x̄α

(x̄)
)

and w̄α = v̄α − B̄α. Then, according to Saintier ([9] Step 2.4),

B̄α → 0 weakly in
◦
Hp

1 (N), (24)

DĪg̃(B̄α) → 0 and DĪg̃(w̄α) → 0 strongly in
◦
Hp

1 (N)′, (25)

Īg̃(w̄α) = Īg̃(v̄α) − E(v) + o(1) (26)

where

E(v) =
1
p

∫
Rn−k

|∇v|pξdx− v̄(x̄0)− p
n−k−p f(x0)
p∗

∫
Rn−k

|v|p∗
dx.

We now define a bubble (Bα) by the relation

Bα = B̄α ◦ Π

and wα = vα −Bα. We now claim that the following holds:
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Step 1.4

wα → 0 weakly in Hp
1 (M), (27)

DIg(Bα) → 0 and DIg(wα) → 0, (28)
Ig(wα) = Ig(vα) − E(v) + o(1). (29)

Proof. We first prove that Bα → 0 weakly in Hp
1 (which implies (27) since vα → 0

weakly in Hp
1 ). Since (Bα) ⊂ Hp

1,G′(M) is bounded in Hp
1 , it suffices to prove that

Bα → 0 weakly in Lp
G′(M). Let ψ ∈ Lq

G′(M), q = p
p−1 , and ψ̄ ∈ Lq(N, g̃) be such

that ψ = ψ̄ ◦ Π in BGx0(2δ). Then, using (24),∫
M

Bαψdvg =
∫

N

B̄αψ̄v̄
− p

n−k−p dvg̃ → 0.

We prove in the same way that DIg(Bα) → 0. We now prove that

DIg(wα) → 0.

Let φ ∈ Hp
1,G(M), δ ∈ (0, δ0/6) and η0 ≡ ηx̄0,3δ ∈ C∞

c (BGx0(6δ)). For α large
enough so that dḡ(x̄α, x̄0) < δ (in particular supp B̄α ⊂ Bx̄α(2δ) ⊂ Bx̄0(3δ)),
straightforward computations yield

DIg(wα)φ = DIg(wα)(η0φ) +DIg(wα)((1 − η0)φ)
= DĪg̃(w̄α)(η0φ) +DIg(vα)((1 − η0)φ)

= o
(
‖η0φ‖Hp

1 (N)

)
+ o

(
‖(1 − η0)φ‖Hp

1 (M)

)
= o

(
‖φ‖Hp

1 (M)

)
Now consider φ ∈ Hp

1 (M) et φG ∈ Hp
1,G(M) defined by

φG(x) =
∫

G

φ(σx)dm(σ)

where m is the Haar measure of G such that m(G) = 1. Then, according to what
we just did,

DIg(wα)φG = o(1)‖φG‖Hp
1

with

DIg(wα)φG =
∫

G

(∫
M

|∇wα|p−2(∇wα,∇(φ ◦ σ))gdvg

)
dm(σ)

−
∫

G

(∫
M

f |wα|p∗−2wα(φ ◦ σ)dvg

)
dm(σ)

= m(G)DIg(wα)φ
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and, using Hölder inequality,

‖φG‖p
Hp

1
=
∫

M

∣∣∣∣
∫

G

∇(φ ◦ σ)dm(σ)
∣∣∣∣
p

dvg +
∫

M

∣∣∣∣
∫

G

(φ ◦ σ)dm(σ)
∣∣∣∣
p

dvg

≤ m(G)p−1
∫

M

(∫
G

|∇(φ ◦ σ)|pdm(σ)
)
dvg

+ m(G)p−1
∫

M

(∫
G

|φ ◦ σ|pdm(σ)
)
dvg

≤ ‖φ‖p
Hp

1
.

Hence
DIg(wα)φ = o(1)‖φ‖Hp

1
.

It remains to prove (29). We write that

Ig(wα) =
1
p

∫
M\BGx0 (2δ)

|∇vα|pgdvg − 1
p∗

∫
M\BGx0 (2δ)

f |vα|p∗
dvg + Īg̃(w̄α).

We then get using (26) that

Ig(wα) =
1
p

∫
M\BGx0 (2δ)

|∇vα|pgdvg − 1
p∗

∫
M\BGx0 (2δ)

f |vα|p∗
dvg + Īg̃(v̄α)

−E(v) + o(1)
= Ig(vα) − E(v) + o(1)

which proves (29). Note that v ≡ 0. �

This ends the proof of the Lemma and thus of the Hp
1 -decomposition for a

Palais-Smale sequences (uα) for Iα
g of arbitrary sign. If we assume that uα > 0

for any α, then u0 ≥ 0 a.e. since uα → u0 weakly in Hp
1 and thus also almost

everywhere (up to a subsequence). Since u0 ∈ Hp
1 (M) is a weak solution to (E∞),

it follows from Tolksdorf [12] that u0 ∈ C1,θ(M) for some θ ∈ (0, 1). We then
deduce from Vazquez’ maximum principle [13] that u0 ≡ 0 or u0 > 0 everywhere.
Moreover, according to Saintier [9], the B̄i are bubbles and hence so are the Bi,
1 ≤ i ≤ k.

2 Proof of the C0-estimates (10) and (11)

Let (uα) be a bounded sequence of positive solutions of (Eα). We prove in this
section the pointwise estimates of Theorem 0.1. We first prove (10). By standard
regularity results (see Tolksdorff [12]), we know that u0 ∈ C1,θ(M) for some
θ ∈ (0, 1), where u0 is the weak limit in Hp

1 of the uα’s. It thus suffices to prove
that there exists C > 0 such that for every α and every x ∈ M ,

Rα(x)
n−k−p

p uα(x) ≤ C. (30)
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Actually, we are going to prove the following stronger result: there exists C > 0
such that

vα(x) := R′
α(x)

n−k−p
p uα(x) ≤ C (31)

for all x ∈ M and all α > 0, where

R′
α(x) = min

i=1,...,l
dg(G′

ix,G
′
ix

i
α)

and for all i ∈ {1, ..., l}, the group G′
i is given by hypothesis (H) at the orbit of

concentration Gxi
∞, where limα→+∞ xi

α = xi
∞.

We assume by contradiction that there exists yα ∈ M such that

vα(yα) = max
x∈M

vα(x) → +∞ (32)

when α → +∞ and we let µα := uα(yα)−p/(n−k−p) → 0 when α → +∞. We let
limα→+∞ yα = y0, up to extraction.

We claim that the orbit Gy0 has minimal dimension k. Indeed, we argue by
contradiction and assume that dim Gy0 > k. As in Step 1.1, we then get that
there exist q0 > p∗ and δ > 0 such that limα→+∞ uα = u0 in Lq0(BGy0(δ)). It
then follows from (Eα) and standard regularity theory that limα→+∞ uα = u0

in C0(BGy0(δ
′)) for all δ′ < δ. A contradiction with the assumption (32). This

proves the claim.
We then let G′ be the group given by hypothesis (H) at the point y0. We let

I0 =
{
i ∈ {1, ..., l}/xi

∞ ∈ Gy0
}

(note that I0 may be empty). Then, for all i ∈ I0,
we have that G′ = G′

i. We consider the quotient manifold N := BG′y0(δ)/G
′,

where δ > 0 is small and given by (H). Here again, we consider the function
ūα(x̄) = uα(x) for x̄ ∈ N . We fix R0 ∈ (0, iḡ(ȳ0)) and we consider the function
wα defined on the Euclidean ball B0(R0µ

−1
α ) by

wα(x) := µ
n−k−p

p
α ūα(expȳα

(µαx)).

In this expression, the exponential map is taken wrt the metric ḡ. For ρ > 0 and
x ∈ B0(ρ) ⊂ R

n−k, we let zα ∈ M be such that G′zα = z̄α = expȳα
(µαx). Given

i ∈ I0, we get that

dg(G′zα, G
′xi

α) ≥ dg(G′xi
α, G

′yα) − dg(G′yα, G
′zα)

≥ R′
α(yα) − dḡ(ȳα, z̄α)

≥ R′
α(yα) − µα|x|

≥
(

1 − ρµα

R′
α(yα)

)
R′

α(yα).

By definition of yα and µα, we have that µαR
′
α(yα)−1 → 0 when α → +∞, and

hence the right-hand-side of the above equation is positive. In case i ∈ I0, we get
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that

lim
α→+∞dg(expȳα

(µαx), G′
ix

i
α) = dg(G′y0, G′

ix
i
∞)

= dg(Gy0, Gxi
∞) > 0 in C0

loc(R
n−k).

Since R′
α(yα) → 0 when α → +∞, we then get that

R′
α(expȳα

(µαx)) ≥ 1
2

(
1 − ρµα

R′
α(yα)

)
R′

α(yα) > 0

for all x ∈ B0(ρ) and all α > 0. We can then write for x ∈ B0(ρ) that

wα(x) =
µ

n−k−p
p

α vα(zα)

R′
α(expȳα

(µαx))
n−k−p

p

≤ 2(n−k−p)/p

(
1 − ρµα

R′
α(yα)

)− n−k−p
p uα(yα)−1vα(yα)

R′
α(yα)

n−k−p
p

≤ 2(n−k−p)/p

(
1 − ρµα

R′
α(yα)

)− n−k−p
p

uniformly for x ∈ B0(ρ) ⊂ R
n−k when α → +∞. Thus the sequence (wα) is

uniformly bounded on every compact subset of R
n−k. Let ḡα be the Riemannian

metric on R
n−k defined by

ḡα(x) = exp∗
ȳα
ḡ(µαx).

Equation (Eα) becomes

−divḡα(ṽα|∇wα|p−2
ḡα

∇wα) + µp
αh̃αṽαw

p−1
α = f̃αṽαw

p∗−1
α

where h̃α(x) = h̄α(expȳα
(µαx)), f̃α(x) = f̄(expȳα

(µαx)), ṽα(x) = v̄(expȳα
(µαx)).

Since µα → 0 when α → +∞, the metric ḡα converges to the Euclidean metric
ξ in C2

loc(R
n−k) when α → +∞. It then follows from Tolksdorff [13] that, up to

extraction, there exists w ∈ C1,θ(Rn−k) such that

lim
α→+∞wα = w in C1,θ

loc (Rn−k).

Since wα(0) = 1, we get that w(0) = 1 and then w ≡ 0. We let R > 0. Since∫
B0(R)

wp∗
α dvḡα

=
∫

Bȳα (Rµα)
ūp∗

α dvḡ =
∫

BG′yα
(Rµα)

Vol(G′x)−1up∗
α (x) dvg(x),

we get that

lim
α→+∞

∫
BG′yα

(Rµα)
up∗

α dvg = Vol(Gy0)
∫

B0(R)
wp∗

dvξ > 0.
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With the Hp
1 decomposition of Theorem 0.1, we then get that

1 ≤ C

∫
BG′yα

(Rµα)

(
u0 +

l∑
i=1

Bi
α + Sα

)p∗

dvg

≤ C

l∑
i=1

∫
BG′yα

(Rµα)
(Bi

α)p∗
dvg + o(1)

≤ C
∑
i∈I0

∫
BG′yα

(Rµα)
(Bi

α)p∗
dvg + o(1)

≤ C
∑
i∈I0

∫
Bȳα (Rµα)

(B̄i
α)p∗

dvḡ + o(1)

where, here again, we have taken the quotient wrt the group G′: this is licit since
we work at the points xi

α such that xi
∞ = y0. We can then prove exactly as in

Saintier [12] that the right-hand side of this inequality goes to 0 as α → +∞. A
contradiction, and then (31) holds.

We claim that (30) holds. Indeed, the proof goes by contradiction and we
consider a sequence of points (yα) such that limα→+∞Rα(x)

n−k−p
p uα(yα) = +∞.

With arguments similar to the ones above, we get that limα→+∞ yα = y0 ∈ M is
such that Gy0 is an orbit of concentration of the uα’s. Hypothesis (H) yields a
group G′ that satisfies (H1) and (H2). With (H2), we get that dg(Gyα, Gx

i
α) ≤

dg(G′yα, G
′xi

α) for the i’s such that limα→+∞ xi
α ∈ Gy0. Studying separately

the remaining i’s, we get that Rα(yα) ≤ cR′
α(yα) and we apply (31) to get a

contradiction with our initial assumption. This proves that (30) holds.
The proof of (11) goes the same way: if (11) is not satisfies, then we construct

a sequence (yα) which traducts it. We blow-up uα at yα and we get a contradiction
as above.
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