NoDEA

Nonlinear differ. equ. appl. 15 (2008) 227—245 1021–9722/08/0200227–19 DOI 10.1007/s00030-007-7006-8 © Birkhäuser Verlag, Basel, 2008

Nonlinear Differential Equations and Applications NoDEA

Blow-up theory for symmetric critical equations involving the p-Laplacian

Nicolas SAINTIER Departamento de Matemática, FCEyN, Universidad de Buenos-Aires, Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina. e-mail: saintier@math.jussieu.fr, nsaintie@dm.uba.ar

Abstract. We describe in this paper the asymptotic behaviour in Sobolev spaces of sequences of solutions of critical equations involving the *p*-Laplacian (see equations (E_{α}) below) on a compact Riemannian manifold (M, g) which are invariant by a subgroup of the group of isometries of (M, g). We also prove pointwise estimates.

2000 Mathematics Subject Classification: 35B40, 35J20, 35B33 Key words: p-Laplacian, blow-up, invariance under isometries

Let (M, g) be a smooth compact Riemannian *n*-manifold, G a closed subgroup of the group of isometries $\operatorname{Isom}_g(M)$ of (M, g) and $k = \min_{x \in M} \dim Gx$, where Gx denotes the orbit of a point $x \in M$ under G. We say that a function $\psi: M \to \mathbb{R}$ is G-invariant if $\psi(gx) = \psi(x)$ for any $x \in M$ and $g \in G$. We consider equations like

$$\Delta_{p,q}u + h_{\alpha}u^{p-1} = fu^{p^*-1} \tag{E}_{\alpha}$$

where $1 , <math>\Delta_{p,g}u = -div_g \left(|\nabla u|_g^{p-2}\nabla u\right)$ is the *p*-Laplacian of *u*, $p^* = \frac{(n-k)p}{n-k-p}$ is the critical exponent for the injection from the Sobolev space $H_{1,G}^p(M)$ of *G*-invariant functions in $L^p(M)$ whose gradient is also in $L^p(M)$, into the Lebesgue spaces $L_G^q(M)$ of *G*-invariant functions in $L^q(M)$ (cf Hebey-Vaugon [6]), *f* is a C^1 *G*-invariant function, and (h_α) is a sequence of continuous *G*-invariant functions converging uniformly to some continuous *G*-invariant function h_∞ . The solutions we consider are in H_1^p ; therefore, a solution to (E_α) has to be taken in the distribution sense. We assume that the operator $\Delta_{p,g} + h_\infty$ is coercive

in the sense that there exists $\lambda > 0$ such that for all $u \in H^p_{1,G}(M)$,

$$\int_{M} \left(|\nabla u|_{g}^{p} + h_{\infty} |u|^{p} \right) dv_{g} \ge \lambda ||u||_{H_{1}^{p}}^{p}.$$

$$\tag{1}$$

In fact, we can easily prove that $\Delta_{p,g} + h_{\infty}$ is coercive if and only if there exists $\lambda > 0$ such that for all $u \in H_{1,G}^p(M)$,

$$\int_{M} \left(|\nabla u|_{g}^{p} + h_{\infty}|u|^{p} \right) dv_{g} \ge \lambda ||u||_{p}^{p}$$

A necessary condition for (E_{α}) to admit a positive solution u is $\max_M f > 0$. Indeed, multiplying (E_{α}) by u, integrating by parts and using the coercivity assumption (1) yields

$$\int_M f u^{p^*} dv_g \ge \lambda \|u_\alpha\|_{H^p_1}^p + o(1).$$

We then deduce that f must be positive somewhere, and then $\max_M f > 0$. From now on, we assume that $\max_M f > 0$. We also consider the limit equation obtained by letting formally $\alpha \to +\infty$ in (E_{α}) , namely

$$\Delta_{p,g}u + h_{\infty}u^{p-1} = fu^{p^*-1}.$$
 (E_{\infty})

For each α , let u_{α} be a *G*-invariant weak positive solution of (E_{α}) and assume that the sequence (u_{α}) is bounded in H_1^p . The purpose of this note is to describe the asymptotic behavior of the u_{α} 's. In the case where the group *G* is reduced to the identity, it is known (see Saintier [9], Hebey-Robert [5], Struwe [10]) that u_{α} can be written as the sum of a weak solution of the limit equation (E_{∞}) plus a finite sum of "bubbles" plus a sequence of functions converging strongly to 0 in H_1^p . A bubble is a sequence of functions obtained by rescaling positive solution of the Euclidean critical equation $\Delta_{p,\xi}u = u^{q-1}$ in \mathbb{R}^n , q = np/(n-p), where ξ is the Euclidean metric on \mathbb{R}^n . We prove here (cf the theorem below) that this decomposition still holds in the context of *G*-invariant functions under some assumptions on the orbits of *G* (assumption (H) below) and with an extended notion of bubble.

We now recall some known facts and fix some notations. We refer to Bredon [1] for more details (see also Hebey-Vaugon [6] and Faget [2]). Let G' be a closed subgroup of $\operatorname{Isom}_g(M)$. Then G' is a Lie group. For each $x \in M$, we let $\bar{x} = \Pi(x)$, where $\Pi : M \to M/G'$ is the canonical surjection, and denote by $G'x = \{gx, g \in G'\}$ (resp. $S_x = \{g \in G', gx = x\}$) the orbit (resp. the stabilizator) of x under the action of G'. Then G'x is a compact submanifold of M naturally isomorphic to the quotient group G'/S_x . An orbit G'x is said principal if its stabilizator is minimal up to conjugacy i.e. for all $y \in M$, S_y contains a subgroup conjugate to S_x . In particular, the principal orbits are of maximal dimension (but the converse is false). If we denote by Ω the union of all the principal orbits, then Ω is a dense

open subset of M and Ω/G' is a smooth connected manifold which can be equiped with a Riemaniann metric \bar{g} in such a way that the canonical surjection from Ω to Ω/G' is a Riemannian submersion. We then consider the metric \tilde{g} belonging to the conformal class of \bar{g} defined by

$$\tilde{g} = \bar{v}^{\frac{2}{n-k-p}}\bar{g} \tag{2}$$

where $\bar{v}(\bar{x}) = Vol(\Pi^{-1}(\bar{x})) = Vol(G'x)$ denotes the volume of G'x computed with respect to the induced metric. We will denote by $B_{\bar{x}}^{\bar{g}}(r)$ and $B_{\bar{x}}^{\tilde{g}}(r)$ the geodesic balls centered at \bar{x} of radius r for the metric \bar{g} and \tilde{g} respectively. Given a Riemannian manifold N, we denote by $H_1^p(N)$ the usual Sobolev space of functions $u \in L^p(N)$ such that $\nabla u \in L^p(N)$ with the norm $||u||_{H_1^p}^p = ||u||_p^p + ||\nabla u||_p^p$, and by $\overset{\circ}{H_1^p}(N)$ the closure of $C_c^{\infty}(N)$ for the norm $||.||_{H_1^p}$. If G' is a subgroup of isometries of N, we let $L_{G'}^p(N)$, $H_{1,G'}^p(N)$ and $\overset{\circ}{H_{1,G'}^p}(N)$ be the space of G'-invariant functions in $L^p(N)$, $H_1^p(N)$ and $\overset{\circ}{H_1^p}(N)$ respectively:

$$\begin{split} L^p_{G'}(N) &= \left\{ u \in L^p(N) \ s.t. \ \forall \ g \in G', \ u(gx) = u(x) \ a.e. \ in \ N \right\}, \\ H^p_{1,G'}(N) &= \left\{ u \in H^p_1(N) \ s.t. \ \forall \ g \in G', \ u(gx) = u(x) \ a.e. \ in \ N \right\}, \\ H^{\circ}_{1,G'}(N) &= \left\{ u \in \overset{\circ}{H^p_1}(N) \ s.t. \ \forall \ g \in G', \ u(gx) = u(x) \ a.e. \ in \ N \right\}, \end{split}$$

We assume that $k = \min_{x \in M} \dim Gx \ge 1$ and make the following assumption on the *G*-orbits of dimension k:

(H) for each G - orbit Gx_0 of minimal dimension k, there exist $\delta > 0$ and a closed subgroup G' of $Isom_q(M)$ such that

$$G'x_0 = Gx_0 \tag{H1}$$

and, for all $x \in B_{Gx_0}(\delta) := \{y \in M, d_g(y, Gx_0) < \delta\},\$

$$G'x$$
 is principal and $G'x \subset Gx$. (H2)

We refer to Faget [2] for examples of manifolds and groups satisfying (H). In particular, dim $G'x = \dim Gx_0 = k$ for all $x \in B_{Gx_0}(\delta)$ and we can consider the Riemannian quotient (n-k)-manifold $N := B_{Gx_0}(\delta)/G'$. We fix a smooth cut-off function $\eta \in C_c^{\infty}(\mathbb{R}^{n-k})$ with support in $B_0(2)$ such that $0 \le \eta \le 1$ and $\eta \equiv 1$ in $B_0(1)$. Given $\bar{x}_1 \in N$ and $\delta' \in (0, i_{\tilde{g}}(\bar{x}_1)/2)$, we let

$$\eta_{\bar{x}_1,\delta'}(\bar{x}) = \eta\left(\frac{d_{\tilde{g}}(\bar{x}_1,\bar{x})}{\delta'}\right)$$

for $\bar{x} \in N$. Here, $i_{\tilde{q}}(\bar{x}_1)$ denotes the injectivity radius of N at \bar{x}_1 .

We now define a bubble in this context. Let (x_{α}) be a sequence of points in M converging to some $x_0 \in M$ such that Gx_0 is of dimension k. Then assumption

(H) provides us with a subgroup G' of $Isom_g(M)$ and a $\delta > 0$ such that (H1) and (H2) hold. Let $2\delta' > 0$ be inferior to the injectivity radius of the quotient (n-k)-manifold $N := B_{Gx_0}(\delta)/G'$. Consider also a sequence $(R_\alpha) \subset [0, +\infty)$ such that $R_\alpha \to +\infty$. Given a positive solution $u \in H_1^p(\mathbb{R}^{n-k})$ of the Euclidean equation

$$\Delta_{p,\xi} u = f(x_0) Vol(Gx_0)^{\frac{-p}{n-k-p}} u^{p^*-1},$$

where ξ is the Euclidean metric, we define a bubble (\bar{B}_{α}) of centers (\bar{x}_{α}) and weights (R_{α}) in the usual way by

$$\bar{B}_{\alpha}(\bar{x}) = \eta_{\bar{x}_{\alpha},\delta'}(\bar{x})R_{\alpha}^{\frac{n-k-p}{p}}u\left(R_{\alpha}exp_{\bar{x}_{\alpha}}^{-1}(\bar{x})\right), \ \bar{x} \in N.$$
(3)

where exp is the exponential map of N for the metric \tilde{g} . We then define a bubble $B = (B_{\alpha})$ of centers (x_{α}) and weights (R_{α}) as the G'-invariant function satisfying

$$B_{\alpha} = \bar{B}_{\alpha} \circ \Pi$$

where $\Pi : B_{Gx_0}(\delta) \to N$ is the canonical surjection. A generalized bubble is defined in the same way by considering a nontrivial, not necessarily positive, solution $u \in H_1^p(\mathbb{R}^{n-k})$ of the Euclidean equation

$$\Delta_{p,\xi} u = f(x_0) Vol(Gx_0)^{\frac{-p}{n-k-p}} |u|^{p^*-2} u.$$
(4)

This definition clearly extends the usual definition of a bubble to the case of G-invariant functions. We also define the energy E(B) of the (generalized) bubble B by

$$E(B) = \frac{1}{p} \int_{\mathbb{R}^{n-k}} |\nabla u|_{\xi}^{p} dx - \frac{f(x_{0}) Vol(Gx_{0})^{-\frac{p}{n-k-p}}}{p^{*}} \int_{\mathbb{R}^{n-k}} |u|^{p^{*}} dx.$$
(5)

We can prove as in Saintier ([9] step 1.5) that

$$E(B) \ge f(x_0)^{-\frac{n-k-p}{p}} Vol(Gx_0) \frac{1}{n-k} K(n-k,p)^{k-n}$$
(6)

where K(n-k,p) denotes the best Sobolev constant for the injection of $H_1^p(\mathbb{R}^{n-k})$ into $L^{p^*}(\mathbb{R}^{n-k})$, namely

$$\frac{1}{K(n-k,p)} = \inf_{u \in C_c^{\infty}(\mathbb{R}^{n-k}) \setminus \{0\}} \frac{\int_{\mathbb{R}^{n-k}} |\nabla u|_{\xi}^p \, dx}{\left(\int_{\mathbb{R}^{n-k}} |u|^{p^*} \, dx\right)^{p/p^*}} > 0.$$

If we denote by A the minimum volume of G-orbit of dimension k, we then have the minoration

$$E(B) \ge \left(\max_{M} f\right)^{-\frac{n-k-p}{p}} A \frac{1}{n-k} K(n-k,p)^{k-n}$$

$$\tag{7}$$

which holds for any generalized bubble.

Our result is then the following:

Theorem Let (M, g) be a Riemaniann manifold, G a closed subgroup of $Isom_g(M)$ satisfying (H) and (u_{α}) be a sequence of positive G-invariant solutions of (E_{α}) bounded in $H_1^p(M)$. There exist $u^0 \in H_{1,G}^p(M)$ such that either $u^0 \equiv 0$ or u^0 is a positive solution of (E_{∞}) , and there exist l bubbles $B^i = (B_{\alpha}^i)_{\alpha}$, i = 1...l, such that, up to a subsequence,

$$u_{\alpha} = u^0 + \sum_{i=1}^{l} B^i_{\alpha} + S_{\alpha} \tag{8}$$

where the sequence $(S_{\alpha}) \subset H_1^p(M)$ converges strongly to 0 in H_1^p , and

$$I_g^{\alpha}(u_{\alpha}) = I_g^{\infty}(u^0) + \sum_{i=1}^k E(B^i) + o(1)$$
(9)

where I_g^{α} and I_g^{∞} are the functional defined on $H_1^p(M)$ by (12) and (13) respectively, and the energy $E(B^i)$ of the bubble B^i is defined by (5).

Moreover, there exists a constant C > 0 independent of α and $x \in M$ such that for any α and any $x \in M$,

$$R_{\alpha}(x)^{\frac{n-k-p}{p}} \left| u_{\alpha}(x) - u^{0}(x) \right| \le C, \text{ and}$$

$$\tag{10}$$

$$\lim_{R \to \infty} \lim_{\alpha \to +\infty} \sup_{x \in M \setminus \Omega_{\alpha}(R)} R_{\alpha}(x)^{\frac{n-k-p}{p}} \left| u_{\alpha}(x) - u^{0}(x) \right| = 0$$
(11)

where the $(x_{\alpha}^{i})_{\alpha}$ and $(\mu_{\alpha}^{i})_{\alpha}$ are the centers and the inverse of the weights of the bubble B^{i} , $R_{\alpha}(x) = \min_{i=1...l} d_{g}(Gx_{\alpha}^{i}, Gx)$ and, for R > 0, $\Omega_{\alpha}(R) = \bigcup_{i=1}^{k} B_{Gx_{\alpha}^{i}}(R\mu_{\alpha}^{i})$. In the particular case where $p \leq 2$, $u^{0} = 0$ and u_{α} is a solution of (E_{α}) , we can prove that $\nabla f(x^{i}) = 0$ for any i, where $x^{i} = \lim_{\alpha} x_{\alpha}^{i}$.

The paper is organized as follow. The first section is devoted to the proof of the H_1^p -decomposition, i.e. the relations (8) and (9) for a Palais-Smale sequence for the functional I_g^{α} defined by (12), whereas the second one deals with the proof of the pointwise estimates (10) and (11).

1 Proof of the *H*^{*p*}₁-decomposition for Palais-Smale sequences

Let I_g^{α} be the functional defined on $H_1^p(M)$ by

$$I_{g}^{\alpha}(u) = \frac{1}{p} \int_{M} |\nabla u|_{g}^{p} dv_{g} + \frac{1}{p} \int_{M} h_{\alpha} |u|^{p} dv_{g} - \frac{1}{p^{*}} \int_{M} f |u|^{p^{*}} dv_{g}, \qquad (12)$$

and $(u_{\alpha}) \in H_{1,G}^{p}(M)$ be a Palais-Smale (P-S) sequence for I_{g}^{α} i.e. the sequence $(I_{g}^{\alpha}(u_{\alpha}))$ is bounded and $DI_{g}^{\alpha}(u_{\alpha}) \to 0$ strongly in $H_{1}^{p}(M)'$. We are going to prove that the relations (8) and (9) hold for (u_{α}) with generalized bubbles B^{i} . We will then prove that if the u_{α} are positive then the B^{i} are bubbles.

It follows from Saintier [9] that the sequence (u_{α}) weakly converges, up to a subsequence, to a solution $u^0 \in H_1^p(M)$ of the limit equation (E_{∞}) . Since we can also assume that the convergence holds almost everywhere, we have $u^0 \in$ $H_{1,G}^p(M)$. Let $v_{\alpha} = u_{\alpha} - u^0 \in H_{1,G}^p(M)$. Then (cf Saintier [9]) (v_{α}) weakly converges to 0 in $H_1^p(M)$ and is a (P-S) sequence for the functional I_g defined on $H_1^p(M)$ by

$$I_g(u) = \frac{1}{p} \int_M |\nabla u|_g^p dv_g - \frac{1}{p^*} \int_M f|u|^{p^*} dv_g.$$

Moreover

$$I_g(v_\alpha) = I_g^\alpha(u_\alpha) - I_g^\infty(u^0) + o(1)$$

where I_q^{∞} is the functional defined on $H_1^p(M)$ by

$$I_g^{\infty}(u) = \frac{1}{p} \int_M |\nabla u|_g^p dv_g + \frac{1}{p} \int_M h_{\infty} |u|^p dv_g - \frac{1}{p^*} \int_M f|u|^{p^*} dv_g.$$
(13)

According to Faget [2], for any $\epsilon > 0$, there exists a constant $C_{\epsilon} > 0$ such that for any $u \in H_{1,G}^p(M)$,

$$\left(\int_{M} |u|^{p^*} dv_g\right)^{\frac{p}{p^*}} \le \left(\frac{K(n-k,p)^p}{A^{\frac{p}{n-k}}} + \epsilon\right) \int_{M} |\nabla u|_g^p dv_g + C_\epsilon \int_{M} |u|^p dv_g, \quad (14)$$

where A denotes the minimal volume of k-dimensional G-orbits. We can then adapt Saintier ([9] step 1.4) to prove that if (w_{α}) is a (P-S) sequence for I_g such that

 $w_{\alpha} \to 0$ weakly in $H_1^p(M)$ and $\lim_{\alpha} I_g(w_{\alpha}) < \|f\|_{\infty}^{-\frac{n-k-p}{p}} A\beta^*$,

where $\beta^* = \frac{1}{(n-k)K(n-k,p)^{n-k}}$, then

 $w_{\alpha} \to 0$ strongly in H_1^p .

Using this remark and the minoration (6) of the energy of a bubble, we can prove the theorem by induction by repeated use of the following lemma:

Lemma. Let (v_{α}) be a (P-S) sequence for I_g converging to 0 in H_1^p weakly but not strongly. Then there exists a generalized bubble $B = (B_{\alpha})$ such that $w_{\alpha} := v_{\alpha} - B_{\alpha}$ is a (P-S) sequence for I_g weakly converging to 0 in H_1^p . Moreover

$$I_g(w_\alpha) = I_g(v_\alpha) - E(B) + o(1)$$

The remainder of this section is devoted to the proof of this Lemma. The set of smooth G-invariant functions on M being dense in $H_{1,G}^p(M)$ (see Hebey-Vaugon [6]), we can assume that the v_{α} 's are smooth. Independently, since the v_{α} 's don't converge strongly to 0, the definition of a (P-S) sequence implies that

$$\int_{M} |\nabla v_{\alpha}|_{g}^{p} dv_{g} = (n-k)\beta + o(1)$$
(15)

and

$$\int_{M} f |v_{\alpha}|^{p^*} dv_g = (n-k)\beta + o(1)$$

for some $\beta \geq \|f\|_{\infty}^{-\frac{n-k-p}{p}} A\beta^* > 0$. The compactness of M then gives the existence of a point $x_0 \in M$ such that for any $\delta > 0$ small enough,

$$\limsup_{\alpha \to +\infty} \int_{B_{Gx_0}(\delta)} f |v_{\alpha}|^{p^*} dv_g > 0.$$
(16)

The orbit Gx_0 is called *orbit of concentration*. We give some preliminary properties of such an orbit:

Step 1.1 1) There are a finite number of concentration orbits. If Gx_0 is one of them, then $\dim Gx_0 = k$ and $f(x_0) > 0$. In the particular case where $p \leq 2$, $u^0 = 0$ and u_α is a solution of (E_α) for any α , we also have $\nabla f(x_0) = 0$. Moreover Gx_0 is an orbit of concentration if and only if for any $\delta > 0$,

$$\limsup_{\alpha \to +\infty} \int_{B_{Gx_0}(\delta)} |\nabla v_\alpha|_g^p dv_g > 0.$$
⁽¹⁷⁾

2) Let Gx_0 be an orbit of concentration for (v_α) . According to 1) and in view of assumption (H), there exist $\delta_0 > 0$ and a subgroup G' of $Isom_g(M)$ such that we can consider the Riemannian quotient (n - k)-manifold $(N := B_{Gx_0}(\delta_0)/G', \bar{g})$. Then \bar{x}_0 is a point of concentration for (\bar{v}_α) in the sense that for any $\delta > 0$ small,

$$\limsup_{\alpha \to +\infty} \int_{B_{\bar{x}_0}^{\bar{g}}(\delta)} |\nabla \bar{v}_{\alpha}|_{\bar{g}}^p dv_{\bar{g}} > 0$$

where \tilde{g} is defined by (2) and $\bar{v}_{\alpha}(\bar{x}) = v_{\alpha}(x)$.

Proof. We first prove 1). Assume that Gx_0 is an orbit of concentration of dimension k' > k. Then there exists $\delta > 0$ such that $\dim Gx \ge k' > k$ for any $x \in B_{Gx_0}(\delta)$ (see Faget [3] lemma 2). It thus follows from Hebey-Vaugon (corollary 2 of [6]) and the inequality $\frac{(n-k')p}{n-k'-p} > \frac{(n-k)p}{n-k-p} = p^*$ that the injection $H_{1,G}^{\stackrel{\circ}{p}}(B_{Gx_0}(\delta')) \hookrightarrow L^{p^*}(B_{Gx_0}(\delta'))$ is compact for all $\delta' \in (0, \delta)$. Since $v_{\alpha} \to 0$ weakly in $H_1^p(M)$, we get a contradiction with (16). Hence Gx_0 is of minimal dimension k.

Since (v_{α}) is bounded in $H^p_{1,G}(M)$, there exist two finite positive *G*-invariant measures μ and ν such that $|v_{\alpha}|^{p^*} dv_g \rightharpoonup \nu$ and $|\nabla v_{\alpha}|^p_q dv_g \rightharpoonup \mu$ weakly in the sense

of measure. Let $\epsilon > 0$. According to Faget [2], there exists $C_{\epsilon} > 0$ such that for any α and any *G*-invariant function $\phi \in C(M)$,

$$\left(\int_{M} |\phi v_{\alpha}|^{p^{*}} dv_{g}\right)^{\frac{1}{p^{*}}} \leq \left(\frac{K(n-k,p)}{A^{\frac{1}{n-k}}} + \epsilon\right) \left(\int_{M} |\nabla(\phi v_{\alpha})|_{g}^{p} dv_{g}\right)^{\frac{1}{p}} + C_{\epsilon} \left(\int_{M} |\phi v_{\alpha}|^{p} dv_{g}\right)^{\frac{1}{p}}.$$
(18)

Passing to the limit in α and then in ϵ in this inequality we get

$$\left(\int_{M} |\phi|^{p^{*}} d\nu\right)^{\frac{1}{p^{*}}} \leq \left(\frac{K(n-k,p)}{A^{\frac{1}{n-k}}}\right) \left(\int_{M} |\phi|^{p} d\mu\right)^{\frac{1}{p}}$$

for any G-invariant function $\phi \in C(M)$. Lemma 1.1 in Lions [7] then gives the existence of $I \subset \mathbb{N}$, a sequence of points $(x_i)_{i \in I} \subset M$ and two sequences of positive reals $(\mu_i)_{i \in I}$ and $(\nu_i)_{i \in I}$ such that

$$|v_{\alpha}|^{p^{*}} dv_{g} \rightharpoonup \nu = \sum_{i \in I} \nu_{i} \delta_{Gx_{i}},$$

$$|\nabla v_{\alpha}|_{g}^{p} dv_{g} \rightharpoonup \mu \ge \sum_{i \in I} \mu_{i} \delta_{Gx_{i}}, \text{ and}$$

$$\nu_{i}^{\frac{p}{p^{*}}} \le \frac{K(n-k,p)^{p}}{A^{\frac{p}{n-k}}} \mu_{i} \forall i \in I.$$
(19)

where δ_{Gx_i} is defined by $\delta_{Gx_i}(\phi) = \int_G \phi(\sigma x_i) dm(\sigma)$ for $\phi \in C(M)$, *m* being the Haar measure of *G* such that m(G) = 1 (in particular, if ϕ is *G*-invariant, then $\delta_{Gx_i}(\phi) = \phi(x_i)$). Let $\phi \in C(M)$. Then

$$o(1) = DI_g(v_\alpha).(v_\alpha\phi)$$

= $\int_M |\nabla v_\alpha|_g^p \phi dv_g + \int_M v_\alpha |\nabla v_\alpha|^{p-2} (\nabla v_\alpha, \nabla \phi)_g dv_g - \int_M f \phi |v_\alpha|^{p^*} dv_g.$

By Hölder inequality, the second integral tends to 0. We thus get by passing to the limit in the above expression that

$$\int_M \phi d\mu = \int_M \phi f d\nu$$

for any $\phi \in C(M)$. Hence $\mu = f\nu$. In particular $\mu(Gx_i) = \int_{Gx_i} fd\nu$ for any $i \in I$, and thus $\mu_i \leq f(x_i)\nu_i$ for any $i \in I$. This implies that $f(x_i) > 0$ for any $i \in I$. Using (19), we obtain

$$\nu_i \ge \frac{AK(n-k,p)^{k-n}}{f(x_i)^{\frac{n-k}{p}}} \ge \frac{AK(n-k,p)^{k-n}}{(\max f)^{\frac{n-k}{p}}},$$

and

$$\mu_i \ge \frac{AK(n-k,p)^{k-n}}{f(x_i)^{\frac{n-k-p}{p}}} \ge \frac{AK(n-k,p)^{k-n}}{(\max f)^{\frac{n-k-p}{p}}}$$

for any $i \in I$. We now write using (15) that

$$(n-k)\beta = \int_M |\nabla v_\alpha|_g^p dv_g + o(1) = \sum_{i \in I} \mu_i \ge card(I) \frac{AK(n-k,p)^{k-n}}{(\max f)^{\frac{n-k-p}{p}}}$$

which implies that I is finite i.e. (v_{α}) has a finite number of orbits of concentration, namely the $Gx_i, i \in I$. Eventually,

$$\mu = f\nu = \sum_{i \in I} \nu_i f(x_i) \delta_{Gx_i} \tag{20}$$

which implies the equivalent definition (17) of an orbit of concentration.

We assume that $p \leq 2$, $u^0 \equiv 0$ and $DI_g^{\alpha}(u_{\alpha}) = 0$. Note that it follows from (19) and (20) that

$$\lim_{\alpha \to +\infty} \int_{M} \varphi |u_{\alpha}|^{p^{*}} dv_{g} = \sum_{i \in I} \nu_{i} \varphi(x_{i}), \qquad (21)$$

$$\lim_{\alpha \to +\infty} \int_{M} \varphi |\nabla u_{\alpha}|_{g}^{p} dv_{g} = \sum_{i \in I} f(x_{i}) \nu_{i} \varphi(x_{i})$$
(22)

for all $\varphi \in C^0(M)$ G-invariant.

We fix $i \in I$ and Gx_i an orbit of concentration. We consider the group G' given by the hypothesis (H) taken at x_i (note that an orbit of concentration has minimal dimension and therefore we can apply (H)) and, given $\epsilon > 0$, let $\eta \equiv \eta_{\bar{x}_i,\epsilon}$.

We assume that $\nabla f(x_i) \neq 0$. We consider a smooth G'-invariant function ϕ with compact support in $B_{Gx_i}(\delta)$ such that $\nabla \phi(x_i) = \nabla f(x_i)$ and $\nabla^2 \phi(x_i) = 0$. We let $\sigma := |\nabla \phi|_g^{p-2} \nabla \phi$. Since $p \leq 2$, it follows from [12] that $u_\alpha \in H_2^p(M)$. In particular, the function $(\sigma, \nabla u_\alpha)_g$ belongs to $H_1^p(M)$. We let $\epsilon > 0$ such that $\nabla \phi(x) \neq 0$ for all $x \in B_{Gx_i}(\epsilon/2)$ and we let η defined above. With (21), we get that

$$\frac{1}{p^*} \int_M (\sigma, \nabla f)_g |u_\alpha|^{p^*} \, dv_g = \frac{\nu_i}{p^*} |\nabla f(x_i)|_g^p(x_i) + o(1)$$

Independently, we have that

$$\begin{split} &\frac{1}{p^*} \int_M (\sigma, \nabla f)_g |u_\alpha|^{p^*} \, dv_g = \frac{1}{p^*} \int_M \eta(\sigma, \nabla f)_g |u_\alpha|^{p^*} \, dv_g + o(1) \\ &= \frac{-1}{p^*} \int_M \operatorname{div} \left(\eta |u_\alpha|^{p^*} |\nabla \phi|_g^{p-2} \nabla \phi \right) f \, dv_g + o(1) \\ &= \frac{1}{p^*} \int_M \eta f |u_\alpha|^{p^*} \Delta_p \phi \, dv_g - \frac{1}{p^*} \int_M |\nabla \phi|^{p-2} (\nabla \phi, \nabla \eta)_g |u_\alpha|^{p^*} f \, dv_g \\ &- \int_M \eta f |u_\alpha|^{p^*-2} u_\alpha(\sigma, \nabla u_\alpha)_g \, dv_g + o(1) \\ &= \frac{\nu_i}{p^*} \eta(x_i) f(x_i) \Delta_p \phi(x_i) - \int_M |\nabla u_\alpha|_g^{p-2} (\nabla u_\alpha, \nabla (\eta(\sigma, \nabla u_\alpha)_g))_g \, dv_g \\ &- \int_M h_\alpha |u_\alpha|^{p-2} u_\alpha \eta(\sigma, \nabla u_\alpha)_g \, dv_g + o(1) \end{split}$$

Thanks to Hölder's inequality, the last integral goes to 0, and straightforward computations yield that $\Delta_p \phi(x_i) = 0$. We then get that

$$\frac{\nu_i}{p^*} |\nabla f(x_i)|_g^p(x_i) = -\int_M |\nabla u_\alpha|_g^{p-2} (\nabla u_\alpha, \nabla(\eta(\sigma, \nabla u_\alpha)_g))_g \, dv_g + o(1).$$

Passing to the quotient manifolds $N := B_{G'x_i}(\delta)/G'$ and using the G'-invariance, we get that

$$\frac{\nu_i}{p^*} |\nabla f(x_i)|_g^p(x_i) = -\int_N |\nabla \bar{u}_\alpha|_{\bar{g}}^{p-2} (\nabla \bar{u}_\alpha, \nabla (\bar{\eta}(\bar{\sigma}, \nabla \bar{u}_\alpha)_{\bar{g}}))_{\bar{g}} \bar{v} \, dv_{\bar{g}} + o(1),$$

where we have that $\bar{\eta} \circ \Pi = \eta$, $\bar{u}_{\alpha} \circ \Pi = u_{\alpha}$ and $\bar{\sigma} \circ \Pi = \sigma$. We have that

$$\begin{aligned} |\nabla \bar{u}_{\alpha}|_{\bar{g}}^{p-2} (\nabla \bar{u}_{\alpha}, \nabla (\bar{\eta}(\bar{\sigma}, \nabla \bar{u}_{\alpha})_{\bar{g}}))_{\bar{g}} &= \frac{1}{p} \bar{\eta}(\bar{\sigma}, \nabla |\nabla \bar{u}_{\alpha}|_{\bar{g}}^{p})_{g} \\ &+ |\nabla \bar{u}_{\alpha}|_{\bar{g}}^{p-2} \nabla^{i} \bar{u}_{\alpha} \nabla^{j} \bar{u}_{\alpha} \nabla_{j} (\bar{\eta} \bar{\sigma}_{j}). \end{aligned}$$

Using Cartan's expansion of \bar{g} in the exponential chart at \bar{x}_i and noting that $\nabla \sigma(x_i) = 0$ (here, one uses that $\nabla^2 \phi(x_i) = 0$), we get that

$$|\nabla \bar{u}_{\alpha}|_{\bar{g}}^{p-2} (\nabla \bar{u}_{\alpha}, \nabla (\bar{\eta}(\bar{\sigma}, \nabla \bar{u}_{\alpha})_{\bar{g}}))_{\bar{g}} = \frac{1}{p} \bar{\eta}(\bar{\sigma}, \nabla |\nabla \bar{u}_{\alpha}|_{\bar{g}}^{p})_{\bar{g}} + O\left(d_{\bar{g}}(\bar{x}_{i}, \bar{x}) |\nabla \bar{u}_{\alpha}|_{\bar{g}}^{p}\right).$$

With (22), we get that

$$\int_N d_{\bar{g}}(\bar{x}_i, \bar{x}) |\nabla \bar{u}_\alpha|_{\bar{g}}^p = o(1)$$

when $\alpha \to +\infty$. We then get that

$$\begin{aligned} \frac{\nu_i}{p^*} |\nabla f(x_i)|_g^p(x_i) &= -\frac{1}{p} \int_N \bar{\eta}(\bar{\sigma}, \nabla |\nabla \bar{u}_\alpha|_g^p)_{\bar{g}} \bar{v} \, dv_{\bar{g}} + o(1) \\ &= -\frac{1}{p} \int_M \eta(\sigma, \nabla |\nabla u_\alpha|_g^p)_g \, dv_g + o(1) \\ &= -\frac{1}{p} \int_M (\eta \Delta_p \phi - |\nabla \phi|_g^{p-2} (\nabla \eta, \nabla \phi)_g) |\nabla u_\alpha|_g^p \, dv_g + o(1) \\ &= -\frac{1}{p} \Delta_p \phi(x_i) f(x_i) \nu_i + o(1) = o(1) \end{aligned}$$

since $\nabla^2 \phi(x_i) = 0$. We then get that $\nabla f(x_i) = 0$, a contradiction with our initial hypothesis. Then $\nabla f(x_i) = 0$ for all $i \in I$. This proof requires the use of $(\sigma, \nabla u_\alpha)_g$ as a test-function and thus cannot work if we deal with (P-S) sequence since then we need the u_α to be bounded in H_2^p (which is irrevelant here because it implies the strong convergence in H_1^p of the u_α to u^0). This explains the restriction imposed to get $\nabla f(x_i) = 0$.

We now prove 2). According to 1), $\dim Gx_0 = k$. Assumption (H) then gives $\delta_0 > 0$ and a subgroup G' of $Isom_g(M)$ such that (H1) and (H2) are satisfied. We have for $\delta \in (0, \delta_0)$

$$\int_{B_{Gx_0}(\delta)} |\nabla v_\alpha|_g^p dv_g = \int_{B^{\bar{g}}_{\bar{x}_0}(\delta)} |\nabla \bar{v}_\alpha|_{\bar{g}}^p \bar{v} dv_{\bar{g}} = \int_{B^{\bar{g}}_{\bar{x}_0}(\delta)} |\nabla \bar{v}_\alpha|_{\bar{g}}^p dv_{\bar{g}},$$

where $\bar{v}_{\alpha} \circ \Pi = v_{\alpha}, \Pi : B_{Gx_0}(\delta) \to N$ being the canonical surjection. Let

$$m = \inf_{\bar{x} \in B^{\bar{g}}_{\bar{x}_{0}}(\delta)} \bar{v}(\bar{x})^{\frac{1}{n-k-p}} and M = \sup_{\bar{x} \in B^{\bar{g}}_{\bar{x}_{0}}(\delta)} \bar{v}(\bar{x})^{\frac{1}{n-k-p}}.$$

Then for any $\bar{x} \in B^{\bar{g}}_{\bar{x}_0}(\delta)$,

$$\frac{1}{M}d_{\bar{g}}(\bar{x}, \bar{x}_0) \le d_{\bar{g}}(\bar{x}, \bar{x}_0) \le \frac{1}{m}d_{\bar{g}}(\bar{x}, \bar{x}_0).$$

Hence

$$\int_{B_{Gx_0}(\delta)} |\nabla v_{\alpha}|^p dv_g \le \int_{B^{\tilde{g}}_{\bar{x}_0}(\frac{\delta}{m})} |\nabla \bar{v}_{\alpha}|^p_{\tilde{g}} dv_{\tilde{g}}$$

which proves the claim.

Step 1.2 Let Gx_0 be an orbit such that there exist $\delta_0 > 0$ and a subgroup $G' \subset Isom_g(M)$ satisfying (H1) and (H2). Then (\bar{v}_{α}) is a (P-S) sequence for the functional $I_{\tilde{g}}$ defined on $\overset{\circ}{H_1^p}(N)$ by

$$\bar{I}_{\tilde{g}}(\bar{u}) = \frac{1}{p} \int_{N} |\nabla \bar{u}|_{\bar{g}}^{p} dv_{\tilde{g}} - \frac{1}{p^{*}} \int_{N} \bar{f} |\bar{u}|^{p^{*}} \bar{v}^{-\frac{p}{n-k-p}} dv_{\tilde{g}}$$

where $N = B_{Gx_0}(\delta_0)/G'$, $\overline{f} \circ \Pi = f$ and $\Pi : B_{Gx_0}(\delta_0) \to N$ is the canonical surjection.

Proof. Let
$$\bar{\phi} \in C_c^{\infty}(N)$$
 and $\phi \in C_c^{\infty}(B_{Gx_0}(\delta_0))$ such that $\bar{\phi} \circ \Pi = \phi$. Then
 $o(1) \|\bar{\phi}\|_{H_1^p(N)} = o(1) \|\phi\|_{H_1^p(M)} = DI_g(v_\alpha)\phi$
 $= \int_{B_{Gx_0}(\delta_0)} |\nabla v_\alpha|_g^{p-2} (\nabla v_\alpha, \nabla \phi)_g dv_g - \int_{B_{Gx_0}(\delta_0)} f |v_\alpha|^{p^*-2} v_\alpha \phi dv_g$
 $= \int_{B_{x_0}^{\bar{y}}(\delta_0)} |\nabla \bar{v}_\alpha|_g^{p-2} (\nabla \bar{v}_\alpha, \nabla \bar{\phi})_{\bar{g}} \bar{v} dv_{\bar{g}} - \int_{B_{x_0}^{\bar{g}}(\delta_0)} f |\bar{v}_\alpha|^{p^*-2} \bar{v}_\alpha \bar{\phi} \bar{v} dv_{\bar{g}}$
 $= \int_{B_{x_0}^{\bar{g}}(\delta_0)} |\nabla \bar{v}_\alpha|_g^{p-2} (\nabla \bar{v}_\alpha, \nabla \bar{\phi})_{\bar{g}} dv_{\bar{g}}$
 $= \int_{B_{x_0}^{\bar{g}}(\delta_0)} \bar{f} |\bar{v}_\alpha|^{p^*-2} \bar{v}_\alpha \bar{\phi} \bar{v}^{-\frac{p}{n-k-p}} dv_{\bar{g}}$
 $= D\bar{I}_{\bar{g}}(\bar{v}_\alpha).\bar{\phi}$

237

As explained above, there exists an orbit of concentration Gx_0 . According to Step 1.1, dim $Gx_0 = k$. Assumption (H) then gives $\delta_0 > 0$ and a subgroup $G' \subset Isom_g(M)$ satisfying (H1) and (H2) on $B_{Gx_0}(2\delta_0)$. We let $N = B_{Gx_0}(\delta_0)/G'$ and consider, for t > 0,

$$\mu_{\alpha}(t) = \max_{\bar{x} \in N} \int_{B_{\bar{x}}^{\bar{g}}(t)} |\nabla \bar{v}_{\alpha}|_{\bar{g}}^{p} dv_{\bar{g}}.$$

In view of Step 1.1, there exist λ_0 such that, up to a subsequence, for any α

$$\mu_{\alpha}(\delta_{0}) \geq \int_{B^{\tilde{g}}_{\tilde{x}_{0}}(\delta_{0})} |\nabla \bar{v}_{\alpha}|_{\tilde{g}}^{p} dv_{\tilde{g}} \geq \lambda_{0}.$$

Since μ_{α} is continuous, we then get for any $\lambda \in (0, \lambda_0)$ the existence of $t_{\alpha} \in (0, \delta_0)$ and $\bar{x}_{\alpha} \in N$, $\bar{x}_{\alpha} \to \bar{x}_0$, such that for any α

$$\mu_{\alpha}(t_{\alpha}) = \int_{B^{\tilde{g}}_{\tilde{x}_{\alpha}}(t_{\alpha})} |\nabla \bar{v}_{\alpha}|_{\tilde{g}}^{p} dv_{\tilde{g}} = \lambda.$$

In view of to Step 1.2, (\bar{v}_{α}) is a (P-S) sequence for $\bar{I}_{\tilde{g}}$ on $\overset{\circ}{H_1^p}(N)$. According to Saintier [9], there exist a sequence $R_{\alpha} \to +\infty$ and $v \in D_1^p(\mathbb{R}^{n-k})$, (where $D_1^p(\mathbb{R}^{n-k})$ is the completion of $C_c^{\infty}(\mathbb{R}^{n-k})$ for the norm $u \mapsto ||\nabla u||_p$) such that

$$\tilde{v}_{\alpha} \to v \text{ in } H^{p}_{1,loc}\left(\mathbb{R}^{n-k}\right)$$
(23)

and $v \neq 0$, where, if $i_{\tilde{g}}(\bar{x}_0)$ denotes the injectivity radius of (N, \tilde{g}) at \bar{x}_0 ,

$$\tilde{v}_{\alpha}(x) = R_{\alpha}^{-\frac{n-k-p}{p}} \bar{v}_{\alpha} \left(exp_{\bar{x}_{\alpha}}(R_{\alpha}^{-1}x) \right), \ x \in B_0 \left(R_{\alpha} i_{\tilde{g}}(\bar{x}_0) \right).$$

Actually, the analysis in [9] is performed with a constant function in front of $|\bar{u}|^{p^*}$ in the functional $\bar{I}_{\tilde{g}}(\bar{u})$. In our context here, $\bar{f}\bar{v}^{-\frac{p}{n-k-p}}$ is not constant: however, the analysis for the proof of the result above works the same.

We now prove that

Step 1.3 v is a solution of the Euclidean equation

$$\begin{aligned} \Delta_{p,\xi} v &= \bar{f}(\bar{x}_0) \bar{v}(\bar{x}_0)^{-\frac{p}{n-k-p}} |v|^{p^*-2} v \\ &= f(x_0) Vol(Gx_0)^{-\frac{p}{n-k-p}} |v|^{p^*-2} v \end{aligned}$$

Proof. Let $\phi \in C_c^{\infty}(\mathbb{R}^{n-k})$ and R > 0 such that $supp \ \phi \subset B_0(R)$. For α large enough, we define $\phi_{\alpha} \in C_c^{\infty}(N)$ by

$$\phi_{\alpha}(\bar{x}) = R_{\alpha}^{\frac{n-k-p}{p}} \phi\left(R_{\alpha} exp_{\bar{x}_{\alpha}}(\bar{x})\right).$$

Vol. 15, 2008 Symmetric critical equations with the $p\mbox{-}{\rm Laplacian}$

Then (ϕ_{α}) is bounded in $\overset{\circ}{H_1^p}(N)$. Thus

$$\begin{split} o(1) &= DI_{\tilde{g}}(\bar{v}_{\alpha})\phi_{\alpha} \\ &= \int_{B_{0}(R)} |\nabla \tilde{v}_{\alpha}|_{\tilde{g}_{\alpha}}^{p-2} (\nabla \tilde{v}_{\alpha}, \nabla \phi)_{\tilde{g}_{\alpha}} dv_{\tilde{g}_{\alpha}} \\ &- \int_{B_{0}(R)} |\tilde{v}_{\alpha}|^{p^{*}-2} \tilde{v}_{\alpha} \phi \bar{v} \left(exp_{\bar{x}_{\alpha}}(R_{\alpha}^{-1}x) \right)^{-\frac{p}{n-k-p}} \bar{f} \left(exp_{\bar{x}_{\alpha}}(R_{\alpha}^{-1}x) \right) dv_{\tilde{g}_{\alpha}} \end{split}$$

where \tilde{g}_{α} is the metric defined in the Euclidean ball $B_0(i_{\tilde{g}}R_{\alpha}) \subset \mathbb{R}^{n-k}$ by

$$\tilde{g}_{\alpha}(x) = \left(exp_{\bar{x}_{\alpha}}^{*}\tilde{g}\right)\left(R_{\alpha}^{-1}x\right).$$

Since $R_{\alpha} \to +\infty$, the \tilde{g}_{α} converge locally uniformly to the Euclidean metric ξ . Passing to the limit, we then get using (23) that

$$\int_{\mathbb{R}^{n-k}} |\nabla v|_{\xi}^{p-2} (\nabla v, \nabla \phi)_{\xi} dx - \bar{f}(\bar{x}_0) \bar{v}(\bar{x}_0)^{-\frac{p}{n-k-p}} \int_{\mathbb{R}^{n-k}} |v|^{p^*-2} v \phi dx = 0$$

in proves Step 1.3.

which proves Step 1.3.

For $\delta > 0$ small, we let

$$\bar{B}_{\alpha}(\bar{x}) = \eta_{\bar{x}_{\alpha},\delta}(\bar{x}) R_{\alpha}^{\frac{n-k-p}{p}} v\left(R_{\alpha} exp_{\bar{x}_{\alpha}}^{-1}(\bar{x})\right)$$

and $\bar{w}_{\alpha} = \bar{v}_{\alpha} - \bar{B}_{\alpha}$. Then, according to Saintier ([9] Step 2.4),

$$\bar{B}_{\alpha} \to 0$$
 weakly in $\overset{\circ}{H_1^p}(N)$, (24)

$$D\bar{I}_{\tilde{g}}(\bar{B}_{\alpha}) \to 0 \text{ and } D\bar{I}_{\tilde{g}}(\bar{w}_{\alpha}) \to 0 \text{ strongly in } H_1^p(N)',$$
 (25)

$$\bar{I}_{\tilde{g}}(\bar{w}_{\alpha}) = \bar{I}_{\tilde{g}}(\bar{v}_{\alpha}) - E(v) + o(1)$$
(26)

where

$$E(v) = \frac{1}{p} \int_{\mathbb{R}^{n-k}} |\nabla v|_{\xi}^{p} dx - \frac{\bar{v}(\bar{x}_{0})^{-\frac{p}{n-k-p}} f(x_{0})}{p^{*}} \int_{\mathbb{R}^{n-k}} |v|^{p^{*}} dx.$$

We now define a bubble (B_{α}) by the relation

$$B_{\alpha} = \bar{B}_{\alpha} \circ \Pi$$

and $w_{\alpha} = v_{\alpha} - B_{\alpha}$. We now claim that the following holds:

Step 1.4

$$w_{\alpha} \to 0$$
 weakly in $H_1^p(M)$, (27)

$$DI_g(B_\alpha) \to 0 \text{ and } DI_g(w_\alpha) \to 0,$$
 (28)

$$I_g(w_{\alpha}) = I_g(v_{\alpha}) - E(v) + o(1).$$
(29)

Proof. We first prove that $B_{\alpha} \to 0$ weakly in H_1^p (which implies (27) since $v_{\alpha} \to 0$ weakly in H_1^p). Since $(B_{\alpha}) \subset H_{1,G'}^p(M)$ is bounded in H_1^p , it suffices to prove that $B_{\alpha} \to 0$ weakly in $L_{G'}^p(M)$. Let $\psi \in L_{G'}^q(M)$, $q = \frac{p}{p-1}$, and $\bar{\psi} \in L^q(N, \tilde{g})$ be such that $\psi = \bar{\psi} \circ \Pi$ in $B_{Gx_0}(2\delta)$. Then, using (24),

$$\int_M B_\alpha \psi dv_g = \int_N \bar{B}_\alpha \bar{\psi} \bar{v}^{-\frac{p}{n-k-p}} dv_{\tilde{g}} \to 0.$$

We prove in the same way that $DI_q(B_\alpha) \to 0$. We now prove that

$$DI_q(w_\alpha) \to 0.$$

Let $\phi \in H^p_{1,G}(M)$, $\delta \in (0, \delta_0/6)$ and $\eta_0 \equiv \eta_{\bar{x}_0,3\delta} \in C^{\infty}_c(B_{Gx_0}(6\delta))$. For α large enough so that $d_{\bar{g}}(\bar{x}_{\alpha}, \bar{x}_0) < \delta$ (in particular supp $\bar{B}_{\alpha} \subset B_{\bar{x}_{\alpha}}(2\delta) \subset B_{\bar{x}_0}(3\delta)$), straightforward computations yield

$$DI_g(w_\alpha)\phi = DI_g(w_\alpha)(\eta_0\phi) + DI_g(w_\alpha)((1-\eta_0)\phi)$$

$$= D\overline{I}_{\tilde{g}}(\overline{w}_\alpha)(\overline{\eta_0\phi}) + DI_g(v_\alpha)((1-\eta_0)\phi)$$

$$= o\left(\|\overline{\eta_0\phi}\|_{H_1^p(N)}\right) + o\left(\|(1-\eta_0)\phi\|_{H_1^p(M)}\right)$$

$$= o\left(\|\phi\|_{H_1^p(M)}\right)$$

Now consider $\phi \in H_1^p(M)$ et $\phi_G \in H_{1,G}^p(M)$ defined by

$$\phi_G(x) = \int_G \phi(\sigma x) dm(\sigma)$$

where m is the Haar measure of G such that m(G) = 1. Then, according to what we just did,

$$DI_g(w_{\alpha})\phi_G = o(1) \|\phi_G\|_{H_1^p}$$

with

$$DI_{g}(w_{\alpha})\phi_{G} = \int_{G} \left(\int_{M} |\nabla w_{\alpha}|^{p-2} (\nabla w_{\alpha}, \nabla(\phi \circ \sigma))_{g} dv_{g} \right) dm(\sigma)$$

$$- \int_{G} \left(\int_{M} f |w_{\alpha}|^{p^{*}-2} w_{\alpha}(\phi \circ \sigma) dv_{g} \right) dm(\sigma)$$

$$= m(G) DI_{g}(w_{\alpha})\phi$$

and, using Hölder inequality,

$$\begin{split} \|\phi_G\|_{H_1^p}^p &= \int_M \left|\int_G \nabla(\phi \circ \sigma) dm(\sigma)\right|^p dv_g + \int_M \left|\int_G (\phi \circ \sigma) dm(\sigma)\right|^p dv_g \\ &\leq m(G)^{p-1} \int_M \left(\int_G |\nabla(\phi \circ \sigma)|^p dm(\sigma)\right) dv_g \\ &+ m(G)^{p-1} \int_M \left(\int_G |\phi \circ \sigma|^p dm(\sigma)\right) dv_g \\ &\leq \|\phi\|_{H_1^p}^p. \end{split}$$

Hence

$$DI_q(w_\alpha)\phi = o(1) \|\phi\|_{H^p_*}.$$

It remains to prove (29). We write that

$$I_{g}(w_{\alpha}) = \frac{1}{p} \int_{M \setminus B_{Gx_{0}}(2\delta)} |\nabla v_{\alpha}|_{g}^{p} dv_{g} - \frac{1}{p^{*}} \int_{M \setminus B_{Gx_{0}}(2\delta)} f|v_{\alpha}|^{p^{*}} dv_{g} + \bar{I}_{\tilde{g}}(\bar{w}_{\alpha}).$$

We then get using (26) that

$$I_{g}(w_{\alpha}) = \frac{1}{p} \int_{M \setminus B_{Gx_{0}}(2\delta)} |\nabla v_{\alpha}|_{g}^{p} dv_{g} - \frac{1}{p^{*}} \int_{M \setminus B_{Gx_{0}}(2\delta)} f|v_{\alpha}|^{p^{*}} dv_{g} + \bar{I}_{\tilde{g}}(\bar{v}_{\alpha}) -E(v) + o(1) = I_{g}(v_{\alpha}) - E(v) + o(1)$$

which proves (29). Note that $v \neq 0$.

This ends the proof of the Lemma and thus of the
$$H_1^p$$
-decomposition for a
Palais-Smale sequences (u_{α}) for I_g^{α} of arbitrary sign. If we assume that $u_{\alpha} > 0$
for any α , then $u^0 \ge 0$ a.e. since $u_{\alpha} \to u^0$ weakly in H_1^p and thus also almost
everywhere (up to a subsequence). Since $u^0 \in H_1^p(M)$ is a weak solution to (E_{∞}) ,
it follows from Tolksdorf [12] that $u^0 \in C^{1,\theta}(M)$ for some $\theta \in (0,1)$. We then
deduce from Vazquez' maximum principle [13] that $u_0 \equiv 0$ or $u^0 > 0$ everywhere.
Moreover, according to Saintier [9], the \bar{B}^i are bubbles and hence so are the B^i ,
 $1 \le i \le k$.

2 Proof of the C^0 -estimates (10) and (11)

Let (u_{α}) be a bounded sequence of positive solutions of (E_{α}) . We prove in this section the pointwise estimates of Theorem 0.1. We first prove (10). By standard regularity results (see Tolksdorff [12]), we know that $u^0 \in C^{1,\theta}(M)$ for some $\theta \in (0,1)$, where u^0 is the weak limit in H_1^p of the u_{α} 's. It thus suffices to prove that there exists C > 0 such that for every α and every $x \in M$,

$$R_{\alpha}(x)^{\frac{n-k-p}{p}}u_{\alpha}(x) \le C.$$
(30)

241

Actually, we are going to prove the following stronger result: there exists C>0 such that

$$v_{\alpha}(x) := R'_{\alpha}(x)^{\frac{n-k-p}{p}} u_{\alpha}(x) \le C$$
(31)

for all $x \in M$ and all $\alpha > 0$, where

$$R'_{\alpha}(x) = \min_{i=1,\dots,l} d_g(G'_i x, G'_i x^i_{\alpha})$$

and for all $i \in \{1, ..., l\}$, the group G'_i is given by hypothesis (H) at the orbit of concentration Gx^i_{∞} , where $\lim_{\alpha \to +\infty} x^i_{\alpha} = x^i_{\infty}$.

We assume by contradiction that there exists $y_{\alpha} \in M$ such that

$$v_{\alpha}(y_{\alpha}) = \max_{x \in M} v_{\alpha}(x) \to +\infty$$
(32)

when $\alpha \to +\infty$ and we let $\mu_{\alpha} := u_{\alpha}(y_{\alpha})^{-p/(n-k-p)} \to 0$ when $\alpha \to +\infty$. We let $\lim_{\alpha \to +\infty} y_{\alpha} = y_0$, up to extraction.

We claim that the orbit Gy_0 has minimal dimension k. Indeed, we argue by contradiction and assume that dim $Gy_0 > k$. As in Step 1.1, we then get that there exist $q_0 > p^*$ and $\delta > 0$ such that $\lim_{\alpha \to +\infty} u_{\alpha} = u^0$ in $L^{q_0}(B_{Gy_0}(\delta))$. It then follows from (E_{α}) and standard regularity theory that $\lim_{\alpha \to +\infty} u_{\alpha} = u^0$ in $C^0(B_{Gy_0}(\delta'))$ for all $\delta' < \delta$. A contradiction with the assumption (32). This proves the claim.

We then let G' be the group given by hypothesis (H) at the point y_0 . We let $I_0 = \{i \in \{1, ..., l\}/x_{\infty}^i \in Gy_0\}$ (note that I_0 may be empty). Then, for all $i \in I_0$, we have that $G' = G'_i$. We consider the quotient manifold $N := B_{G'y_0}(\delta)/G'$, where $\delta > 0$ is small and given by (H). Here again, we consider the function $\bar{u}_{\alpha}(\bar{x}) = u_{\alpha}(x)$ for $\bar{x} \in N$. We fix $R_0 \in (0, i_{\bar{g}}(\bar{y}_0))$ and we consider the function w_{α} defined on the Euclidean ball $B_0(R_0\mu_{\alpha}^{-1})$ by

$$w_{\alpha}(x) := \mu_{\alpha}^{\frac{n-k-p}{p}} \bar{u}_{\alpha}(\exp_{\bar{y}_{\alpha}}(\mu_{\alpha}x)).$$

In this expression, the exponential map is taken wrt the metric \bar{g} . For $\rho > 0$ and $x \in B_0(\rho) \subset \mathbb{R}^{n-k}$, we let $z_{\alpha} \in M$ be such that $G' z_{\alpha} = \bar{z}_{\alpha} = \exp_{\bar{y}_{\alpha}}(\mu_{\alpha} x)$. Given $i \in I_0$, we get that

$$d_{g}(G'z_{\alpha}, G'x_{\alpha}^{i}) \geq d_{g}(G'x_{\alpha}^{i}, G'y_{\alpha}) - d_{g}(G'y_{\alpha}, G'z_{\alpha})$$

$$\geq R'_{\alpha}(y_{\alpha}) - d_{\bar{g}}(\bar{y}_{\alpha}, \bar{z}_{\alpha})$$

$$\geq R'_{\alpha}(y_{\alpha}) - \mu_{\alpha}|x|$$

$$\geq \left(1 - \frac{\rho\mu_{\alpha}}{R'_{\alpha}(y_{\alpha})}\right) R'_{\alpha}(y_{\alpha}).$$

By definition of y_{α} and μ_{α} , we have that $\mu_{\alpha}R'_{\alpha}(y_{\alpha})^{-1} \to 0$ when $\alpha \to +\infty$, and hence the right-hand-side of the above equation is positive. In case $i \notin I_0$, we get

that

$$\lim_{\alpha \to +\infty} d_g(\exp_{\bar{y}_\alpha}(\mu_\alpha x), G'_i x^i_\alpha) = d_g(G' y_0, G'_i x^i_\infty)$$
$$= d_g(Gy_0, Gx^i_\infty) > 0 \text{ in } C^0_{loc}(\mathbb{R}^{n-k}).$$

Since $R'_{\alpha}(y_{\alpha}) \to 0$ when $\alpha \to +\infty$, we then get that

$$R'_{\alpha}(\exp_{\bar{y}_{\alpha}}(\mu_{\alpha}x)) \geq \frac{1}{2} \left(1 - \frac{\rho\mu_{\alpha}}{R'_{\alpha}(y_{\alpha})}\right) R'_{\alpha}(y_{\alpha}) > 0$$

for all $x \in B_0(\rho)$ and all $\alpha > 0$. We can then write for $x \in B_0(\rho)$ that

$$w_{\alpha}(x) = \frac{\mu_{\alpha}^{\frac{n-k-p}{p}} v_{\alpha}(z_{\alpha})}{R'_{\alpha}(\exp_{\bar{y}_{\alpha}}(\mu_{\alpha}x))^{\frac{n-k-p}{p}}}$$

$$\leq 2^{(n-k-p)/p} \left(1 - \frac{\rho\mu_{\alpha}}{R'_{\alpha}(y_{\alpha})}\right)^{-\frac{n-k-p}{p}} \frac{u_{\alpha}(y_{\alpha})^{-1} v_{\alpha}(y_{\alpha})}{R'_{\alpha}(y_{\alpha})^{\frac{n-k-p}{p}}}$$

$$\leq 2^{(n-k-p)/p} \left(1 - \frac{\rho\mu_{\alpha}}{R'_{\alpha}(y_{\alpha})}\right)^{-\frac{n-k-p}{p}}$$

uniformly for $x \in B_0(\rho) \subset \mathbb{R}^{n-k}$ when $\alpha \to +\infty$. Thus the sequence (w_α) is uniformly bounded on every compact subset of \mathbb{R}^{n-k} . Let \bar{g}_α be the Riemannian metric on \mathbb{R}^{n-k} defined by

$$\bar{g}_{\alpha}(x) = \exp^*_{\bar{y}_{\alpha}} \bar{g}(\mu_{\alpha} x).$$

Equation (E_{α}) becomes

$$-div_{\bar{g}_{\alpha}}(\tilde{v}_{\alpha}|\nabla w_{\alpha}|_{\bar{g}_{\alpha}}^{p-2}\nabla w_{\alpha}) + \mu_{\alpha}^{p}\tilde{h}_{\alpha}\tilde{v}_{\alpha}w_{\alpha}^{p-1} = \tilde{f}_{\alpha}\tilde{v}_{\alpha}w_{\alpha}^{p^{*}-1}$$

where $\tilde{h}_{\alpha}(x) = \bar{h}_{\alpha}(\exp_{\bar{y}_{\alpha}}(\mu_{\alpha}x)), \ \tilde{f}_{\alpha}(x) = \bar{f}(\exp_{\bar{y}_{\alpha}}(\mu_{\alpha}x)), \ \tilde{v}_{\alpha}(x) = \bar{v}(\exp_{\bar{y}_{\alpha}}(\mu_{\alpha}x)).$ Since $\mu_{\alpha} \to 0$ when $\alpha \to +\infty$, the metric \bar{g}_{α} converges to the Euclidean metric ξ in $C^{2}_{loc}(\mathbb{R}^{n-k})$ when $\alpha \to +\infty$. It then follows from Tolksdorff [13] that, up to extraction, there exists $w \in C^{1,\theta}(\mathbb{R}^{n-k})$ such that

$$\lim_{\alpha \to +\infty} w_{\alpha} = w \text{ in } C^{1,\theta}_{loc}(\mathbb{R}^{n-k}).$$

Since $w_{\alpha}(0) = 1$, we get that w(0) = 1 and then $w \neq 0$. We let R > 0. Since

$$\int_{B_0(R)} w_{\alpha}^{p^*} dv_{\bar{g}_{\alpha}} = \int_{B_{\bar{y}_{\alpha}}(R\mu_{\alpha})} \bar{u}_{\alpha}^{p^*} dv_{\bar{g}} = \int_{B_{G'y_{\alpha}}(R\mu_{\alpha})} \operatorname{Vol}(G'x)^{-1} u_{\alpha}^{p^*}(x) dv_g(x),$$

we get that

$$\lim_{\alpha \to +\infty} \int_{B_{G'y_{\alpha}}(R\mu_{\alpha})} u_{\alpha}^{p^*} dv_g = \operatorname{Vol}(Gy_0) \int_{B_0(R)} w^{p^*} dv_{\xi} > 0.$$

With the H_1^p decomposition of Theorem 0.1, we then get that

$$1 \leq C \int_{B_{G'y_{\alpha}}(R\mu_{\alpha})} \left(u^{0} + \sum_{i=1}^{l} B^{i}_{\alpha} + S_{\alpha} \right)^{p^{*}} dv_{g}$$

$$\leq C \sum_{i=1}^{l} \int_{B_{G'y_{\alpha}}(R\mu_{\alpha})} (B^{i}_{\alpha})^{p^{*}} dv_{g} + o(1)$$

$$\leq C \sum_{i \in I_{0}} \int_{B_{G'y_{\alpha}}(R\mu_{\alpha})} (B^{i}_{\alpha})^{p^{*}} dv_{g} + o(1)$$

$$\leq C \sum_{i \in I_{0}} \int_{B_{\bar{y}_{\alpha}}(R\mu_{\alpha})} (\bar{B}^{i}_{\alpha})^{p^{*}} dv_{\bar{g}} + o(1)$$

where, here again, we have taken the quotient wrt the group G': this is licit since we work at the points x_{α}^{i} such that $x_{\infty}^{i} = y_{0}$. We can then prove exactly as in Saintier [12] that the right-hand side of this inequality goes to 0 as $\alpha \to +\infty$. A contradiction, and then (31) holds.

We claim that (30) holds. Indeed, the proof goes by contradiction and we consider a sequence of points (y_{α}) such that $\lim_{\alpha \to +\infty} R_{\alpha}(x)^{\frac{n-k-p}{p}} u_{\alpha}(y_{\alpha}) = +\infty$. With arguments similar to the ones above, we get that $\lim_{\alpha \to +\infty} y_{\alpha} = y_0 \in M$ is such that Gy_0 is an orbit of concentration of the u_{α} 's. Hypothesis (H) yields a group G' that satisfies (H1) and (H2). With (H2), we get that $d_g(Gy_{\alpha}, Gx_{\alpha}^i) \leq d_g(G'y_{\alpha}, G'x_{\alpha}^i)$ for the *i*'s such that $\lim_{\alpha \to +\infty} x_{\alpha}^i \in Gy_0$. Studying separately the remaining *i*'s, we get that $R_{\alpha}(y_{\alpha}) \leq cR'_{\alpha}(y_{\alpha})$ and we apply (31) to get a contradiction with our initial assumption. This proves that (30) holds.

The proof of (11) goes the same way: if (11) is not satisfies, then we construct a sequence (y_{α}) which traducts it. We blow-up u_{α} at y_{α} and we get a contradiction as above.

Acknowledgements

The author would like to express his gratitude to Prof. Frédéric Robert for his careful reading and helpful comments.

References

- G. E. BREDON, Introduction to compact transformation groups, Academic Press, Pure and applied mathematics, 46, 1972.
- [2] Z. FAGET, Best constant in Sobolev inequalities on Riemannian manifolds in the presence of symmetries, *Potential Analysis*, 17(2) (2002), 105–124.
- [3] Z. FAGET, Optimal constants in critical Sobolev inequalities on Riemannian manifolds in the presence of symmetries, Ann. Global Anal. Geom., 24 (2003), 161–200.

- [4] E. HEBEY, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, 5 1999.
- [5] E. HEBEY and F. ROBERT, Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients, *Calc. Var. Partial Differential Equations*, **13**(4) (2001), 491–517.
- [6] E. HEBEY and M. VAUGON, Sobolev spaces in the presence of symmetries, J. Math. Pures Appl., 76(10) (1997), 859–881.
- [7] P. L. LIONS, The concentration-compactness principle in the calculus of variations, the limit case, parts 1 and 2, *Rev.Mat.Iberoamericana*, 1 (1985), 145–201, 45–121.
- [8] F. ROBERT, Positive solutions for a fourth order equation invariant under isometries, Proc. Amer. Math. Soc., 131(5) (2003), 1423–1431.
- [9] N. SAINTIER, Asymptotic estimates and blow-up theory for critical equations involving the *p*-Laplacian, Calc. Var. Partial Differential Equations, 25(3) (2006), 299–311.
- [10] M. STRUWE, A global compactness result for elliptic boundary value problem involving limiting nonlinearities, *Math. Z.*, 187(4) (1984), 511–517.
- [11] M. STRUWE, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, *Springer-Verlag*, Berlin, 2000.
- [12] P. TOLKSDORF, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51(1) (1984), 126–150.
- [13] J. L. VAZQUEZ, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12(3) (1984), 191–202.

Received 5 February 2007; accepted 25 June 2007; published Online First 10 January 2008

To access this journal online: http://www.birkhauser.ch