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Let (M, g) be a smooth compact Riemannian n-manifold, G a closed sub-
group of the group of isometries Isom,(M) of (M, g) and k = minyenr dim G,
where Gz denotes the orbit of a point x € M under G. We say that a function
¥ : M — R is G-invariant if ¢(gz) = ¢(x) for any € M and g € G. We consider
equations like

Ap g+ houP™ = ful” 71 (Ea)
where 1 < p < n—k, Apgu = —divg (|Vu|g’2Vu) is the p-Laplacian of w,
p* = % is the critical exponent for the injection from the Sobolev space

HY (M) of G-invariant functions in LP(M) whose gradient is also in LP(M),
into the Lebesgue spaces L (M) of G-invariant functions in LY(M) (cf Hebey-
Vaugon [6]), f is a C! G-invariant function, and (h,) is a sequence of continuous
G-invariant functions converging uniformly to some continous G-invariant function
hoo. The solutions we consider are in H}; therefore, a solution to (E,) has to be
taken in the distribution sense. We assume that the operator A, 4+ he is coercive
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in the sense that there exists A > 0 such that for all u € HY (M),

[0l + heclul?) g > Nl 0

In fact, we can easily prove that A, , + ho is coercive if and only if there exists
A > 0 such that for all u € HY (M),

/M (IVul? + hoo|ul?) dvg > AJull.

A necessary condition for (F,) to admit a positive solution w is maxys f > 0.
Indeed, multiplying (E,) by u, integrating by parts and using the coercivity
assumption (1) yields

/M fup*dvg > ,\Huaufﬁ, +o(1).

We then deduce that f must be positive somewhere, and then max,; f > 0. From
now on, we assume that max,s f > 0. We also consider the limit equation obtained
by letting formally & — +oc0 in (E,), namely

Apgu+ hoot? ™! = fup*_l- (Eoo)

For each «, let u,, be a G-invariant weak positive solution of (E,,) and assume
that the sequence (u,) is bounded in HY. The purpose of this note is to describe
the asymptotic behavior of the u,’s. In the case where the group G is reduced to
the identity, it is known (see Saintier [9], Hebey-Robert [5], Struwe [10]) that ug
can be written as the sum of a weak solution of the limit equation (E) plus a
finite sum of “bubbles” plus a sequence of functions converging strongly to 0 in
HY. A bubble is a sequence of functions obtained by rescaling positive solution
of the Euclidean critical equation A, ¢u = u?! in R", ¢ = np/(n — p), where
¢ is the Euclidean metric on R™. We prove here (cf the theorem below) that
this decomposition still holds in the context of G-invariant functions under some
assumptions on the orbits of G (assumption (H) below) and with an extended
notion of bubble.

We now recall some known facts and fix some notations. We refer to Bredon
[1] for more details (see also Hebey-Vaugon [6] and Faget [2]). Let G’ be a closed
subgroup of Isom,(M). Then G’ is a Lie group. For each x € M, we let = II(x),
where IT : M — M /G’ is the canonical surjection, and denote by G’z = {gz, g €
G'} (resp. S, = {g € G', gx = x}) the orbit (resp. the stabilizator) of x under
the action of G'. Then G’z is a compact submanifold of M naturally isomorphic
to the quotient group G’/S,. An orbit G’z is said principal if its stabilizator is
minimal up to conjugacy i.e. for all y € M, S, contains a subgroup conjugate to
Sz. In particular, the principal orbits are of maximal dimension (but the converse
is false). If we denote by Q the union of all the principal orbits, then Q is a dense



Vol. 15, 2008 Symmetric critical equations with the p-Laplacian 229

open subset of M and /G’ is a smooth connected manifold which can be equiped
with a Riemaniann metric g in such a way that the canonical surjection from 2
to /G’ is a Riemannian submersion. We then consider the metric g belonging
to the conformal class of g defined by

~ — 2 —
g=0v7rrg (2)

where 9(z) = Vol(II71(z)) = Vol(G'z) denotes the volume of G’z computed with
respect to the induced metric. We will denote by BZ(r) and BZ(r) the geodesic
balls centered at  of radius r for the metric g and g respectively. Given a Rie-

mannian manifold N, we denote by HY(N) the usual Sobolev space of functions
u € LP(N) such that Vu € LP(N) with the norm ||ul/%, = [ul5 + [[Vul5, and by

HY (N) the closure of CZ°(N) for the norm ||.||gr. If G’ is a subgroup of isome-
tries of N, we let L, (N), HY o,(N) and HY 5, (N) be the space of G'-invariant
functions in LP(N), HY(N) and HY (N) respectively:
L, (N) = {ue LP(N) s.t.V g € G', u(gz) = u(x) a.e. in N},
HY /(N) = {u€ H{(N) s.t. V g € G', u(gz) = u(x) a.e. in N},

H} o (N) = {u €HY (N) st.V ge G, u(gz) =u(x) a.e. in N} :

We assume that k = mingcps dim Gz > 1 and make the following assumption on
the G-orbits of dimension k:

(H) for each G - orbit Gxy of minimal dimension k, there exist § > 0 and a closed
subgroup G of Isomgy(M) such that

G/.’to = G:L'o (Hl)
and, for all x € Bgg,(6) :={y € M, d4(y, Gxo) < 0},
G’z is principal and G’z C Gx. (H2)

We refer to Faget [2] for examples of manifolds and groups satisfying (H). In
particular, dim G’z = dim Gzo = k for all & € Bgy, () and we can consider the
Riemannian quotient (n — k)-manifold N := Bgy, (6)/G’. We fix a smooth cut-off
function 1 € C°(R™*) with support in By(2) such that 0 <7 < 1and =1 in
By(1). Given Z; € N and ¢’ € (0,i5(Z1)/2), we let

Nzy.6 () =1 <W>

for € N. Here, i5(Z1) denotes the injectivity radius of N at Z;.
We now define a bubble in this context. Let (z,) be a sequence of points in
M converging to some xg € M such that Gz is of dimension k. Then assumption
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(H) provides us with a subgroup G’ of Isomg(M) and a 6 > 0 such that (H1)
and (H2) hold. Let 26’ > 0 be inferior to the injectivity radius of the quotient
(n — k)-manifold N := Bgy,(0)/G’. Consider also a sequence (R,) C [0, +00)
such that R, — +oo. Given a positive solution v € H”(R™*) of the Euclidean
equation

Apcu = f(x0)Vol(Gao) TFrur 1,

where ¢ is the Euclidean metric, we define a bubble (B,) of centers (Z,) and
weights (R, ) in the usual way by

_ n—k—p

Bo(Z) =1nz,,5(2)Ra ©* u(Raexp; (Z)), T € N. (3)

where exp is the exponential map of N for the metric g. We then define a bubble
B = (B,) of centers (x,) and weights (R,,) as the G'-invariant function satisfying

B, =DB,oll

where II : Bgy,(d) — N is the canonical surjection. A generalized bubble is
defined in the same way by considering a nontrivial, not necessarily positive,
solution u € HP(R"™*) of the Euclidean equation

Apet = f(20)Vol(Gro) ™F7 |ulP ~2u. (4)

This definition clearly extends the usual definition of a bubble to the case of
G-invariant functions. We also define the energy E(B) of the (generalized) bubble
B by

1
E(B) = 7/ |Vulgdr —
D Jrr—k

p R~k

()

We can prove as in Saintier ([9] step 1.5) that

E(B) > f(a:o)*"_iﬁ_pvol(gxo) K(n—k,p) (6)

1
n—k
where K (n—k, p) denotes the best Sobolev constant for the injection of H? (R" ")

into LP" (R"™*), namely

1 . Jen—r [Vulg do
[ 1m -
K(n—k.p)  uec® OO} ([, [uf" dz)"”

If we denote by A the minimum volume of G-orbit of dimension k, we then have
the minoration

n—k—p

E(B)z(mﬁxf) T4

LK (n k) 7)

n —

which holds for any generalized bubble.
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Our result is then the following:

Theorem Let (M, g) be a Riemaniann manifold, G a closed subgroup of Isomy(M)
satisfying (H) and (us) be a sequence of positive G-invariant solutions of (Ey)
bounded in HY(M). There exist u® € HY (M) such that either u® =0 or u® is a

positive solution of (Es ), and there exist | bubbles B* = (Bfl)a, i=1...1, such
that, up to a subsequence,

l
ua =u’+ Y Bl + S, (8)

i=1
where the sequence (So) C HY (M) converges strongly to 0 in HY, and

k
I¢(ua) = I°(u®) + > E(B') + o(1) 9)

=1

where I and I3° are the functional defined on HY (M) by (12) and (13) respec-
tively, and the energy E(B") of the bubble B is defined by (5).

Moreover, there exists a constant C' > 0 independent of a and x € M such that
for any a and any x € M,

n—k—p

Ro(x) » |ua(z) — uo(:zz)| <C, and (10)
lim lim  sup  Ra(x) 7 |ua(z) —u®x)| =0 (11)

R—o0a=+400 ;cAn\Q, (R)

where the (%)) and (11,)o are the centers and the inverse of the weights of the bub-
ble B, Ro(x) = mini—y.; dg(Gal,, Gx) and, for R > 0, Qq(R) = U}, Bagi (Rud,).
In the particular case where p < 2, u® = 0 and u,, is a solution of (E,), we can
prove that V f(z') = 0 for any i, where z* = lim,, z°,.

The paper is organized as follow. The first section is devoted to the proof of
the HV-decomposition, i.e. the relations (8) and (9) for a Palais-Smale sequence
for the functional I{* defined by (12), whereas the second one deals with the proof
of the pointwise estimates (10) and (11).

1 Proof of the H-decomposition for Palais-Smale
sequences

Let I3 be the functional defined on H{ (M) by

1 1 1 .
Ig(u) = 7/ |Vu|’g’dvg + f/ halu|Pdvg — —*/ flul? dog, (12)
PJm PJm YD
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and (uq) € HY 5(M) be a Palais-Smale (P-S) sequence for I¢ i.e. the sequence
(I9(uq)) is bounded and DI (uq) — 0 strongly in H{(M)'. We are going to
prove that the relations (8) and (9) hold for (u,) with generalized bubbles B
We will then prove that if the u, are positive then the B are bubbles.

It follows from Saintier [9] that the sequence (u,) weakly converges, up to
a subsequence, to a solution u® € HY (M) of the limit equation (E.,). Since we
can also assume that the convergence holds almost everywhere, we have u® €
HY o(M). Let vo = uq —u® € HY 5(M). Then (cf Saintier [9]) (va) weakly
converges to 0 in H} (M) and is a (P-S) sequence for the functional I, defined on
HY (M) by

1 1 x
) =+ [ Valgdu, - [ flul? o,
PJm ; P Jm
Iy(va) = I3 (ua) — I3°(u®) + o(1)
where I2° is the functional defined on HY (M) by

Moreover

1 1 1 .
I°(u) = 7/ [Vulbdv, + f/ hoo|u|Pdvg — —*/ flul? dvg. (13)
PJm PJm P Jm
According to Faget [2], for any € > 0, there exists a constant C. > 0 such that for
any u € HY (M),

. I _ P
(/ ul? dvg) < (W+e)/ |Vu|§dvg+C€/ ulPdv,,  (14)
M An=F M M

where A denotes the minimal volume of k-dimensional G-orbits. We can then
adapt Saintier ([9] step 1.4) to prove that if (w,) is a (P-S) sequence for I, such
that

n—k—p
P

we — 0 weakly in HY (M) and lim I, (wa) < || f]loo AB*,

where 3* then

— 1
T (n=k)K(n—k,p)"~F>
wa — 0 strongly in HY.

Using this remark and the minoration (6) of the energy of a bubble, we can prove
the theorem by induction by repeated use of the following lemma:

Lemma. Let (vy) be a (P-S) sequence for I, converging to 0 in HY weakly but not
strongly. Then there exists a generalized bubble B = (By,) such that we := vo— Ba
is a (P-S) sequence for I, weakly converging to 0 in HY. Moreover

Iy(wa) = I4(va) — E(B) + o(1).
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The remainder of this section is devoted to the proof of this Lemma. The
set of smooth G-invariant functions on M being dense in HY (M) (see Hebey-
Vaugon [6]), we can assume that the v,’s are smooth. Independently, since the
vo’s don’t converge strongly to 0, the definition of a (P-S) sequence implies that

/ Vvalldvg = (n — k)8 + o(1) (15)
M

and
/ flval?" dv, = (n — K)B + o(1)
M

k—p

for some 3> || flleo © AB* > 0. The compactness of M then gives the existence
of a point zg € M such that for any § > 0 small enough,

a— 400

limsup/ flval?" dv, > 0. (16)
Baay (6)

The orbit Gz is called orbit of concentration. We give some preliminary properties
of such an orbit:

Step 1.1 1) There are a finite number of concentration orbits. If Gz is one of
them, then dim Gzo = k and f(xzo) > 0. In the particular case where p < 2,
u® = 0 and u, is a solution of (E,) for any «, we also have V f(z¢) = 0. Moreover
Gz is an orbit of concentration if and only if for any § > 0,

limsup/ |Valhdv, > 0. (17)
ch0(5)

a——+00
2) Let Gz be an orbit of concentration for (v,). According to 1) and in view of
assumption (H), there exist 6o > 0 and a subgroup G’ of Isomgy(M) such that we

can consider the Riemannian quotient (n — k)-manifold (N := Bgy,(00)/G, g).
Then Z is a point of concentration for (7,) in the sense that for any 6 > 0 small,

lim sup/ |V5a|§dvg >0
BY (5) ‘

a——+00
where g is defined by (2) and 0, (Z) = v (z).

Proof. We first prove 1). Assume that Gxg is an orbit of concentration of dimen-
sion k' > k. Then there exists § > 0 such that dim Gz > k' > k for any
& € By, (0) (see Faget [3] lemma 2). It thus follows from Hebey-Vaugon (corollary

2 of [6]) and the inequality S:C’f;)g > ffi_k’% = p* that the injection HY ;

(Baay(8')) <= LP" (Bga, (8")) is compact for all &’ € (0, ). Since v, — 0 weakly in
HY (M), we get a contradiction with (16). Hence Gzg is of minimal dimension k.
Since (v, ) is bounded in HY (M), there exist two finite positive G-invariant

measures 1 and v such that v, |P"dv, — v and |Vua|hdv, — p weakly in the sense
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of measure. Let € > 0. According to Faget [2], there exists C. > 0 such that for
any a and any G-invariant function ¢ € C'(M),

(/M|¢”a|f’*dvg)pl* . (W+€) (/MIV(Ma)ISdUg); "

1

+C. (/ |¢>va|pdvg) ’ .
M

Passing to the limit in a and then in € in this inequality we get

([ o) = (b))

for any G-invariant function ¢ € C(M). Lemma 1.1 in Lions [7] then gives the
existence of I C N, a sequence of points (x;);c; C M and two sequences of positive
reals (u;)ier and (v;);er such that

[val? dvy = v =" vidga,,
iel
|Vva|§dvg — > ZMz‘éme and (19)
iel
2 K(n—kp)y
v < Kn=kp)
An—%
where d¢,, is defined by dgs, (¢) = [ ¢(ox;)dm(o) for ¢ € C(M), m being the

Haar measure of G such that m(G) = 1 (in particular, if ¢ is G-invariant, then
0Gz; (¢) = ¢(x;)). Let ¢ € C(M). Then

O(U = Dlg(va)'(va¢)
= / |V11a|§¢dvg—|—/ va|Vva|p72(Vva,V¢)gdvg—/ f¢|va|p*dvg.
M M M

A

w Viel.

By Holder inequality, the second integral tends to 0. We thus get by passing to
the limit in the above expression that

[, o

for any ¢ € C(M). Hence p = fr. In particular u(Gz;) = mei fdv for any i € I,
and thus p; < f(x;)y; for any ¢ € I. This implies that f(z;) > 0 for any i € I.
Using (19), we obtain
_ k—n _ k—n
AR kp)" | AK(n - kp)

= n—=k = n—k )
P

fwa) (max f)

> AK(n — k,p)k—n < AK(n — k,p)k—n
= n—k—p P

fla) " (maxf)

and
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for any ¢ € I. We now write using (15) that

AK(n —k,p)k—"
(n—k)p= /M |Vua|hdvg +o(1) = ;,ui > card(I) (m(:X 0 np;;)p

which implies that I is finite i.e. (v, ) has a finite number of orbits of concentration,
namely the Gz;, i € I. Eventually,

p=fv=> vif(x;)8cs, (20)
icl
which implies the equivalent definition (17) of an orbit of concentration.

We assume that p <2, v’ = 0 and DI (uq) = 0. Note that it follows from
(19) and (20) that

lim elual’ dvy = > vip(x:), (21)
a——+00 M el

lim o|Vua|h dvg = Zf(:m)l/lgo(xl) (22)
a——+00 M el

for all ¢ € C°(M) G—invariant.

We fix ¢ € I and Gz; an orbit of concentration. We consider the group G’ given by
the hypothesis (H) taken at x; (note that an orbit of concentration has minimal
dimension and therefore we can appply (H)) and, given € > 0, let n = 1z, ..

We assume that V f(x;) # 0. We consider a smooth G’'—invariant function ¢ with
compact support in Bgg,(d) such that Vo(z;) = Vf(x;) and VZ¢(x;) = 0. We
let o := |V¢|§_2V¢>. Since p < 2, it follows from [12] that u, € HY(M). In
particular, the function (o, Vu,), belongs to HY (M). We let € > 0 such that
Vo(x) # 0 for all z € Bgy,(¢/2) and we let 7 defined above. With (21), we get
that

1 . ” | |
E /M(U’ V)glual? dvg = E|Vf(xl)|5(g;z) +o(1)

Independently, we have that
1 N 1 .
e / (0,9 )oltial?” duy = — / 00,V gltal?” dvy + o(1)
P Jm P Jm
-1 o
= [ div (nlual”"[Vl52V6) £ dv, + o(1)
p M
1 N 1 B N
= [t yode, — - [ [FoP V0 Tn)fual £ o,
P Jm P Jm
- / nflual’” " *uq(o, Viua)g dvg +o(1)
M
v _
= o) £ ) Ai(a:) - /M Vit 22 (Vitr, V10, Vi) ))g v

- / h‘l‘“a‘p72ua77(av Vg )g dvg + o(1)
M
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Thanks to Holder’s inequality, the last integral goes to 0, and straightforward
computations yield that A,¢(z;) = 0. We then get that

Vi NP () = — u~ P2 (Vu o.YVu v o(1).
29 ) o) /M\v o772 (Vg T (1(0, Vita)y))g dog + o(1)

Passing to the quotient manifolds N := Bgv,,(d)/G’ and using the G’ —invariance,
we get that

Vi _ p— _ S _
| V@) = */N Vo |y (Vita, V(il(5, Viia)g))g0 dvg + o(1),
where we have that 7o Il =17, @, oIl = u, and 6 o Il = 0. We have that
= P2 S(= T 1. =P
|vua|§ (Vua,V(U(U,VUa)g))g = 2;77(07V|Vua|g)g
Va2V 00 VIV (7155).

Using Cartan’s expansion of g in the exponential chart at Z; and noting that
Vo(z;) = 0 (here, one uses that V2¢(x;) = 0), we get that

Vo |2 (Viia, V(ii(7, Viia)g))g = ~71(5, V|Via|2)g + O (dg(Ti, 7)|Vialb) .

D=

With (22), we get that
[ datas ) Vaals = o1)
N

when a — +00. We then get that

Vi 1 o 3 _
];\Vf(xiﬂg(%) —;/Nn(a,VWua\g)gvdvg+o(1)

1
- /M (0, V| Vual?)y dug + o(1)

1 / (b — VO[22V, V6)g) |Vt 2 dvg + o(1)
P Jm
- —%Ammﬂxi)m +o(1) = o(1)

since V2¢(x;) = 0. We then get that V f(z;) = 0, a contradiction with our initial
hypothesis. Then V f(x;) = 0 for all i € I. This proof requires the use of (¢, Vua )4
as a test-function and thus cannot work if we deal with (P-S) sequence since then
we need the u, to be bounded in HY (which is irrevelant here because it implies the
strong convergence in HY of the u, to u®). This explains the restriction imposed
to get Vf(x;) = 0.
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We now prove 2). According to 1), dim Gxg = k. Assumption (H) then gives
dp > 0 and a subgroup G’ of I'somgy(M) such that (H1) and (H2) are satisfied.
We have for § € (0, dp)

/ Voa[Pdu, = /  |Voa[Pudu, = /  |Vaa[2du;,
Bz (9) B1,(9) BE, (8)

z

where T, 0 Il = vq, IT: Bgy,(6) — N being the canonical surjection. Let

m = inf @(f)"—i—p and M = sup o(Z)"Fr.
zeB, (%) zeBI (9)

Then for any 7 € BY (9),

Hence

/ Vo |Pdv, < / Va2
Bouy (9) B (£)

which proves the claim. O

Step 1.2 Let Gy be an orbit such that there exist Jo > 0 and a subgroup
G’ C Isomy(M) satisfying (H1) and (H2). Then (%,) is a (P-S) sequence for the

functional I defined on H} (N) by

_ 1 1 L ]
Ig(’a) = E/N |Vﬁ|§dv§ — ]? /Nf|ﬂ|P @_mdvg

where N = Bgy,(00)/G, foll = f and II : Bgy,(dp) — N is the canonical
surjection.

Proof. Let ¢ € C°(N) and ¢ € C° (Bga, (Jo)) such that ¢ o Il = ¢. Then
0(1)“‘1_5||Hf(N) = 0(1)||¢||Hf(M) = DIy(va)d

- / |wa\§—2(vua,v¢)gdvg—/ Flval? ~2va¢du,
ch0(50)

BGzO (50)

= / |V5a\§72(Vf)a,V¢_ﬁ)gT)dv§f/i F1Ta|P ~20agtdu,
B7, (%) B7, (%0)

/ VB2 A(V5a, V) sdvg
B2, (50)

_/7 f|@a|p*—2ﬁaé@—7n_i—pdvg
B3, (%)

ng(@a).q[;
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As explained above, there exists an orbit of concentration Gxy. According
to Step 1.1, dim Gxg = k. Assumption (H) then gives 69 > 0 and a subgroup
G’ C Isomgy(M) satisfying (H1) and (H2) on Bgy,(260). We let N = By, (60)/G”
and consider, for ¢ > 0,

o(t) = Vo Edvs.
pat) gleag/Bg(t) albdv;

In view of Step 1.1, there exist Ay such that, up to a subsequence, for any «
Ma(éo) Z / B |V’l_)a|§d’t}§ Z )\0.
Bg (d0)

Since 14 is continuous, we then get for any A € (0, Ag) the existence of ¢, € (0, o)
and T, € N, T, — Tg, such that for any «

fa(ta) = /A |V’Da|§dvg =
B3, (ta)

In view of to Step 1.2, (9,) is a (P-S) sequence for I; on HY (N). According
to Saintier [9], there exist a sequence R, — +oo and v € DY (R"ik), (where
D?(R™¥) is the completion of C2°(R™™*) for the norm u — || Vul|,) such that

B — v in HP (R”*k) (23)

1,loc

and v # 0, where, if i5(Zo) denotes the injectivity radius of (N, g) at Zo,

n—k—p
P

U0 (7) = Ra Vo (exps, (Ry'w)) , © € By (Raiz(Zo)) -

Actually, the analysis in [9] is performed with a constant function in front of |a[P"
in the functional I3(%). In our context here, fﬁ_n%’;fp is not constant: however,
the analysis for the proof of the result above works the same.

We now prove that

Step 1.3 v is a solution of the Euclidean equation
Apev = f(Z0)o(Zo)” T [0]P "
= f(z0)Vol(Gxo) "7 [vP" 2

Proof. Let ¢ € C° (R"ik) and R > 0 such that supp ¢ C Bo(R). For « large
enough, we define ¢, € C°(N) by

¢a(Z) = Ra ¥ ¢ (Raerpz, (T)).
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Then (¢, ) is bounded in H} (N). Thus

0(1) = D[_f](@oz)ﬁba
- / (Vo022 (Vi0, V)5 dvg,
Bo(R)

—/ ( )|€1a\p*72f1a¢6 (expz, (Ry'x)) " "7 f (exps, (Ry'x)) dvg,
Bo(R

where g, is the metric defined in the Euclidean ball By(izRa) C R"™* by
Ja(w) = (exp3, 3) (Ry' ).

Since R, — 400, the g, converge locally uniformly to the Euclidean metric &.
Passing to the limit, we then get using (23) that

[ Vel (0, Vajeds — Flaoyu(ao) 5 [ ol 2osdz =0
Rn—k Rn—k
which proves Step 1.3. O

For § > 0 small, we let

n—k—p

B.(7) = Nzo.s(Z)Ra ¥ v (Raexpgal (1_7))

and W, = Uy — By. Then, according to Saintier ([9] Step 2.4),

B, — 0 weakly in HY (N), (24)
DI;(By) — 0 and DI;(w,) — 0 strongly in HY (N)', (25)
I(wa) = I;(va) — E(v) + o(1) (26)

where

1 5(70) " "= .
E(v) = 7/ Voltda - o(o) - 1(@o) / P da.
P Jrr—k P Rn—k

We now define a bubble (B, ) by the relation
B,=B,oll

and w, = Vo — By. We now claim that the following holds:
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Step 1.4
wq — 0 weakly in HY (M), (27)
DI,(Ba) — 0 and DI, (wa) — 0, (28)
Ig(wa) = Ig(va) = E(v) +o(1). (29)

Proof. We first prove that B, — 0 weakly in H} (which implies (27) since v, — 0
weakly in HY). Since (By) C HY /(M) is bounded in HY, it suffices to prove that
B, — 0 Wszakly in L, (M). Let ¢ € LE, (M), ¢ = 25, and ¥ € LY(N, §) be such
that ¢ = ¢ oIl in Bgy,(20). Then, using (24),

/ Batpdu, = / Botht~ 7= dvg — 0.

M N

We prove in the same way that DI;(B,) — 0. We now prove that
DI, (wq) — 0.

Let ¢ € HY (M), 6 € (0,00/6) and 1y = nzy,35 € C°(Bgu,(65)). For a large
enough so that dg(Za,To) < & (in particular supp B, C Bz, (26) C Bz, (39)),
straightforward computations yield

DIg(wa)¢ = DIg(wa)(m09) + DIg(wa)((1—n0)¢)
= DI;(wa)(n0¢) + DIg(va)((1 = n0)@)

o (Imo@llmpw) ) +o (I =m)éll )
o (Il6llmzcan )

Now consider ¢ € HY (M) et ¢ € HY ;(M) defined by

cbg(:n):/GqS(ax)dm(a)

where m is the Haar measure of G such that m(G) = 1. Then, according to what
we just did,

DIy(wa)dc = o(1)|dc| ar

with

Dhywnic = [ ([ 190aP 200,960 0)dv, ) dn(o)

[ ([ ualunoo o), ) amo)
m(G) DI, (wa)o
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and, using Hoélder inequality,

P P
Hqﬁg||1;{p = / / V(¢ oo)dm(o)| dug +/ / (poo)dm(o)| dug
! MlJG MlJG
< mer™ [ ([ w@oarano) ),
M \Ja
+ m(@p! / ( / 6o a|pdm(0)) dv,
M \Ja

< 9l

Hence
DIg(wa)p = o(1)||¢] -
It remains to prove (29). We write that
1 1 " _
)= [ [Voafdv, — — Flval?” dvy + Ip(@.).
P JM\Bgay, (26) D" JM\Bga, (29)

We then get using (26) that

1 1 . _

Lwa) = 5 [ Voalfdv, — — Flval?” dv, + I;(za)
P JM\Bga, (26) D" JM\Bga, (29)
—E(v) 4+ o(1)
= Iy(va) = E(v) +o(1)

which proves (29). Note that v # 0. |

This ends the proof of the Lemma and thus of the H}-decomposition for a
Palais-Smale sequences (u,) for I, o of arbitrary sign. If we assume that u, > 0
for any «, then % > 0 a.e. since u, — u’ weakly in HY and thus also almost
everywhere (up to a subsequence). Since u® € HY (M) is a weak solution to (Ey,),
it follows from Tolksdorf [12] that u® € C1?(M) for some 6 € (0,1). We then
deduce from Vazquez’ maximum principle [13] that ug = 0 or u® > 0 everywhere.
Moreover, according to Saintier [9], the B* are bubbles and hence so are the B’
1<i<k.

2  Proof of the C'-estimates (10) and (11)

Let (uq) be a bounded sequence of positive solutions of (E,). We prove in this
section the pointwise estimates of Theorem 0.1. We first prove (10). By standard
regularity results (see Tolksdorff [12]), we know that u® € C%?(M) for some
6 € (0,1), where u is the weak limit in H} of the u,’s. It thus suffices to prove
that there exists C' > 0 such that for every o and every x € M,

Ra(2)" % “ualz) < C. (30)
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Actually, we are going to prove the following stronger result: there exists C' > 0
such that

V() = R (2) 7 wua(z) <C (31)
for all x € M and all « > 0, where

Ri(x) = min dy(Glar, Gl
and for all i € {1,...,1}, the group G/ is given by hypothesis (H) at the orbit of
concentration Gzl_, where limq_, 4o ), = x4 .

We assume by contradiction that there exists y, € M such that

Va(Ya) = maxve () — +oo (32)

when a@ — +o0o and we let p, := ua(ya)—i’/("—k’—?) — 0 when o — +00. We let
limg— 400 Yo = Yo, Up to extraction.

We claim that the orbit Gyy has minimal dimension k. Indeed, we argue by
contradiction and assume that dim Gy > k. As in Step 1.1, we then get that
there exist go > p* and § > 0 such that lim,— oo ue = u® in LP(Bgy, (). It
then follows from (E,) and standard regularity theory that limg—, oo ua = u
in C%(Bgy,(0")) for all & < §. A contradiction with the assumption (32). This
proves the claim.

We then let G’ be the group given by hypothesis (H) at the point yg. We let
Iy={ie{l,...1}/zi, € Gyo} (note that Iy may be empty). Then, for all i € I,
we have that G' = G,. We consider the quotient manifold N := Bgry,(8)/G,
where § > 0 is small and given by (H). Here again, we consider the function
Ua(Z) = ua(z) for T € N. We fix Ry € (0,i5(go)) and we consider the function
w,, defined on the Euclidean ball By(Rou,!) by

n—k—p
Wo(T) 1= pla 7 Ualexpy, (HaT))-

In this expression, the exponential map is taken wrt the metric g. For p > 0 and
z € Bo(p) C R"™* we let z, € M be such that Gz, = Z, = expy, (Hat). Given
1 € Iy, we get that

dg(G'20, G'wy) > dg(G'aly, Glya) — dg(GYas G'20)
> R, (Ya) = dg(Jas Za)
> Ry(Ya) — tal7
>

(1~ ey ) Peta)

By definition of y, and p, we have that poR., (ye)~! — 0 when a@ — +o00, and
hence the right-hand-side of the above equation is positive. In case i &€ Iy, we get
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that
agrfoodg(enga (Hat), Gizg) = dg(G'yo, Gial)
= dy(Gyo,Gz’) > 0in CP (R"F).

Since R, (yo) — 0 when oo — 400, we then get that

1 a
R (expy, (o) 2 5 (1= 40 ) Ri(m) >0

for all x € By(p) and all &« > 0. We can then write for x € By(p) that

n—k—p
Pova(z
u}a(ai) = a( an)—k—p

Rl (expy, (pta)) »

_n-k—p
< Q(H—k—p)/p (1_ Pl ) P ua(ya>_lva(ya)
= n—k—p
R (ya) Ry, (ya) 7
_n—k—p
< on—k-p)/p (1 Pha ) ’
- R, (Ya)

uniformly for # € By(p) € R"™* when o« — 4o00. Thus the sequence (w,) is
uniformly bounded on every compact subset of R™ % Let Go, be the Riemannian
metric on R" % defined by

go(r) = expy G(paw).

Equation (E,) becomes

. - _9 P _ 5oL *_
—divg, (va\Vwa|§a Vwe) + pbhadowk 1_ falqw?h 1

where /g (z) = ﬁa(enga (Hat)), fa(x) = f(expgu (Ha®)), Ta(z) = T)(enga (Hat)).
Since p, — 0 when @ — +00, the metric g, converges to the Euclidean metric
¢ in C?_(R"*) when a — 4o0. It then follows from Tolksdorff [13] that, up to

oc

extraction, there exists w € C1?(R™™*) such that

. . 1,0 n—k
lim w, =win C,2 (R .
a——400 « loc( )

Since wy,(0) = 1, we get that w(0) =1 and then w # 0. We let R > 0. Since
/ Wk dvg, = / a> dvg = / Vol(G'z) "Ml () dvy (),
Bo(R) By, (Rpa) BG/ya (Rpa)
we get that

lim uP dvy = Vol(Gyo)/ w?” dve > 0.
Ot By, (Rua) Bo(R)
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With the H? decomposition of Theorem 0.1, we then get that

*

1 p
C uw+ Y B+ Sa> dv,
BG/yQ (Rﬂa) ( Z

i=1

—
IN

(BL)P" dvg + o(1)

A\
- Q
ling
S

=1 BG’ya (tha)

<cC (BL)" dug +o(1)
;} BG'ua(RMa
< CZ/ B)P" dvg + o(1)

i€ly By, (Rﬂa)

where, here again, we have taken the quotient wrt the group G’: this is licit since
we work at the points z¢, such that z{, = yo. We can then prove exactly as in
Saintier [12] that the right-hand side of this inequality goes to 0 as o — +o00. A
contradiction, and then (31) holds.

We claim that (30) holds. Indeed, the proof goes by contradiction and we

consider a sequence of points (y,) such that lim,—, 4o Ra(2) S Ua(Ya) = +00.
With arguments similar to the ones above, we get that lim,— 0o Yo = Y0 € M is
such that Gy is an orbit of concentration of the w,’s. Hypothesis (H) yields a
group G’ that satisfies (Hl) and (H2). With (H2), we get that dy(Gya,Gz},) <
dy(G'yo, G'xh)) for the i’s such that lim,— oo 2!, € Gyo. Studying separately
the remaining i’s, we get that Ry (ya) < cR. (yo) and we apply (31) to get a
contradiction with our initial assumption. This proves that (30) holds.
The proof of (11) goes the same way: if (11) is not satisfies, then we construct
a sequence (Yo, ) which traducts it. We blow-up u,, at y, and we get a contradiction
as above.
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