Nonlinear elliptic equations with measure valued absorption potentials

Nicolas Saintier^{*} Laurent Véron[†]

Abstract We study the semilinear elliptic equation $-\Delta u + g(u)\sigma = \mu$ with Dirichlet boundary conditions in a smooth bounded domain where σ is a nonnegative Radon measure, μ a Radon measure and g is an absorbing nonlinearity. We show that the problem is well posed if we assume that σ belongs to some Morrey class. Under this condition we give a general existence result for any bounded measure provided g satisfies a subcritical integral assumption. We study also the supercritical case when $g(r) = |r|^{q-1} r$, with q > 1 and μ satisfies an absolute continuity condition expressed in terms of some capacities involving σ .

2010 Mathematics Subject Classification. 35 J 61; 31 B 15; 28 C 05 . Key words: Radon measures; Morrey class; capacities; potential estimates; θ -regular measures .

Contents

1	Introduction	2
2	Preliminaries 2.1 Morrey spaces of measures 2.2 Trace embeddings	7 8 10
3	The subcritical case 3.1 The variational construction	12 12
	3.2 The L^1 case \ldots \ldots 3.3 Diffuse case \ldots \ldots 3.4 Subcritical nonlinearities: proof of Theorem B. \ldots	$15 \\ 23 \\ 24$
4	The 2-D case	28

*Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

Email: nsaintie@dm.uba.ar

[†]Département de Mathématiques, Université François Rabelais, Tours, France. Email: veronl@lmpt.univ-tours.fr

5	The supercritical case			
	5.1	Proof of Theorem D	31	
	5.2	Reduced measures	33	
	5.3	The capacitary framework	36	
	5.4	The case $g(u) = u ^{q-1} u$.	38	
	5.5	Removable singularities	43	

1 Introduction

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with a C^2 boundary, σ a nonnegative Radon measure in Ω and $g : \mathbb{R} \to \mathbb{R}$ a continuous function satisfying, for some $r_0 \ge 0$,

$$rg(r) \ge 0 \qquad \text{for all } r \in (-\infty, -r_0] \cup [r_0, \infty). \tag{1.1}$$

In this article we consider the following problem

$$-\Delta u + g(u)\sigma = \mu \qquad \text{in } \Omega \\ u = 0 \qquad \text{in } \partial\Omega, \qquad (1.2)$$

where μ is a Radon measure defined in Ω . By a solution we mean a function $u \in L^1(\Omega)$ such that $\rho g(u) \in L^1_{\sigma}(\Omega)$, where $\rho(x) = \text{dist}(x, \partial \Omega)$ and $L^1_{\sigma}(\Omega)$ is the Lebesgue space of functions integrable with respect to σ , satisfying

$$-\int_{\Omega} u\Delta\zeta dx + \int_{\Omega} g(u)\zeta d\sigma = \int_{\Omega} \zeta d\mu, \qquad (1.3)$$

for all $\zeta \in W_0^{1,\infty}(\Omega)$ such that $\Delta \zeta \in L^{\infty}(\Omega)$. In the sequel, such a solution is called a *very weak solution*. A measure μ such that the problem admits a solution is called a *good measure*. We emphasize on the particular cases where $g(r) = |r|^{q-1} r$ with q > 0, or $g(r) = e^{\alpha r} - 1$ with $\alpha > 0$ and N = 2.

When σ is a measure with constant positive density with respect to the Lebesgue measure in \mathbb{R}^N , this problem has been initiated by Brezis and Benilan [4], [5] who gave a general existence result for any bounded measure μ under an integrability condition of g at infinity; their proof is based upon an a priori estimate of approximate solutions u_n in Lorentz spaces $L^{q,\infty}(\Omega)$, yielding the uniform integrability of $g(u_n)$ and hence the pre-compactness in $L^1(\Omega)$. If $g(r) = |r|^{q-1} r$, integrability condition is fufilled if and only if $0 < q < \frac{N}{N-2}$ (any q > 0 if N = 2). In the 2-dim case the integrability condition have been replaced by the exponential order of growth of g in [27]. When $g(u) = |u|^{q-1} u$ with $q \ge \frac{N}{N-2}$ not any bounded measure is eligible for solving (1.2). In fact Baras and Pierre [3] proved that when N > 2 and q > 1, a bounded Radon measure μ is eligible if and only if it vanishes on Borel sets with $c_{2,q'}$ -capacity zero, where $q' = \frac{q}{q-1}$ is the conjugate exponent of q. Contrary to the previous subcritical case, the method for proving the necessity of this condition is based upon a duality-convexity argument, while the sufficiency uses the fact that any positive Radon measure absolutely continuous with respect to the $c_{2,q'}$ -capacity can be approximated from below by an nondecreasing sequence of positive measures in $W^{-2,q}(\Omega)$ (see [13]). Furthermore they also gave a necessary and sufficient condition for a compact subset $K \subset \Omega$ to be removable for equation

$$-\Delta u + |u|^{q-1} u = 0 \quad \text{in } \Omega \setminus K, \tag{1.4}$$

namely that $c_{2,q'}(K) = 0$.

The aim of this paper is to extend the previous constructions of Benilan-Brezis, Baras-Pierre and Vazquez to the case where σ is a general measure. In order to be able to deal with the convergence of approximate solutions we assume that σ belongs to the Morrey class $\mathcal{M}^+_{\frac{N}{2N}}(\Omega)$ for some $\theta \in [0, N]$ which means

$$|B_r(x)|_{\sigma} := \int_{B_r(x)} d\sigma \le cr^{\theta} \quad \text{for all } (x,r) \in \Omega \times (0,\infty), \tag{1.5}$$

for some c > 0. Note that we extend σ by 0 in $\mathbb{R}^N \setminus \Omega$ and slightly abuse notation putting $\frac{N}{N-\theta} = \infty$ when $\theta = N$.

Our first result is the following:

Theorem A Assume $\sigma \in \mathcal{M}_{\frac{N}{N-\theta}}^+(\Omega)$ for some $\theta \in (N-2, N]$ and that g satisfies (1.1). Then, for any $\mu \in L^1_{\rho}(\Omega)$, there exists a very weak solution u of problem (1.3). If we assume moreover that g is nondecreasing and if u' is a very weak solution of (1.3) with right-hand side $\mu' \in L^1_{\rho}(\Omega)$, then the following estimates hold

$$-\int_{\Omega} |u - u'| \,\Delta\zeta dx + \int_{\Omega} |g(u) - g(u')| \,\zeta d\sigma \le \int_{\Omega} |\mu - \mu'| \,dx,\tag{1.6}$$

and

$$-\int_{\Omega} (u-u')_{+} \Delta \zeta dx + \int_{\Omega} (g(u) - g(u'))_{+} \zeta d\sigma \le \int_{\Omega} (\mu - \mu')_{+} dx \tag{1.7}$$

for all $\zeta \in W_0^{1,\infty}(\Omega)$ such that $\Delta \zeta \in L^{\infty}(\Omega)$ and $\zeta \ge 0$.

Note that (1.6) implies the uniqueness of the solution of (1.3), that we denote by u_{μ} , and (1.7) the monotonicity of the mapping $\mu \mapsto u_{\mu}$.

The next result extends Benilan-Brezis unconditional existence result for measures.

Theorem B Let N > 2 and $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}(\Omega)$ with $N \ge \theta > N - \frac{N}{N-1}$. Assume that g satisfies (1.1) and $|g(r)| \le \tilde{g}(|r|)$ for all $|r| \ge r_0$ where \tilde{g} is a continuous nondecreasing function on $[r_0, \infty)$ verifying

$$\int_{r_0}^{\infty} \tilde{g}(t) t^{-1 - \frac{\theta}{N-2}} dt < \infty.$$
(1.8)

Then, for any bounded Radon measure μ , there exists a very weak solution u of problem (1.3) which moreover belongs to $L^1_{\sigma}(\Omega)$. Moreover, if we assume that g is nondecreasing then the solution is unique.

Note that we recover Benilan-Brezis result when σ is the Lebesgue measure (so that $\theta = N$). Note also that when $g(r) = |r|^{q-1}r$, the integrability condition (1.8) is fulfilled if and only if $0 < q < \frac{\theta}{N-2}$.

In the 2-dimensional case the condition on θ is $2 \ge \theta > 0$ but (1.8) has to be modified. If $f : \mathbb{R} \to \mathbb{R}_+$ is nondecreasing we define its exponential order of growth at ∞ (see [27]) by

$$a_{\infty}(f) = \inf\left\{\alpha \ge 0 : \int_0^\infty f(s)e^{-\alpha s}ds < \infty\right\}.$$
(1.9)

Similarly, if $h : \mathbb{R} \to \mathbb{R}_{-}$ is nondecreasing its exponential order of growth at $-\infty$ is

$$a_{-\infty}(h) = \sup\left\{\alpha \le 0 : \int_{-\infty}^{0} h(s)e^{\alpha s}ds > -\infty\right\}.$$
(1.10)

If $g : \mathbb{R} \to \mathbb{R}$ satisfies (1.1) but is not necessarily nondecreasing, we define the monotone nondecreasing hull g^* of g by

$$g^{*}(r) = \begin{cases} \sup\{g(s) : s \le r\} & \text{for all } r \ge r_{0} \\ 0 & \text{for all } r \in (-r_{0}, r_{0}) \\ \inf\{g(s) : s \ge r\} & \text{for all } r \le -r_{0}. \end{cases}$$
(1.11)

We set

$$a_{\infty}(g) = a_{\infty}(g_{+}^{*})$$
 and $a_{-\infty}(g) = a_{-\infty}(g_{-}^{*}).$ (1.12)

Theorem C Let $\sigma \in \mathcal{M}^+_{\frac{2}{2-\theta}}(\Omega)$ with $2 \ge \theta > 0$ and $g : \mathbb{R} \mapsto \mathbb{R}$ satisfies (1.1).

(I) If $a_{\infty}(g) = 0 = a_{-\infty}(g)$, then for any $\mu \in \mathfrak{M}_b(\Omega)$, problem (1.3) admits a very weak solution.

(II) If $0 < a_{\infty}(g) < \infty$ and $-\infty < a_{-\infty}(g) < 0$ there exists $\delta > 0$ such that if $\mu \in \mathfrak{M}_b(\Omega)$ satisfies $\|\mu\|_{\mathfrak{M}_b} \leq \delta$ problem (1.3) admits a very weak solution.

In the supercritical case, that is when (1.8) is not satisfied, all the measures are not eligible for solving (1.3). Following [16], [28, Th 4.2] we can give a sufficient existence condition involving the Green function of the Laplacian. Let G(.,.) be the Green kernel defined in $\Omega \times \Omega$ and $\mathbb{G}[.]$ the corresponding potential operator acting on bounded measures ν namely $\mathbb{G}[\nu](x) = \int_{\Omega} G(x, y) d\nu(y)$. We have the following result: **Theorem D** Let $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}(\Omega)$ with $N \geq \theta > N - \frac{N}{N-1}$ and assume that g is nondecreasing and vanishes at 0.

(I) If $\mu \in \mathfrak{M}_b(\Omega)$ satisfies

$$\rho g(\mathbb{G}[|\mu|]) \in L^1_{\sigma}(\Omega), \tag{1.13}$$

then problem (1.3) admits a unique very weak solution.

(II) Let $\mu = \mu_r + \mu_s$ where μ_r is absolutely continuous with respect to the Lebesgue measure and μ_s is singular. Assume that g satisfies the Δ_2 condition, namely that

$$|g(r+r')| \le a (|g(r)| + |g(r')|) + b \quad for \ all \ r, r' \in \mathbb{R},$$
(1.14)

for some a > 1 and $b \ge 0$. Then the previous assertion holds if (1.13) is replaced by

$$\rho g(\mathbb{G}[|\mu_s|]) \in L^1_{\sigma}(\Omega). \tag{1.15}$$

Notice that (1.13) holds if either (i) σ and μ have disjoint support, or (ii) $\mu \in \mathcal{M}_p(\Omega)$ for some $p > \frac{N}{2}$. Indeed if (i) holds then $\mathbb{G}[|\mu|]$ is bounded pointwise on the support of σ , and if (ii) holds then by Lemma 2.2 $\mathbb{G}[|\mu|]$ is bounded pointwise in Ω . Obviously the same comment holds in the setting of II.

In order to make more explicit conditions (1.13), (1.15), we introduce the following growth assumption on g:

$$|g(r)| \le c(1+|r|^q) \quad \text{for all } r \in \mathbb{R}, \tag{1.16}$$

for some q > 1. Notice that $\tilde{g}(r) = 1 + r^q$ satisfies (1.8) if and only if $q < \frac{\theta}{N-2}$. When σ is the Lebesgue measure and $g(r) = |r|^{q-1}r$, Baras and Pierre [3] gave a necessary and sufficient condition for the existence of a solution to (1.2) involving certain capacities associated to the Bessel potential spaces $H^{s,p}(\mathbb{R}^N)$ where $s \in \mathbb{R}$ and $p \in [1, \infty]$. Let us recall that

$$H^{s,p}(\mathbb{R}^N) = \left\{ f : f = \mathbf{G}_s * h, h \in L^p(\mathbb{R}^N) \right\},\tag{1.17}$$

where \mathbf{G}_s is the Bessel kernel of order s. By extension $\mathbf{G}_0 = \delta_0$, hence $H^{s,p}(\mathbb{R}^N) = L^p(\mathbb{R}^N)$. When s is a positive integer, it is proved by Calderón [2, Theorem 1.2.3] that $H^{s,p}(\mathbb{R}^N)$ is the standard Sobolev space $W^{s,p}(\mathbb{R}^N)$. If s > 0, we denote by $c_{s,p}$ the associated capacity, called the Bessel capacity. It is defined for any compact set $K \subset \mathbb{R}^N$ by

$$c_{s,p}(K) = \inf \{ \|\phi\|_{H^{s,p}}^p : \phi \in \mathcal{S}(\mathbb{R}^N), \phi \ge 1 \text{ on } K \}.$$
(1.18)

The definition of $c_{s,p}$ is then extended first to open sets and then to arbitrary sets. We refer to [2] for general properties of Bessel spaces and their associated capacities $c_{s,p}$. We say that a measure $\mu \in \mathfrak{M}_b(\Omega)$ is absolutely continuous with respect to the $c_{s,p}$ -capacity if for any Borel subset $E \subset \mathbb{R}^N$,

$$c_{s,p}(E) = 0 \Longrightarrow |\mu|(E) = 0.$$

Baras and Pierre's result states that equation (1.2), with σ standing for the Lebesgue measure and $g(r) = |r|^{q-1}r$, has a solution if and only if μ is absolutely continuous with respect to the $c_{2,q'}$ -capacity. The next result generalizes the "if" part to the case where σ belongs to some Morrey space.

Theorem E Let $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}(\Omega)$ with $N \geq \theta > N - \frac{N}{N-1}$ and assume that g is nondecreasing and satisfies (1.1) and (1.16). Let p > 1 and $s \geq 0$ such that $N > sp > N - \theta$ and $\frac{\theta p}{N-sp} \geq q$. If $\mu \in \mathfrak{M}_b(\Omega)$ is absolutely continuous with respect to the $c_{2-s,p'}$ -capacity, then (1.2) admits a unique very weak solution.

As a particular case, we take p = q and obtain that if μ is absolutely continuous with respect to the $c_{2-\frac{N-\theta}{q},q'}$ -capacity, then (1.3) admits a unique solution. We thus recover Baras-Pierre's sufficient condition [3] when $\theta = N$.

We give an explicit condition on the measure μ in terms of Morrey spaces implying that it satisfies the conditions of Theorem E.

Proposition 1.1 Under the assumptions on σ and g of Theorem E, if $\mu \in \mathcal{M}_{\frac{N}{N-\theta^*}}(\Omega)$ for some $\theta^* > \frac{(N-2)q-\theta}{q-1}$, then (1.3) admits a unique very weak solution.

Notice that the condition on μ given in Proposition 1.1 is weaker than the one given after Theorem D.

When $g(r) = |r|^{q-1} r$ with q > 1, one can find a necessary conditions for the existence of a solution of (1.3) in the supercritical case under additional regularity assumptions on σ . By [2, Def 2.3.3, Prop. 2.3.5], the following expression

$$c_q^{\sigma}(E) = \inf\left\{\int_{\Omega} |v|^{q'} \, d\sigma : v \in L_{\sigma}^{q'}(\Omega), \, v \ge 0, \, \mathbb{G}[v\sigma] \ge 1 \text{ on } E\right\},\tag{1.19}$$

where E is any subset of Ω defines an outer capacity. The measure is called θ -regular if

$$\frac{1}{c}r^{\theta} \leq \int_{B_r(x)} d\sigma \leq cr^{\theta} \quad \text{for all } (x,r) \in \Omega \times (0,1],$$

The next result gives a necessary condition for a measure to be a good measure.

Theorem F Let q > 1 and $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}(\Omega)$ be θ -regular with $N \ge \theta > N-2$. If $\mu \in \mathfrak{M}^+_b(\Omega)$ is such that problem (1.3) with $g(r) = |r|^{q-1}r$ admits a very weak solution, then μ vanishes on any Borel set E such that $c^{\sigma}_q(E) = 0$. Furthermore the c_q^{σ} - capacity admits the following representation in terms of Besov capacities. If $\Gamma \subset \Omega$ is the support of σ , we denote by $B_{q',\infty}^{2-\frac{N-\theta}{q},\Gamma}(\Omega)$ the closed subspace of distributions $\zeta \in B_{q',\infty}^{2-\frac{N-\theta}{q}}(\Omega)$ such that the support of the distribution $\Delta \zeta$ is a subset of Γ . Then

$$c_{q}^{\sigma}(K) \sim c_{q',\infty}^{2-\frac{N-\theta}{q},\Gamma}(K) := \inf \left\{ \left\| \zeta \right\|_{B_{q',\infty}^{2-\frac{N-\theta}{q}}}^{q'} : \zeta \in B_{q',\infty}^{2-\frac{N-\theta}{q},\Gamma}(\Omega), \, \zeta \ge \chi_{K} \right\}, \quad (1.20)$$

for all compact subset $K \subset \Omega$.

Finally a complete characterization of removable sets can be obtained under a much stronger assumption on σ , namely that $d\sigma = wdx$ with $\omega := w^{-\frac{1}{q-1}} \in L^1_{loc}(\Omega)$. If $K \subset \Omega$ is compact, we set

$$c_q^{\omega}(K) = \inf\left\{\int_{\Omega} |\Delta\zeta|^{q'} \,\omega dx : \zeta \in C_0^{\infty}(\Omega), 0 \le \zeta \le 1, \zeta = 1 \text{ in a neighborhood of } K\right\}$$
(1.21)

This defines a capacity on Borel sets of Ω .

Theorem G. Assume q > 1 and there exists a nonnegative Borel function w in Ω in the Muckenhoupt class $A_q(\Omega)$ such that $d\sigma = wdx$. If $K \subset \Omega$ is compact, a function $u \in L^1_{loc}(\Omega \setminus K)$ such that $|u|^q w \in L^1_{loc}(\Omega \setminus K)$ which satisfies

$$-\Delta u + w |u|^{q-1} u = 0, \qquad (1.22)$$

in the sense of distributions in $\Omega \setminus K$ can be extended as a solution of the same equation in the whole Ω if and only if $c_{q,w}(K) = 0$.

The assumption $w \in A_q(\Omega)$ can be weakened and replaced by $\omega = w^{\frac{1}{1-q}}$ is q'-admissible in the sense of [15, Chap 1], a condition which implies in particular the validity of the Gagliardo-Nirenberg and the Poincaré inequalities.

2 Preliminaries

In the whole paper c denotes a generic positive constant whose value can change from one ocurrence to another even within a single string of estimates. Sometimes, in order to avoid ambiguity, we are led to introduce other notations for constant, for example c'.

We denote by $\mathfrak{M}_b(\Omega)$ the space of outer regular bounded Borel measures on Ω equipped with the total variation norm, and by $\mathfrak{M}_b^+(\Omega)$ its positive cone. Since Ω is

bounded we can identify bounded Radon measures in Ω with measures μ in $\overline{\Omega}$ such that $|\mu| (\partial \Omega) = 0$. All the measures are extended by 0 in $\mathbb{R}^N \setminus \Omega$.

Let G(.,.) be the Green kernel defined in $\Omega \times \Omega$ and $\mathbb{G}[.]$ the corresponding potential operator acting on bounded measures ν namely $\mathbb{G}[\nu](x) = \int_{\Omega} G(x, y) d\nu(y)$. We denote $L^{p,\infty}(\Omega)$ the usual weak L^p space. The next result is classical and valid in a much more general setting (see e.g. [6], [11]).

Lemma 2.1 Let $\mu \in \mathfrak{M}_b(\Omega)$ and $v = \mathbb{G}[\mu]$ be the (very weak) solution of

$$\begin{array}{ll}
-\Delta v = \mu & \text{in } \Omega \\
v = 0 & \text{in } \partial\Omega.
\end{array}$$
(2.1)

I- If $N \ge 2$, then $v \in L^{\frac{N}{N-2},\infty}(\Omega)$, $\nabla v \in L^{\frac{N}{N-1},\infty}(\Omega)$ and

$$\|v\|_{L^{\frac{N}{N-2},\infty}} + \|\nabla v\|_{L^{\frac{N}{N-1},\infty}} \le c \,\|\mu\|_{\mathfrak{M}_b} \,.$$
(2.2)

II- If N = 2, then $v \in BMO(\Omega)$, $\nabla v \in L^{2,\infty}(\Omega)$ and

$$\|v\|_{BMO} + \|\nabla v\|_{L^{2,\infty}} \le c \,\|\mu\|_{\mathfrak{M}_b} \,. \tag{2.3}$$

This result can be refined when more information is available on the degree of concentration of μ . This leads to the definition of Morrey spaces of measures.

2.1 Morrey spaces of measures

If $1 \leq p \leq \infty$ we define the Morrey space $\mathcal{M}_p(\Omega)$ as the set of bounded outer regular Borel measures μ defined in Ω and extended by 0 in Ω^c , satisfying

$$|B_r(x)|_{\mu} := \int_{B_r(x)} d|\mu| \le cr^{N(1-\frac{1}{p})} \quad \text{for all } (x,r) \in \Omega \times \mathbb{R}_+, \tag{2.4}$$

for some c > 0. In particular $\mu \in \mathcal{M}_{\frac{N}{N-\theta}}(\Omega), \ \theta \in [0, N]$, if

$$\int_{B_r(x)} d|\mu| \le cr^{\theta} \quad \text{for all } (x,r) \in \Omega \times \mathbb{R}_+.$$

We refer to [19] for a detailed study of $\mathcal{M}_p(\Omega)$ and full proofs of the various results we will recall now. Endowed with the norm

$$\|\mu\|_{\mathcal{M}_p} = \sup_{(x,r)\in\Omega\times\mathbb{R}_+} r^{N(\frac{1}{p}-1)} |B_r(x)|_{\mu}, \qquad (2.5)$$

 $\mathcal{M}_p(\Omega)$ is a Banach space and $\mathcal{M}_p^+(\Omega) = \mathcal{M}_p(\Omega) \cap \mathfrak{M}_b^+(\Omega)$ is its positive cone. We also set $\mathcal{M}_p(\Omega) = \mathcal{M}_p(\Omega) \cap L^1_{loc}(\Omega)$; it is a closed subspace of $\mathcal{M}_p(\Omega)$ and, if 1 , the following imbedding holds

$$L^p(\Omega) \hookrightarrow L^{p,\infty}(\Omega) \hookrightarrow M_p(\Omega).$$
 (2.6)

Note that since Ω is bounded and any measure in Ω is extended to \mathbb{R}^N by 0, it is easily seen that if $1 \leq q \leq p \leq \infty$ we have a continuous embedding $\mathcal{M}_p(\Omega) \hookrightarrow \mathcal{M}_q(\Omega)$ with

$$\|v\|_{\mathcal{M}_q} \le (\operatorname{diam}(\Omega))^{\frac{N}{q} - \frac{N}{p}} \|v\|_{\mathcal{M}_p} \quad \text{for all } v \in \mathcal{M}_p(\Omega).$$
 (2.7)

Indeed for any $x \in \Omega$ the ball centered at x with radius diam(Ω) contains Ω so that it is enough to consider $r \leq \text{diam}(\Omega)$. We have

$$r^{-N(1-1/q)} |B_r(x)|_{\mu} \le r^{-N(1-1/q)} \|\mu\|_{\mathcal{M}_p} r^{N(1-1/p)} \le (\operatorname{diam}(\Omega))^{\frac{N}{q} - \frac{N}{p}} \|\mu\|_{\mathcal{M}_p}.$$

The following imbedding inequalities holds.

Lemma 2.2 Let
$$\mu \in \mathcal{M}_p(\Omega)$$
 and v be the solution of (2.1).
I- If $1 , then $v \in M_q(\Omega)$ with $\frac{1}{q} = \frac{1}{p} - \frac{2}{N}$ and there holds$

$$\|v\|_{\mathcal{M}_q} \le c \,\|\mu\|_{\mathcal{M}_p} \,. \tag{2.8}$$

II- If $p > \frac{N}{2}$, then v is bounded pointwise and

(i)
$$v(x) \le c \|\mu\|_{\mathcal{M}_p}$$
 for all $x \in \Omega$,

(*ii*)
$$\sup_{x \neq y} \frac{|v(x) - v(y)|}{|x - y|^{\alpha}} \le c \, \|\mu\|_{\mathcal{M}_p} \quad \text{with} \ \alpha = 2 - \frac{N}{p} \quad \text{if} \ N > p > \frac{N}{2},$$

(iii)
$$\sup_{x \neq y} \frac{|v(x) - v(y)|}{|x - y|^{\alpha}} \le c \|\mu\|_{\mathcal{M}_p} \quad with \ \alpha \in (0, 1) \quad if \ N = p,$$

(iv)
$$\sup_{x} |\nabla v(x)| \le c \|\mu\|_{\mathcal{M}_p} \quad if \ N < p.$$

(2.9)

Remark. The previous regularity results are proved in [19, Prop. 3.1, 3.5] when $v = I_{\alpha} * \mu$ where I_{α} is the Riesz potential. However it is easily seen that the proof in [19] can be adapted to our setting. In particular for (2.8) we need that $G(x, y) \leq c|x - y|^{2-N}$, for (i) we use (2.7).

Remark. If we assume that $\mu \in \mathfrak{M}_{\rho}(\Omega) \cap \mathcal{M}_{p,loc}(\Omega)$, the previous estimates acquire a local aspect and remain valid provided the supremum in the norms on the left-hand sides are taken on compact subsets of Ω .

2.2 Trace embeddings

Some applications of Morrey spaces to imbedding theorems (also called trace inequalities) can be found in Adams-Hedberg's book [2]. For the sake of completeness, we quote here the main result therein we will use in the sequel. If $0 < \alpha < N$ we recall that I_{α} (resp. G_{α}) is the Riesz potential (resp. the Bessel potential) of order α in \mathbb{R}^{N} . The next result is [2, Th 7.2.2, 7.3.2] (recall that the $c_{I_{\alpha},p}$ -Riesz capacity of a ball $B_r(x)$ is proportional to $r^{N-\alpha p}$ - see [2, Prop. 5.1.2].)

Proposition 2.3 Let σ be a nonnegative Radon measure in \mathbb{R}^N , $N > \alpha p$ and 1 .

(I)- The following assertions are equivalent:

$$\|I_{\alpha} * f\|_{L^q_{\sigma}(\mathbb{R}^N)} \le c_1 \|f\|_{L^p(\mathbb{R}^N)} \qquad \text{for all } f \in L^p(\mathbb{R}^N), \tag{2.10}$$

for some $c_1 = c_1(N, \alpha, p, q) > 0$, and

$$\sigma \in \mathcal{M}_r(\mathbb{R}^N) \quad with \ \frac{1}{r} = q\left(\frac{1}{q} - \frac{1}{p} + \frac{\alpha}{N}\right).$$
 (2.11)

(II)- The mapping $f \mapsto G_{\alpha} * f$ is continuous from $L^p(\mathbb{R}^N)$ to $L^q_{\sigma}(\mathbb{R}^N)$ if and only if

$$\sigma(K)^{\frac{1}{q}} \le c_2 \left(c_{\alpha,p}(K) \right)^{\frac{1}{p}} \quad for \ all \ K \subset \mathbb{R}^N, \tag{2.12}$$

where $c_{\alpha,p}$ denotes the Bessel capacity of order α defined in (1.18). In fact this holds if and only if

$$\sigma(B_r(x)) \le c_3 \left(c_{\alpha,p}(B_r(x)) \right)^{q/p} \quad \text{for all } x \in \mathbb{R}^N, \ 0 < r \le 1.$$
(2.13)

(III)- A necessary and sufficient condition in order the mapping $f \mapsto G_{\alpha} * f$ be compact from $L^{p}(\mathbb{R}^{N})$ to $L^{q}_{\sigma}(\mathbb{R}^{N})$ is

(i)
$$\lim_{\delta \to 0} \sup_{x \in \mathbb{R}^{N, r \le \delta}} \frac{\sigma(B_{r}(x))}{(c_{\alpha, p}(B_{r}(x)))^{\frac{q}{p}}} = 0$$

(ii)
$$\lim_{|x| \to \infty} \sup_{r \le 1} \frac{\sigma(B_{r}(x))}{(c_{\alpha, p}(B_{r}(x)))^{\frac{q}{p}}} = 0.$$
 (2.14)

If \mathbb{R}^N is replaced by a smooth bounded set Ω , we extend any bounded Radon measure in Ω by zero in Ω^c . In view of [2, 5.6.1] the $c_{I_\alpha,p}$ -Riesz capacity and $c_{\alpha,p}$ -Bessel capacity of balls $B_r(x)$ with $x \in \Omega$ and $r \leq 1$ are then equivalent. It follows that $c_{\alpha,p}(B_r(x)) \simeq r^{N-\alpha p}$. Then, it follows from II and III above, the definition of $H^{\alpha,p}(\mathbb{R}^N)$ and the existence of an extension operator $H^{\alpha,p}(\Omega) \hookrightarrow H^{\alpha,p}(\mathbb{R}^N)$ that the following holds, **Proposition 2.4** Under the assumptions of Proposition 2.3, the embedding $H^{\alpha,p}(\Omega) \hookrightarrow L^q_{\sigma}(\Omega)$ is:

(I)- continuous if and only if $(\sigma(K))^{\frac{1}{q}} \leq c_2 (c_{\alpha,p}(K))^{\frac{1}{p}}$ for all $K \subset \mathbb{R}^N$, i.e. if and only if $\sigma \in \mathcal{M}_r^+(\mathbb{R}^N)$ with $\frac{1}{r} = q\left(\frac{1}{q} - \frac{1}{p} + \frac{\alpha}{N}\right)$. (II)- compact if and only if

$$\lim_{r \to 0} \sup_{x \in \Omega} \frac{\sigma(B_r(x))}{r^{\frac{(N-\alpha p)q}{p}}} = 0.$$
(2.15)

As an immediate corollary,

Proposition 2.5 Let $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}(\Omega)$, i.e. $\sigma(B_r(x)) \leq cr^{\theta}$, $N > \alpha p$ and 1 . Then the embedding

$$H^{\alpha,p}(\Omega) \hookrightarrow L^q_{\sigma}(\Omega),$$
 (2.16)

is continuous iff $\sigma(K) \leq c_1 (c_{\alpha,p}(K))^{\frac{q}{p}}$ for all $K \subset \mathbb{R}^N$ which holds iff $q \leq \frac{\theta p}{N-\alpha p}$. And the embedding (2.16) is compact iff $q < \frac{\theta p}{N-\alpha p}$.

Other trace inequalities can be found in [21]. In the case $N = \alpha p$ the following estimate holds, see e.g. [1], [20, Corollary 8.6.2], [31].

Proposition 2.6 Let σ be a nonnegative Radon measure in \mathbb{R}^N with compact support and $N = \alpha p, p > 1$. Then there exists a constant $b = b(N, \alpha, p) > 0$ such that

$$\sup_{\|f\|_{L^p} \le 1} \int_{\mathbb{R}^N} \exp\left(b \left|G_\alpha * f\right|^{p'}\right) d\sigma < \infty$$
(2.17)

if and only if $\sigma \in \mathcal{M}^+_{\tau}(\mathbb{R}^N)$ for some $\tau \in (1,\infty)$.

When p = 1 the next result is proved in [20, Sec 1.4.3]

Proposition 2.7 Let σ be a nonnegative bounded Radon measure in \mathbb{R}^N , α be an integer such that $1 \leq \alpha \leq N$ and $q \geq 1$. Then the following estimate holds

$$\|f\|_{L^q_{\sigma}} \le c_2 \sum_{|\beta|=\alpha} \|D^{\alpha}f\|_1 \quad \text{for all } f \in C^{\infty}_0(\mathbb{R}^N),$$

$$(2.18)$$

for some $c_2 = c_2(N, p, q, \alpha) > 0$ if and only if $\sigma \in \mathcal{M}^+_{\frac{N}{N-q(N-\alpha)}}(\mathbb{R}^N)$.

3 The subcritical case

3.1 The variational construction

We prove in this section that if $\mu \in W^{-1,2}(\Omega)$ then, under some assumptions on g and σ , equation (1.2) has a variational solution.

We assume that $g \in C(\mathbb{R})$ satisfies (1.1), and set $G(r) := \int_0^r g(s) ds$. We will find a solution to (1.2) minimizing the functional

$$J(v) := \frac{1}{2} \int_{\Omega} |\nabla v|^2 \, dx + \int_{\Omega} G(v) \, d\sigma - \langle \mu, v \rangle, \tag{3.1}$$

over the set

$$X_G(\Omega) := \{ v \in W_0^{1,2}(\Omega) : G(v) \in L^1_{\sigma}(\Omega) \}.$$
 (3.2)

The next proposition is a variant of a result in [8].

Proposition 3.1 Assume $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}(\Omega)$ with $N \geq \theta > \frac{N}{2} - 1$. If $\mu \in W^{-1,2}(\Omega)$ there exists $u \in X_G(\Omega)$ which minimizes J in $X_G(\Omega)$. Furthermore u is a weak solution of (1.2) in the sense that

$$\int_{\Omega} \nabla u \cdot \nabla \zeta dx + \int_{\Omega} g(u) \zeta d\sigma = \langle \mu, \zeta \rangle \quad \text{for all } \zeta \in C_0^{\infty}(\Omega).$$
(3.3)

If g is nondecreasing this solution is unique and denoted by u_{μ} , and the mapping $\mu \mapsto u_{\mu}$ is nonnecreasing.

Proof. Step 1: Existence of a minimizer. If N > 2 we apply (2.16) with $\alpha = 1$ and p = 2, recalling that by Fourier transform $H^{1,2}(\Omega) = W^{1,2}(\Omega)$ (it is a special case of Calderón's theorem), to obtain that

$$W_0^{1,2}(\Omega) \hookrightarrow L_{\sigma}^{\frac{2\theta}{N-2}}(\Omega).$$
 (3.4)

If N = 2 with p = 2 we take any $\alpha < 1$ and obtain

$$\|f\|_{L^{\frac{\theta}{1-\alpha}}_{\sigma}} \le c_1 \, \|f\|_{W^{\alpha,2}} \le c_1' \, \|f\|_{W^{1,2}} \,. \tag{3.5}$$

According to Proposition 2.5 the imbedding of $W_0^{1,2}(\Omega)$ into $L^p_{\sigma}(\Omega)$ is compact for any $p \in [1, \frac{2\theta}{N-2})$ if N > 2 and $1 \le p < \infty$ if N = 2.

Let us first assume that g is bounded. Then $|G(v)| \leq m |v|$. Since g is continuous, $G(v) \in L^1_{\sigma}(\Omega)$ for any $v \in W^{1,2}_0(\Omega)$ and the functional J is well defined and is of class C^1 in $W^{1,2}_0(\Omega)$. Furthermore

$$\lim_{\|v\|_{W^{1,2}\to\infty}} J(v) = +\infty.$$
(3.6)

Let $\{u_n\}$ be a minimizing sequence. By (3.6), $\{u_n\}$ is bounded in $W_0^{1,2}(\Omega)$ and thus relatively compact in $L^1_{\sigma}(\Omega)$ and in $L^2(\Omega)$. Hence there exist $u \in L^2(\Omega)$ and $v \in L^1_{\sigma}(\Omega)$ such that, up to a subsequence, $u_n \to v$ in $L^1_{\sigma}(\Omega)$, and $u_n \to u$ strongly in $L^2(\Omega)$ and weakly in $W_0^{1,2}(\Omega)$. We can also assume that $u_n \to u$ $c_{1,2}$ -quasi almost everywhere in the sense that there exists $E \subset \Omega$ with $c_{1,2}(E) = 0$ such that $u_n(x) \to u(x)$ for any $x \in \Omega \setminus E$. According to Proposition 2.5, σ is absolutely continuous with respect to the $c_{1,2}$ -capacity. It follows that $\sigma(E) = 0$ so that $u_n \to u$ σ -almost everywhere and thus $u = v \sigma$ -almost everywhere. Thus we have that $u_n \to u$ in $L^2(\Omega)$, in $L^1_{\sigma}(\Omega)$, σ -almost everywhere and weakly in $W_0^{1,2}(\Omega)$. Then we have that $\langle \mu, u_n \rangle \to \langle \mu, u \rangle$. By the dominated convergence theorem we have also that $G(u_n) \to G(u)$ in $L^1_{\sigma}(\Omega)$. Therefore

$$J(u) \le \liminf_{n \to \infty} J(u_n), \tag{3.7}$$

which implies that u is a minimizer of J in $W_0^{1,2}(\Omega)$.

If g is unbounded, we write $g = g_1 + g_2$ where $g_1 = g\chi_{(-r_0,r_0)}, g_2 = g\chi_{(-\infty-r_0]\cup[r_0,\infty)},$ where r_0 is defined in (1.1). Hence $G(r) = G_1(r) + G_2(r)$ where $|G_1(r)| \le m |r|$ and $G_2(r)$ is nonnegative. Using again (2.14) we obtain that (3.6) holds. A minimizing sequence $\{u_n\}$ inherits the same property as above, hence $u_n \to u \sigma$ -almost everywhere in Ω and in $L^1_{\sigma}(\Omega)$, this implies that $G_1(u_n) \to G_1(u)$ in $L^1_{\sigma}(\Omega)$ and $G_2(u)$ is σ -measurable. By Fatou's lemma

$$\int G_2(u)d\sigma \le \liminf_{n\to\infty} \int G_2(u_n)d\sigma,$$

which implies that (3.7) holds. Notice that, among the consequences, X_G is closed subset of $W_0^{1,2}(\Omega)$. Hence u in a minimizer of J in $X_G(\Omega)$.

Uniqueness holds if g is nondecreasing since it implies that J is stricly convex and actually X_G is a closed convex set.

Step 2: The minimizer is a weak solution. For $k > r_0$ we define g_k by

$$g_k(r) = \begin{cases} g(r) & \text{if } |r| \le k \\ g(k) & \text{if } r > k \\ g(-k) & \text{if } r < -k \end{cases}$$

Then g_k is continuous and bounded and the minimizer $u_k \in W_0^{1,2}(\Omega)$ of

$$J_k(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 \, dx + \int_{\Omega} G_k(v) \, d\sigma - \langle \mu, v \rangle \quad \text{where} \quad G_k(r) = \int_0^s g_k(s) \, ds,$$

is a weak solution (i.e. in the sense given by (3.3)) of

$$\Delta u + g_k(u)\sigma = \mu \qquad \text{in } \Omega$$

$$u = 0 \qquad \text{on } \partial\Omega.$$
 (3.8)

The following energy estimate holds

$$\int_{\Omega} |\nabla u_k|^2 dx + \int_{\Omega} u_k g_k(u_k) d\sigma = \langle \mu, u_k \rangle \le \|\mu\|_{W^{-1,2}} \|u_k\|_{W^{1,2}}, \qquad (3.9)$$

and it implies

$$\int_{\Omega} |\nabla u_k|^2 dx + \int_{\Omega} |u_k g_k(u_k)| \, d\sigma \le \|\mu\|_{W^{-1,2}}^2 + m\sigma(\Omega) = M, \tag{3.10}$$

for some $m = m(r_0) > 0$. Up to a subsequence, $\{u_k\}_k$ converges to some u as $k \to \infty$, weakly in $W_0^{1,2}(\Omega)$, strongly in $L^2(\Omega)$, and almost everywhere in Ω . By Proposition 2.4 the imbedding of $W^{1,2}(\Omega)$ in $L^{\sigma}_{\sigma}(\Omega)$ is compact for any $q < \frac{2\theta}{N-2}$. Hence the subsequence can be taken such that $u_k \to u$, σ -almost everywhere as $k \to \infty$, and consequently $g_k(u_k) \to g(u) \sigma$ -almost everywhere. Let $E \subset \Omega$ be a Borel set, then for any $\lambda > r_0$,

$$M \ge \int_{E} |g_{k}(u_{k})u_{k}| d\sigma$$

=
$$\int_{E \cap \{|u_{k}| > \lambda\}} |g_{k}(u_{k})u_{k}| d\sigma + \int_{E \cap \{|u_{k}| \le \lambda\}} |g_{k}(u_{k})u_{k}| d\sigma$$

$$\ge \lambda \int_{E \cap \{|u_{k}| > \lambda\}} |g_{k}(u_{k})| d\sigma + \int_{E \cap \{|u_{k}| \le \lambda\}} |g_{k}(u_{k})u_{k}| d\sigma.$$

Therefore

$$\int_{E} |g_{k}(u_{k})| \, d\sigma = \int_{E \cap \{|u_{k}| > \lambda\}} |g_{k}(u_{k})| \, d\sigma + \int_{E \cap \{|u_{k}| \le \lambda\}} |g_{k}(u_{k})| \, d\sigma$$
$$\leq \frac{M}{\lambda} + \max\{|g(r)| : |r| \le \lambda\}\sigma(E)$$

For $\epsilon > 0$ we first choose λ such that $\frac{M}{\lambda} \leq \frac{\epsilon}{2}$ and then $\sigma(E) \leq \frac{\epsilon}{1+2\max\{|g(r)| \leq \lambda\}}$. This implies the uniform integrability of $\{g_k(u_k)\}_k$ in $L^1_{\sigma}(\Omega)$. Hence $g_k(u_k) \to g(u)$ in $L^1_{\sigma}(\Omega)$ by Vitali's convergence theorem. Since u_k is a weak solution of (3.8), there holds for any $\zeta \in C_0^{\infty}(\Omega)$,

$$\int_{\Omega} \nabla u_k \cdot \nabla \zeta dx + \int_{\Omega} g_k(u_k) \zeta d\sigma = \langle \mu, \zeta \rangle.$$
(3.11)

Letting $k \to \infty$ we obtain, using the above convergence results,

$$-\int_{\Omega} \nabla u \cdot \nabla \zeta dx + \int_{\Omega} g(u) \zeta d\sigma = \langle \mu, \zeta \rangle.$$
(3.12)

Hence u is a weak solution. If g is monotone, uniqueness is also a consequence of the weak formulation. Furthermore if μ, μ' belong to $W^{-1,2}(\Omega)$ are such that $\mu - \mu'$ is a nonnegative measure, then $\langle \mu' - \mu, (u'_{\mu} - u_{\mu})_+ \rangle \leq 0$. Taking $(u'_{\mu} - u_{\mu})_+$ for test function in the weak formulation yields $(u'_{\mu} - u_{\mu})_+ = 0$.

3.2 The L^1 case

In the sequel we set

$$\mathbb{X}(\Omega) = \{ \zeta \in C^1(\overline{\Omega}), \zeta = 0 \text{ on } \partial\Omega \text{ and } \Delta\zeta \in L^\infty(\Omega) \},$$
(3.13)

and $\mathbb{X}_+(\Omega) = \mathbb{X}(\Omega) \cap \{\zeta \in C^1(\overline{\Omega}) : \zeta \ge 0 \text{ in } \overline{\Omega}\}$. We recall (see e.g. [29]) that if $f \in L^1_\rho(\Omega)$ and $u \in L^1(\Omega)$ is a very weak solution of

$$-\Delta u = f \qquad \text{in } \Omega, \tag{3.14}$$

there holds

$$-\int_{\Omega} |u| \,\Delta\zeta dx \le \int_{\Omega} f \operatorname{sign}(u) \zeta dx \quad \text{for all } \zeta \in \mathbb{X}_{+}(\Omega), \quad (3.15)$$

and

$$-\int_{\Omega} u^{+} \Delta \zeta dx \leq \int_{\Omega} f \operatorname{sign}_{+}(u) \zeta dx \quad \text{for all } \zeta \in \mathbb{X}_{+}(\Omega).$$
(3.16)

Proposition 3.2 Assume $N \geq 2$, $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}(\Omega)$ with $N \geq \theta > N-2$ and $g: \mathbb{R} \mapsto \mathbb{R}$ is a continuous nondecreasing function vanishing at 0. If $\mu \in L^1_{\rho}(\Omega)$ there exists a unique $u := u_{\mu} \in L^1(\Omega)$ very weak solution of (1.2). Furthermore, if $u_{\mu}, u_{\mu'} \in L^1(\Omega)$ are the very weak solutions of (1.2) with right-hand sides $\mu, \mu' \in L^1_{\rho}(\Omega)$, then

$$-\int_{\Omega} \left| u_{\mu} - u_{\mu'} \right| \Delta \zeta dx + \int_{\Omega} \left| g(u_{\mu}) - g(u_{\mu'}) \right| \zeta d\sigma \leq \int_{\Omega} (\mu - \mu') \operatorname{sign}(u_{\mu} - u_{\mu'}) \zeta dx,$$
(3.17)

and

$$-\int_{\Omega} (u_{\mu} - u_{\mu'})_{+} \Delta \zeta dx + \int_{\Omega} (g(u_{\mu}) - g(u_{\mu'}))_{+} \zeta d\sigma \leq \int_{\Omega} (\mu - \mu') sign_{+} (u_{\mu} - u_{\mu'}) \zeta dx$$
(3.18)

for any $\zeta \in \mathbb{X}_+(\Omega)$. In particular the mapping $\mu \to u_\mu$ is nondecreasing.

The following result will be used several time in the sequel. Its proof is standard but we present it for the sake of completeness.

Lemma 3.3 Assume $N > q \ge 1$ and $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}$ with $N \ge \theta > N-q$. Then σ vanishes on any Borel set with $c_{1,q}$ -capacity zero.

Proof. It suffices to prove the result when E is compact. We define the Λ_{θ} Hausdorff measure of a set E by

$$\Lambda_{\theta}(E) = \lim_{\kappa \to 0} \Lambda_{\theta}^{\kappa}(E) := \lim_{\kappa \to 0} \inf \left\{ \sum_{j=1}^{\infty} r_j^{\theta} : 0 < r_j \le \kappa \le \infty, E \subset \bigcup_{j=1}^{\infty} B_{r_j}(a_j) \right\}.$$
(3.19)

Note that $\Lambda_{\theta}^{\infty}(E)$ is the Hausdorff content of E and it is smaller than $(\operatorname{diam}(E))^{\theta}$. For any covering of E by balls $B_{r_i}(a_j), j \geq 1$, we have

$$\sigma(E) \le \sum_{j=1}^{\infty} \sigma(B_{r_j}(a_j)) \le \|\sigma\|_{\frac{N}{N-\theta}} \sum_{j=1}^{\infty} r_j^{\theta}.$$

It follows that

$$\sigma(E) \le \|\sigma\|_{\frac{N}{N-\theta}} \Lambda_{\theta}(E).$$

Next, if $c_{1,q}(E) = 0$ then $\Lambda_{\theta}(E) = 0$ according to [2, Th. 5.1.13], and thus $\sigma(E) = 0$ by the previous inequality.

We introduce the flow coordinates near $\partial \Omega$ defined by

$$\Pi(x) = (\rho(x), \tau(x)) \in [0, \epsilon_0] \times \partial \Omega \quad \text{where } \tau(x) = proj_{\partial \Omega}(x).$$

It is well-known that for ϵ_0 small enough, Π is a C^1 -diffeomorphism from $\Omega_{\epsilon_0} := \{x \in \overline{\Omega} : \rho(x) \leq \epsilon_0\}$ to $[0, \epsilon_0] \times \partial \Omega$. With this diffeomorphism we can assimilate the surface measure dS_{ϵ} on $\Sigma_{\epsilon} = \{x \in \Omega : \rho(x) = \epsilon\}$ with the surface measure dS on $\Sigma_0 = \partial \Omega$ by setting

$$\int_{\Sigma_{\epsilon}} v(x) dS_{\epsilon}(x) = \int_{\Sigma_{0}} v(\epsilon, \tau) dS(\tau).$$

Lemma 3.4 Assume $N \geq 2$ and $\mu \in \mathfrak{M}(\Omega)$ satisfies

$$\int_{\Omega} \rho d \left| \mu \right| < \infty. \tag{3.20}$$

Then $u = \mathbb{G}[\mu]$ satisfies

$$\lim_{\epsilon \to 0} \int_{\Sigma_0} |u|(\epsilon, \tau) dS(\tau) = 0.$$
(3.21)

Proof. If $u = \mathbb{G}[\mu]$, it is the unique weak solution of $-\Delta u = \mu$ in Ω , u = 0 on $\partial\Omega$. Hence $u = u_1 - u_2$ where $u_1 = \mathbb{G}[\mu^+]$ and $u_2 = \mathbb{G}[\mu^-]$. Since μ_+ and μ_- satisfy the integrability condition (3.20) both u_1 and u_2 have a zero measure boundary trace (*M*-boundary trace in the sense of [18, Sec 1.3]). Hence, taking for test function the function $\zeta = 1$,

$$\lim_{\epsilon \to 0} \int_{\Sigma_0} u_j(\epsilon, \tau) dS(\tau) = 0, \qquad (3.22)$$

which implies (3.20).

This result allows us to obtain the uniqueness of the solution even if the righthand side is a measure. **Lemma 3.5** Assume $N \ge 2$, $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}(\Omega)$ with $N \ge \theta > N-2$ and $g : \mathbb{R} \mapsto \mathbb{R}$ is a continuous nondecreasing function. If $\mu \in \mathfrak{M}(\Omega)$ there exists at most one very weak solution of (1.2).

Proof. By Lemma 3.3 with $\alpha = 1$, p = 2, σ is absolutely continuous with respect to the $c_{1,2}$ capacity (it is diffuse in the terminology of [9]), and if $h \in L^1_{\sigma}(\Omega)$ the measure $h_+\sigma$, which is the increasing limit of $\inf\{n, h_+\}\sigma$ is also diffuse. Similarly $h_-\sigma$ is diffuse and so is $h\sigma$. Next we assume that u and u' are two very weak solutions of (1.2) and set w = u - u'. Hence

$$-\Delta w + (g(u) - g(u'))\sigma = 0.$$

Since $\rho(g(u) - g(u')) \in L^1_{\sigma}(\Omega)$, it follows from Lemma 3.4 that

$$\lim_{\epsilon \to 0} \int_{\Sigma_{\epsilon}} |w|(\epsilon, \tau) dS(\tau) = 0$$

We use Kato inequality for measures as in [10, Th 1.1]: Since $w \in L^1(\Omega)$, Δw^+ is a diffuse measure and

$$\Delta w^{+} \geq \chi_{\{w \geq 0\}} \Delta w = \chi_{\{w \geq 0\}} (g(u) - g(u')) \sigma \geq 0 \text{ in } \Omega$$

Since w^+ has a M-boundary trace by Lemma 3.4, we can apply [18, Lemmma 1.5.8] with $\mu = -\chi_{\{w \ge 0\}}(g(u) - g(u'))\sigma$ which is a measure in $\mathfrak{M}_{\rho}(\Omega) := \{\nu \in \mathfrak{M}(\Omega) : \rho\nu \in \mathfrak{M}_{b}(\Omega)\}$. Then there exists $\tau \in \mathfrak{M}_{\rho}^{+}(\Omega)$ such that

$$-\Delta w^+ = \mu - \tau.$$

Equivalently

$$-\Delta w^{+} + \chi_{\{w \ge 0\}}(g(u) - g(u'))\sigma = -\tau.$$

Since the M-boundary trace of w^+ is zero, it follows that $w^+ = -\mathbb{G}[\chi_{\{w \ge 0\}}(g(u) - g(u'))\sigma + \tau]$. Hence $w^+ = 0$ and $u \le u'$. Similarly $u' \le u$.

The following variant will be useful in the sequel.

Lemma 3.6 Assume $N \geq 2$, $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}(\Omega)$ with $N \geq \theta > N-2$ and $g : \mathbb{R} \mapsto \mathbb{R}$ is a continuous nondecreasing function. If $u, u' \in L^1(\Omega)$ are such that $\rho g(u)$ and $\rho g(u')$ belong to $L^1_{\sigma}(\Omega)$ and satisfy

$$-\int_{\Omega} (u-u')\Delta\zeta dx + \int_{\Omega} (g(u) - g(u'))\zeta d\sigma = \int_{\Omega} \zeta d\nu \quad \text{for all } \zeta \in \mathbb{X}_{+}(\Omega)$$
(3.23)

for some $\nu \in \mathfrak{M}_+(\Omega)$ diffuse with respect to the $c_{1,2}$ -capacity, then $u \geq u' c_{1,2}$ -quasi everywhere in Ω .

Proof. We use Kato's inequality, Lemma 3.4 and [18, Lemma 1.5.8] in the same way as in the proof of Lemma 3.5 since the measures $(g(u) - g(u'))d\sigma$ and ν are diffuse, $\Delta(u' - u)$ is diffuse, hence

$$\Delta(u'-u)_+ \ge \chi_{\{u' \ge u\}} \Delta(u'-u) = (g(')-g(u))\chi_{\{u' \ge u\}} + \chi_{\{u' \ge u\}}\nu \ge 0$$

Since $u' - u \in W_0^{1,q}(\Omega)$ for any $1 < q < \frac{N}{N-1}$, we conclude that $(u' - u)_+ = 0$ almost everywhere and $c_{1,2}$ -quasi everywhere by [2, Th 6.1.4].

The next result and the corollary which follows are the key-stone for the proof of Proposition 3.2.

Lemma 3.7 Let $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}(\Omega)$ with $N \ge \theta > N-2$, $h \in L^{\infty}_{\sigma}(\Omega)$, $f \in L^s(\Omega)$ with $s > \frac{N}{2}$ and $w \in L^1(\Omega)$ be the very weak solution of

$$-\Delta w + h\sigma = f \qquad in \ \Omega w = 0 \qquad in \ \partial\Omega.$$
(3.24)

Then w is continuous in $\overline{\Omega}$ and for any nondecreasing bounded function $\gamma \in C^2(\mathbb{R})$ vanishing at 0, there holds

$$-\int_{\Omega} j(w)\Delta\zeta dx + \int_{\Omega} \gamma(w)h\zeta d\sigma \leq \int_{\Omega} \gamma(w)\zeta f dx \quad \text{for all } \zeta \in \mathbb{X}_{+}(\Omega), \quad (3.25)$$

where $j(r) = \int_{0}^{r} \gamma(s)ds.$

Proof. The solution is unique and expressed by $w = \mathbb{G}[f - h\sigma]$. Since $\frac{N}{N-\theta} > \frac{N}{2}$, $w \in C^{\alpha}(\overline{\Omega})$ for some $\alpha \in (0,1)$ by Lemma 2.2. Hence $\gamma(w)$ is continuous and therefore measurable. We extend σ by zero in Ω^c and denote $\sigma_n = \sigma * \eta_n$ where $\{\eta_n\}$ is a sequence of mollifiers. Then $\sigma_n \to \sigma$ in the narrow topology of Ω . For $n \in \mathbb{N}^*$, let w_n be the solution of

$$-\Delta w_n + h\sigma_n = T_n(f) \qquad \text{in } \Omega \\ w_n = 0 \qquad \text{in } \partial\Omega, \qquad (3.26)$$

where $T_n(f) = \min\{|f|, n\} \operatorname{sgn}(f)$. Then $w_n \in W^{2,s}(\Omega) \cap W_0^{1,\infty}(\Omega)$ for all $1 < s < \infty$. By Green's formula

$$-\int_{\Omega} j(w_n) \Delta \zeta dx + \int_{\Omega} \gamma(w_n) h \zeta d\sigma \le \int_{\Omega} \gamma(w_n) \zeta f dx \quad \text{for all } \zeta \in \mathbb{X}_+(\Omega). \quad (3.27)$$

Since $w_n \to w$ uniformly in $\overline{\Omega}$, (3.25) follows.

Corollary 3.8 Under the assumptions of Lemma 3.7, there holds

$$-\int_{\Omega} |w| \Delta \zeta dx + \int_{\Omega} sign_0(w) h\zeta d\sigma \le \int_{\Omega} sign_0(w) \zeta f dx, \qquad (3.28)$$

and

$$-\int_{\Omega} w_{+} \Delta \zeta dx + \int_{\Omega} sign_{+}(w) \zeta h d\sigma \le \int_{\Omega} sign_{+}(w) \zeta f dx, \qquad (3.29)$$

for any $\zeta \in \mathbb{X}_{+}(\Omega)$. Moreover there exists a constant C > 0 depending only on Ω such that

$$\int_{\Omega} sign_0(w)hd\sigma \le C \int_{\Omega} |f| dx.$$
(3.30)

Proof. For proving (3.28) we consider a sequence $\{\gamma_k\}$ of odd nondecreasing functions such that

$$\gamma_k(r) = \begin{cases} 1 & \text{if } r \ge 2k^{-1} \\ 0 & \text{if } -k^{-1} \le r \le k^{-1} \\ -1 & \text{if } r \le -2k^{-1} \end{cases}$$

and such that $\{r\gamma_k(r)\}\$ is nondecreasing for any r. Using γ_k in place of γ in (3.25) we obtain

$$-\int_{\Omega} j_k(w) \Delta \zeta dx + \int_{\Omega} \gamma_k(w) \zeta h d\sigma \le \int_{\Omega} \gamma_k(w) \zeta f dx \quad \text{for all } \zeta \in \mathbb{X}_+(\Omega), \quad (3.31)$$

where $j_k(r) = \int_0^r \gamma_k(s) ds$. Since $\gamma_k(w) \uparrow w$ on $\Omega_+ := \{x \in \Omega : w(x) > 0\}$, there holds by the monotone convergence theorem,

$$\int_{\Omega_+} \gamma_k(w) \zeta |h| \, d\sigma \uparrow \int_{\Omega_+} w \zeta |h| \, d\sigma \quad \text{as } k \to \infty.$$

Since

$$\left|\int_{\Omega_{+}} (w - \gamma_{k}(w))\zeta h d\sigma\right| \leq \int_{\Omega_{+}} |(w - \gamma_{k}(w))\zeta h| \, d\sigma = \int_{\Omega_{+}} (w - \gamma_{k}(w))\zeta |h| d\sigma,$$

we obtain

$$\int_{\Omega_+} \gamma_k(w) h\zeta d\sigma \to \int_{\Omega_+} wh\zeta d\sigma \quad \text{as } k \to \infty.$$

Similarly, $\gamma_k(w) \downarrow w$ on $\Omega_- := \{x \in \Omega : w(x) < 0\}$ so that

$$\int_{\Omega_{-}} \gamma_k(w) h\zeta d\sigma \to \int_{\Omega_{-}} wh\zeta d\sigma \quad \text{as } k \to \infty.$$

Combining these two results yields

$$\int_{\Omega} \gamma_k(w) \zeta h d\sigma \to \int_{\Omega_+} w \zeta h d\sigma - \int_{\Omega_-} w \zeta h d\sigma = \int_{\Omega} sign_0(w) \zeta h d\sigma.$$

Using dominated convergence theorem there holds

$$\int_{\Omega} \gamma_k(w) \Delta \zeta dx \to \int_{\Omega} sign_0(w) \Delta \zeta dx,$$

and

$$\int_{\Omega} \gamma_k(w) \zeta f dx \to \int_{\Omega} sign_0(w) \zeta f dx.$$

This implies (3.28). The proof of (3.17) is similar.

Eventually we prove (3.30). Let η_1 be the solution of

$$\begin{aligned} -\Delta \eta_1 &= 1 & \text{in } \Omega \\ \eta_1 &= 0 & \text{in } \partial \Omega. \end{aligned} \tag{3.32}$$

Then $\eta_1 = \mathbb{G}[1] \in \mathbb{X}_+(\Omega)$ and there exists c, c' > 0 depending only on Ω such that $c\rho \leq \eta_1 \leq c'\rho$. Given $\alpha \in (0,1]$, let $j_\epsilon(r) = (r+\epsilon)^\alpha - \epsilon^\alpha$, $r \geq 0$, and $\zeta = j_\epsilon(\eta_1)$. Note that $\zeta \in C^2(\overline{\Omega}), 0 \leq \zeta \leq \eta^\alpha, \zeta = 0$ on $\partial\Omega, j'_\epsilon > 0, j''_\epsilon < 0$, so that $-\Delta \zeta = j'_\epsilon(\eta_1) - j''_\epsilon(\eta_1) |\nabla \eta_1|^2 \geq 0$. We deduce from (3.28) that

$$\int_{\Omega} sign_0(w)(\eta+\epsilon)^{\alpha} h d\sigma \leq \int_{\Omega} sign_0(w)\eta^{\alpha} |f| dx + \epsilon^{\alpha} \int_{\Omega} sign_0(w) h d\sigma.$$

We obtain

$$\int_{\Omega} sign_0(w)\rho^{\alpha}hd\sigma \le C \int_{\Omega} \rho^{\alpha} |f|dx + \epsilon^{\alpha} |\tilde{\sigma}(\Omega)|$$

Letting $\epsilon \to 0$ and then $\alpha \to 0$ we infer the result by dominated convergence.

We are now in position to prove Proposition 3.2.

Proof of Proposition 3.2. We divide the proof into several steps.

Step 1: We assume that $\mu \in L^{\infty}(\Omega)$. Let $\{\eta_n\}$ be a sequence of molifiers and $\sigma_n = \sigma * \eta_n$. If $\mu \in L^{\infty}(\Omega)$, the solution $u_n = u_{n,\mu}$ of

$$-\Delta u_n + g(u_n)\sigma_n = \mu \qquad \text{in } \Omega \\ u_n = 0 \qquad \text{in } \partial\Omega, \qquad (3.33)$$

is continuous in $\overline{\Omega}$. Since

$$-\mathbb{G}[\mu^{-}] \le -u_{n}^{-} \le 0 \le u_{n}^{+} \le \mathbb{G}[\mu^{+}]$$
(3.34)

by the maximum principle, the sequence $\{u_n\}$ is uniformly bounded. Recalling that g is nondecreasing we have that the sequence $\{g(u_n)\}$ is also uniformly bounded in Ω , hence $g(u_n)\sigma_n$ is bounded in $\mathcal{M}_{\frac{N}{N-\theta}}(\Omega)$ independently of n, and from (2.9) it follows that u_n is bounded in $C^{\alpha}(\overline{\Omega})$ for some $\alpha \in (0,1]$ independently of n. Up to some subsequence, $\{u_n\}$, and thus also $\{g(u_n)\}$, are then uniformly convergent in $\overline{\Omega}$ with limit $u = u_{\mu}$ and $g(u) = g(u_{\mu})$. Because $\sigma * \eta_n$ converges to σ in the narrow topology, u_{μ} is a very weak solution of (1.2). Notice that being continuous, g(u) is measurable for the measure σ . By Lemma 3.5, u_{μ} is the unique solution of (1.2), hence the whole sequence $\{u_{\mu_n}\}$ converges to u_{μ} . Applying Corollary 3.8 with w = u, $\tilde{\sigma} = \sigma$ and $\zeta = \eta_1$ yields

$$\int_{\Omega} |u| \, dx + \int_{\Omega} |g(u)| \, \eta_1 d\sigma \le \int_{\Omega} |\mu| \, \eta_1 dx, \tag{3.35}$$

and (3.29) with $\zeta = \eta_1$ gives

$$\int_{\Omega} (u - u')_{+} dx + \int_{\Omega} (g(u) - g(u'))_{+} \eta_{1} d\sigma \leq \int_{\Omega} \eta_{1} sign_{+} (u - u')(\mu - \mu')_{+} dx.$$
(3.36)

which implies the monotonicity of the mapping $\mu \mapsto u_{\mu}$.

Step 2: We assume that $\mu \in L^1(\Omega)$ is bounded from below. Set $\ell = \text{ess inf } \mu$. For k > 0 set $\mu_k = \min\{k, \mu\}$ and $u_k := u_{\mu_k} \in L^{\infty}(\Omega)$. The sequence $\{\mu_k\}$ is nondecreasing, hence according to Step 1, the sequence $\{u_k\}$ is a nondecreasing sequence of continuous functions in $\overline{\Omega}$ bounded from below by $\ell\eta_1$, where η_1 is defined in (3.32). Its pointwise limit, denoted by u, is thus lower semicontinuous. Moreover $g(u_k) \to g(u)$ pointwise, hence g(u) is lower semicontinuous and thus σ -measurable. Relation (3.35) applied to μ_k and u_k gives

$$\int_{\Omega} |u_k| \, dx + \int_{\Omega} |g(u_k)| \, \eta_1 d\sigma \le \int_{\Omega} |\mu_k| \, \eta_1 dx.$$

Passing to the limit using Fatou's lemma in the left-hand side and the dominated convergence theorem in the right-hand side yields

$$\int_{\Omega} |u| \, dx + \int_{\Omega} |g(u)| \, \eta_1 d\sigma \le \int_{\Omega} |\mu| \, \eta_1 dx. \tag{3.37}$$

We deduce that $u \in L^1(\Omega)$ and $\rho g(u) \in L^1_{\sigma}(\Omega)$. We have indeed a more precise result. Since g vanishes at $0 \ g(u_k) = g(u_k^+) + g(-u_k^-)$. Hence $\rho g(u_k^+) \to \rho g(u^+)$ in $L^1_{\sigma}(\Omega)$ by the monotone convergence theorem. Furthermore $g(-u_1^-) \leq g(-u_k^-) \leq 0$, which implies that $\rho g(-u_k^-) \to \rho g(-u^-)$ in $L^1_{\sigma}(\Omega)$ by the dominated convergence theorem which finally implies that $\rho g(u_k) \to \rho g(u)$ in $L^1_{\sigma}(\Omega)$. Using $\zeta \in \mathbb{X}_+(\Omega)$ as a test function in the very weak formulation of the equation satisfied by u_k gives

$$-\int_{\Omega} u_k \Delta \zeta dx + \int_{\Omega} g(u_k) \zeta d\sigma = \int_{\Omega} \zeta \mu_k dx.$$

Since $u_k \to u$ almost everywhere and $-l\eta_1 \leq u_k \leq u$ with $u \in L^1(\Omega)$, we can pass to the limit in the first term to obtain $\int_{\Omega} u_k \Delta \zeta dx \to \int_{\Omega} u \Delta \zeta dx$. Because $|\mu_k| \leq |\mu| \in L^1(\Omega)$ and $\mu_k \to \mu$ almost everywhere, we can also pass to the limit in the last term: $\int_{\Omega} \zeta \mu_k dx \to \int_{\Omega} \zeta \mu dx$. It remains to pass to the limit in the nonlinearity. Because $u_k \uparrow u$ and g is nondecreasing, we have $g(u_k) \uparrow g(u)$. Thus by the monotone convergence theorem,

$$-\int_{\Omega} u\Delta\zeta dx + \int_{\Omega} g(u)\zeta d\sigma = \int_{\Omega} \zeta \mu dx,$$

and u is very weak solution of (1.2).

Step 3: We assume that $\mu \in L^1(\Omega)$. For $\ell \in \mathbb{R}$, we set $\mu^{\ell} = \sup\{\mu, \ell\}$ and denote by u^{ℓ} the solution of (1.2) with right-hand side μ^{ℓ} . Note that the sequence $\{\mu^{\ell}\}_{\ell}$ is increasing, bounded from above by μ^+ so that $u^{\ell} \leq u_{\mu^+}$, where u_{μ^+} is the solution of (1.2) with right-hand side μ^+ which exists according to the previous step, and the sequence $\{u^{\ell}\}_{\ell}$ is monotone nondecreasing with ℓ with pointwise limit u when $\ell \to -\infty$. Hence $u \leq u^{\ell} \leq u_{\mu^+}$ for any $\ell \leq 0$. The sequence $\{g(u^{\ell})\}_{\ell}$ is monotone nondecreasing with limit g(u) when $\ell \to -\infty$, and there holds $g(u) \leq g(u^{\ell}) \leq g(u_{\mu^+})$ for any $\ell \leq 0$. Since $g(u^{\ell})$ is lower semicontinuous and σ -measurable, g(u) shares the same properties.

Applying (3.37) to $\mu = \mu^{\ell}$ and $u = u^{\ell}$ gives

$$\int_{\Omega} \left| u^{\ell} \right| dx + \int_{\Omega} \left| g(u^{\ell}) \right| \eta_1 d\sigma \le \int_{\Omega} \left| \mu^{\ell} \right| \eta_1 dx.$$

Passing to the limit in the left-hand side using Fatou's lemma we obtain

$$\int_{\Omega} |u| \, dx + \int_{\Omega} |g(u)| \, \eta_1 d\sigma \le \int_{\Omega} |\mu| \, \eta_1 dx.$$

We deduce that $u \in L^1(\Omega)$ and $\rho g(u) \in L^1_{\sigma}(\Omega)$. We conclude as in Step 2 that u is solution of (1.2).

Step 4: Proof of (3.17) and (3.18).

For $\ell < 0 < k$ we set $\mu_k^{\ell} = \sup\{\ell, \inf\{k, \mu\}\}$ and $(\mu')_k^{\ell} = \sup\{\ell, \inf\{k, \mu'\}\}$, and denote by u_k^{ℓ} and $(u')_k^{\ell}$ the solution of (1.2) with right-hand side μ_k^{ℓ} and $(\mu')_k^{\ell}$. Then, by Corollary 3.8, for any $\zeta \in \mathbb{X}(\Omega)$ there holds

$$-\int_{\Omega} \left| u_k^{\ell} - (u')_k^{\ell} \right| \Delta \zeta dx + \int_{\Omega} \left| g(u_k^{\ell}) - g((u')_k^{\ell}) \right| \zeta d\sigma \le \int_{\Omega} \operatorname{sign}_0(u_k^{\ell} - (u')_k^{\ell}) (\mu_k^{\ell} - (\mu')_k^{\ell}) \zeta dx$$

Using the previous convergence theorem when $k \to \infty$ and then $\ell \to -\infty$, we derive (3.17). The proof of (3.18) is similar.

Remark. If it is not assumed that g is nondecreasing, the above proof by monotonicity does not work. However the existence will follow from Theorem B if it is assumed that the extra assumptions in this theorem are satisfied: $\theta > N - q$ for some $q \in (1, \frac{N}{N-1})$ and the growth assumptions of Theorem B.

3.3 Diffuse case

We recall that a measure μ is said to be diffuse with respect to the $c_{s,p}$ -capacity defined in (1.18) if $|\mu|$ vanishes on all sets with zero $c_{s,p}$ -capacity. An important result due to Feyel and de la Pradelle [13] is the following:

Proposition 3.9 Let $\alpha > 0$ and $1 . If <math>\lambda \in \mathfrak{M}_b^+(\Omega)$ does not charge sets with zero $c_{\alpha,p}$ -capacity, there exists an increasing sequence $\{\lambda_n\} \subset H^{-\alpha,p'}(\Omega) \cap \mathfrak{M}_b^+(\Omega)$, λ_n with compact support in Ω , which converges to λ .

Proposition 3.10 Assume $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}$ with $N \geq \theta > N-2$, and that $g : \mathbb{R} \mapsto \mathbb{R}$ is a continuous nondecreasing function vanishing at 0. Then for any $\mu \in \mathfrak{M}^+_b(\Omega)$ diffuse with respect to the $c_{1,2}$ -capacity there exists a unique very weak solution u to (1.2).

Proof. According to Proposition 3.9, there exists an increasing sequence of nonnegative measures $\{\mu_n\}$ belonging to $W^{-1,2}(\Omega)$ and converging to μ and by Proposition 3.1, $\{u_{\mu_n}\}$ is a nondecreasing sequence of weak solutions of (1.2) with $\mu = \mu_n$. We claim that $u_{\mu_n} \uparrow u_{\mu}$ which is a very weak solution of (1.2). There holds,

$$\int_{\Omega} u_{\mu_n} dx + \int_{\Omega} g(u_{\mu_n}) \eta_1 d\sigma = \int_{\Omega} \eta_1 d\mu_n \le \int_{\Omega} \eta_1 d\mu,$$

where η_1 is defined in (3.32). Since $u_{\mu_n} \ge 0$, $u_{\mu_n} \uparrow u$ and $g(u_{\mu_n}) \uparrow g(u)$. Since u_{μ_n} is σ -measurable by Proposition 3.1, u is also σ -measurable. Hence g(u) shares this measurability property since g is continuous. Hence, by the monotone convergence theorem

$$\int_{\Omega} u dx + \int_{\Omega} g(u) \eta_1 d\sigma = \int_{\Omega} \eta_1 d\mu.$$
(3.38)

Furthermore $u_{\mu_n} \to u$ in $L^1(\Omega)$. Indeed it suffices to show that $\{u_{\mu_n}\}$ is uniformly equiintegrable which follows from $0 \leq \int_{\omega} u_{\mu_n} dx \leq \int_{\omega} u dx$ and the fact that $u \in L^1(\Omega)$. We show in the same way that $\rho g(u_{\mu_n}) \to \rho g(u)$ in $L^1_{\sigma}(\Omega)$. This implies that $u = u_{\mu}$ is the very weak solution of (1.2).

3.4 Subcritical nonlinearities: proof of Theorem B.

Lemma 3.11 Assume N > 2 and $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}(\Omega)$ with $N \ge \theta > N-2$. If $\mu \in \mathfrak{M}_b(\Omega)$ and $\lambda \ge 0$, we set $E_{\lambda}[\mu] := \{x \in \Omega : \mathbb{G}[|\mu|](x) > \lambda\}$. Then

$$e_{\lambda}^{\sigma}(\mu) := \int_{E_{\lambda}[\mu]} d\sigma \le c \, \|\mu\|_{\mathfrak{M}_{b}}^{\frac{\theta}{N-2}} \,\lambda^{-\frac{\theta}{N-2}} \qquad \text{for all } \lambda > 0. \tag{3.39}$$

Proof. It suffices to prove the result if $\mu \geq 0$. Indeed since $\mathbb{G}[|\mu|] = \mathbb{G}[\mu^+] + \mathbb{G}[\mu^-]$, we have $E_{\lambda}[\mu] \subset E_{\lambda/2}[\mu^+] \cup E_{\lambda/2}[\mu^-]$ and thus $e^{\sigma}_{\lambda}(\mu) \leq e^{\sigma}_{\lambda/2}(\mu^+) + e^{\sigma}_{\lambda/2}(\mu^+)$. If the result holds for nonnegative measure, in particular for μ^{\pm} , then

$$\begin{split} \lambda^{\frac{\theta}{N-2}} e^{\sigma}_{\lambda}(\mu) &\leq c(\mu^+(\Omega)^{\frac{\theta}{N-2}} + \mu^-(\Omega)^{\frac{\theta}{N-2}}) \leq c(\mu^+(\Omega) + \mu^-(\Omega))^{\frac{\theta}{N-2}} \\ &= c \left\|\mu\right\|_{\mathfrak{M}_b}^{\frac{\theta}{N-2}}. \end{split}$$

Thus, we assume from now on that μ is nonnegative.

If $\mu = \delta_a$ for some $a \in \Omega$, then $\mathbb{G}[\delta_a](x) \leq c_N |x-a|^{2-N}$ so that $E_{\lambda}[\delta_a] \subset B_{(\frac{c_N}{\lambda})^{\frac{1}{N-2}}}(a)$. Since $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}(\Omega)$ it follows that

$$e_{\lambda}^{\sigma}(\delta_a) \le c\lambda^{-\frac{\theta}{N-2}}.$$
 (3.40)

Let $E \subset \Omega$ be a Borel set. For any given t > 0 there holds

$$\int_{E} \mathbb{G}[\delta_{a}] d\sigma = \int_{E \cap E_{t}[\delta_{a}]} \mathbb{G}[\delta_{a}] d\sigma + \int_{E \cap E_{t}^{c}[\delta_{a}]} \mathbb{G}[\delta_{a}] d\sigma.$$
Clearly $\int_{E \cap E_{t}^{c}[\delta_{a}]} \mathbb{G}[\delta_{a}] d\sigma \leq t\sigma(E)$ and
$$\int_{E \cap E_{t}^{c}[\delta_{a}]} \mathbb{G}[\delta_{a}] d\sigma \leq t\sigma(E) \text{ and } \theta t^{1-\overline{N}}$$

$$\int_{E\cap E_t[\delta_a]} \mathbb{G}[\delta_a] d\sigma \le \int_{E_t[\delta_a]} \mathbb{G}[\delta_a] d\sigma \le -\int_t^\infty s \, de_s^\sigma(\delta_a) \le c \frac{\theta t^{1-\frac{\theta}{N-2}}}{\theta+2-N},$$

where the last inequality follows by integration by parts and the help of (3.40). Then

$$\int_E \mathbb{G}[\delta_a] d\sigma \le t\sigma(E) + c \frac{\theta t^{1-\frac{\theta}{N-2}}}{\theta + 2 - N}.$$

Minimizing the right-hand side with respect to t, we infer

$$\int_{E} \mathbb{G}[\delta_{a}] d\sigma \le c\sigma(E)^{1-\frac{N-2}{\theta}}.$$
(3.41)

We first suppose that $\mu = \sum_{j=1}^{\infty} \alpha_j \delta_{a_j}$ for some $\alpha_j > 0$ and $a_j \in \Omega$. In particular $\sum_{j=1}^{\infty} \alpha_j = \|\mu\|_{\mathfrak{M}^b}$. Using Fubini's theorem and (3.41) we see that for any Borel set $E \subset \Omega$,

$$\int_{E} \mathbb{G}[\mu](x) d\sigma(x) = \sum_{j=1}^{\infty} \alpha_j \int_{E} \mathbb{G}[\delta_{a_j}(x)] d\sigma(x) \le c\sigma(E)^{1-\frac{N-2}{\theta}} \|\mu\|_{\mathfrak{M}^b}.$$
 (3.42)

Taking in particular $E = E_{\lambda}[\mu]$ we obtain

$$\lambda e^{\sigma}_{\lambda}(\mu) \leq \int_{E_{\lambda}[\mu]} \mathbb{G}[\mu](x) d\sigma(x) \leq c (e^{\sigma}_{\lambda}(\mu))^{1 - \frac{N-2}{\theta}} \|\mu\|_{\mathfrak{M}^{b}},$$

which implies the claim. Notice that the constant c in the right-hand side depends only on N and $\|\sigma\|_{\mathcal{M}_{\frac{N}{N-\alpha}}}$.

For a general nonnegative measure $\mu \in \mathfrak{M}_b(\Omega)$, we consider a sequence of nonnegative measures $\{\mu_n\} \subset \mathfrak{M}_b(\Omega)$ where each μ_n is a sum of Dirac masses as before and such that $\mu_n \to \mu$ weakly as $n \to \infty$. Then we have

$$e_{\lambda}^{\sigma}(\mu_n) := \int_{E_{\lambda}[\mu_n]} d\sigma \le c \|\mu_n\|_{\mathfrak{M}_b}^{\frac{\theta}{N-2}} \lambda^{-\frac{\theta}{N-2}}$$

with $\|\mu\|_{\mathfrak{M}_b} \leq \liminf_{n \to \infty} \|\mu_n\|_{\mathfrak{M}_b}$. We thus need to prove that

$$\liminf \int_{E_{\lambda}[\mu_n]} d\sigma \ge \int_{E_{\lambda}[\mu]} d\sigma.$$
(3.43)

We first observe that for any t > 0 and $x \in \Omega$ the set $\{y \in \Omega : \mathbb{G}(x, y) > t\}$ is open (with $\mathbb{G}(x, x) = +\infty$). It follows from [7][Thm 2.1] that $\liminf_{n \to \infty} \mu_n(\{\mathbb{G}(x, \cdot) > t\}) \ge \mu(\{\mathbb{G}(x, \cdot) > t\})$. We can take the limit using Fatou's lemma in

$$\int_{\Omega} \mathbb{G}(x,y) \, d\mu_n(y) = \int_0^{+\infty} \mu_n(\{\mathbb{G}(x,\cdot) > t\}) \, dt,$$

to derive

$$\liminf_{n \to \infty} \mathbb{G}[\mu_n](x) \ge \int_0^{+\infty} \mu(\{G(x, \cdot) > t\}) \, dt = \int_\Omega G(x, y) \, d\mu(y) = \mathbb{G}[\mu](x).$$

We infer that for any $x \in \Omega$ such that $\chi_{E_{\lambda}(\mu)}(x) = 1$ we have $\liminf_{n \to \infty} \mathbb{G}[\mu_n](x) > \lambda$, hence $\mathbb{G}[\mu_n](x) > \lambda$ for *n* large enough. Thus $\chi_{E_{\lambda}(\mu_n)}(x) = 1$ eventually, and then

$$\liminf_{n \to \infty} \chi_{E_{\lambda}[\mu_n]}(x) \ge \chi_{E_{\lambda}[\mu]}(x) \quad \text{for all } x \in \Omega.$$

The claim (3.43) follows by Fatou's lemma.

We are now in position to prove Theorem B.

Proof of Theorem B. We note that if g is nondecreasing, uniqueness follows from estimate Lemma 3.5. Let $\{\eta_n\}$ be a sequence of mollifiers, $\mu_n = \mu * \eta_n$ and $u_n \in W_0^{1,2}(\Omega)$ a minimizing weak solution of

$$-\Delta u_n + g(u_n)\sigma = \mu_n \qquad \text{in } \Omega, \\ u_n = 0 \qquad \text{in } \partial\Omega, \qquad (3.44)$$

given by Proposition 3.1. We write $g(r) = g_1(r) + g_2(r)$ with $g_1 = g\chi_{(-r_0,r_0)}$, $g_2 = g\chi_{(-\infty-r_0]\cup[r_0,\infty)}$, and set $m = \sup\{g(r) : -r_0 \le r \le r_0\} \ge 0$ and $m' = \inf\{g(r): -r_0 \le r \le r_0\} \le 0$. Then

$$-\mathbb{G}[\mu_n^-] - m\mathbb{G}[\sigma] \le u_n \le \mathbb{G}[\mu_n^+] - m'\mathbb{G}[\sigma].$$

Since $\sigma \in \mathcal{M}_p^+(\Omega)$ for some p > N/2, $\mathbb{G}[\sigma] \in C^{0,\alpha}(\overline{\Omega})$ by Lemma 2.2. Moreover $\mathbb{G}[|\mu_n|] \in C(\overline{\Omega})$ since $|\mu_n| \in C(\overline{\Omega})$. It follows that

$$|u_n| \le \mathbb{G}[|\mu_n|] + M \le c_n, \tag{3.45}$$

where $M, c_n \geq 0$.

Since $u_n \in W_0^{1,2}(\Omega)$, its precise representative (that we identify with u_n) is defined $c_{1,2}$ -quasi-everywhere, is $c_{1,2}$ -continuous and

$$u_n(x) = \lim_{r \to 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} u_n(y) \, dy$$

for any $y \in \Omega \setminus E_n$ with $c_{1,2}(E_n) = 0$ (see [2]). It follows that $|u_n| \leq c_n$ in $E := \cup E_n$. Note that $c_{1,2}(E) = 0$ so that $\sigma(E) = 0$ by Lemma 3.3. Hence $|u_n| \leq c_n \sigma$ -almost everywhere, $g(u_n) \in L^{\infty}_{\sigma}(\Omega)$, and therefore $g(u_n)\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}(\Omega)$. We can then apply

Corollary 3.8 to obtain, for any $\zeta \in \mathbb{X}_+(\Omega)$, that

$$-\int_{\Omega} |u|_n \,\Delta\zeta dx + \int_{\Omega} sign_0(u_n)g(u_n)\zeta d\sigma \le \int_{\Omega} sign_0(u_n)\zeta\mu_n dx,$$

which implies

$$-\int_{\Omega} |u|_n \Delta \zeta dx + \int_{\Omega} |g_2(u_n)| \zeta d\sigma \le \int_{\Omega} sign_0(u_n) \zeta \mu_n dx + c \int_{\Omega} \zeta d\sigma.$$
(3.46)

We take $\zeta = \eta_1$ and obtain

$$\int_{\Omega} |u_n| \, dx + \int_{\Omega} |g_2(u_n)| \, \eta_1 d\sigma \le \int_{\Omega} |\mu_n| \, \eta_1 dx + c$$

$$\le \int_{\Omega} \eta_1 d \, |\mu| + c = c',$$
(3.47)

so that $\{u_n\}$ is bounded in $L^1(\Omega)$. We also have from Corollary 3.8 that

$$\int_{\Omega} sign_0(u_n)g(u_n)d\sigma \le C \int_{\Omega} |\mu_n| \rho dx$$

and so

$$\int_{\Omega} |g_2(u_n)| d\sigma \le C \int_{\Omega} |\mu_n| dx + \int_{\Omega} |g_1(u_n)| d\sigma \le C$$
(3.48)

with C independent of n. We deduce that the sequence of measures $\{g(u_n)\}$ is bounded.

By the standard regularity estimates, the sequence $\{u_n\}$ is bounded in $W^{1,q}(\Omega)$, $q < \frac{N}{N-1}$. Then there exists $u \in W^{1,q}(\Omega)$, $q < \frac{N}{N-1}$, such that, up to a subsequence, $u_n \to u$ in $L^1(\Omega)$ and also pointwise in $\Omega \setminus E$ where $c_{1,q}(E) = 0$. We fix $q \in \left(1, \frac{N}{N-1}\right)$ such that $\theta > N-q$. In view of Lemma 3.3, $\sigma(E) = 0$ so that $g(u_n) \to g(u)$ σ -almost everywhere. Applying Fatou's lemma in (3.48) gives that $g(u) \in L^1_{\sigma}(\Omega)$.

In order to prove the uniform integrability of $\{g(u_n)\}$ for the measure σ we can assume that $|g_2| \leq \tilde{g}$ with a function satisfying (1.8) still denoted by \tilde{g} and let $E \subset \Omega$ be a Borel set. Then

$$\begin{split} \int_E |g_2(u_n)| \, d\sigma &\leq \int_{E \cap \{|u_n| \leq t\}} |g_2(u_n)| \, d\sigma + \int_{E \cap \{|u_n| > t\}} |g_2(u_n)| \, d\sigma \\ &\leq \tilde{g}(t) \int_E d\sigma + \int_{\{|u_n| > t\}} \tilde{g}(|u_n|) d\sigma. \end{split}$$

Then we estimate the second integral in the right-hand side: for $\lambda > M$ we set

$$S_n(\lambda) = \{x \in \Omega : |u_n(x)| > \lambda\}$$
 and $b_n^{\sigma}(\lambda) = \int_{S_n(\lambda)} d\sigma$

In view of (3.45) we have $|u_n| \leq \mathbb{G}(|\mu_n|) + M$ so that $S_n(\lambda) \subset E_{\lambda-M}[\mu_n]$. Hence $b_n^{\sigma}(\lambda) \leq e_{\lambda-M}^{\sigma}(|\mu_n|)$. This implies

$$\begin{split} \int_{\{|u_n|>t\}} \tilde{g}(|u_n|) d\sigma &= -\int_t^\infty \tilde{g}(\lambda) db_n^\sigma(\lambda) \\ &\leq \int_t^\infty b_n^\sigma(\lambda) d\tilde{g}(\lambda) \\ &\leq \int_t^\infty e_{\lambda-M}^\sigma(|\mu_n|) d\tilde{g}(\lambda) \end{split}$$

Using (3.39) we obtain

$$\int_{\{|u_n|>t\}} \tilde{g}(|u_n|) d\sigma \leq c \, \|\mu\|_{\mathfrak{M}^b}^{\frac{\theta}{N-2}} \int_t^\infty (\lambda - M)^{-\frac{\theta}{N-2}} d\tilde{g}(\lambda)$$
$$\leq \frac{c\theta}{N-2} \int_t^\infty (\lambda - M)^{-\frac{\theta}{N-2}-1} \tilde{g}(\lambda) d\lambda.$$

In view of assumption (1.8), given $\epsilon > 0$ we fix t > M such that

$$\frac{c\theta}{N-2} \int_t^\infty (\lambda-M)^{-\frac{\theta}{N-2}-1} \tilde{g}(\lambda) d\lambda \leq \frac{\varepsilon}{2}$$

Then, setting $\delta = \frac{\epsilon}{2\tilde{g}(t)}$, we deduce

$$\int_E d\sigma \le \delta \Longrightarrow \int_E |g_2(u_n)| \, d\sigma \le \varepsilon.$$

Since g_1 is bounded, this implies that $\{g(u_n)\}$ is uniformly integrable in $L^1_{\sigma}(\Omega)$. Since we already know that $g(u_n) \to g(u)$ σ -almost everywhere, it follows by Vitali's convergence theorem that $g(u_n) \to g(u)$ in $L^1_{\sigma}(\Omega)$. Taking $\zeta \in \mathbb{X}(\Omega)$ and letting $n \to \infty$ in the equality

$$-\int_{\Omega} u_n \Delta \zeta dx + \int_{\Omega} g(u_n) \zeta d\sigma = \int_{\Omega} \zeta d\mu_n$$

yields the result.

4 The 2-D case

In this section Ω is a bounded C^2 planar domain. The next result is the 2-D version of Lemma 3.11.

Lemma 4.1 Assume N = 2 and $\sigma \in \mathcal{M}^+_{\frac{2}{2-\theta}}(\Omega)$ with $2 \ge \theta > 0$. If $\mu \in \mathfrak{M}^b(\Omega)$ and $\lambda \ge 0$, we set $E_{\lambda}[\mu] := \{x \in \Omega : \mathbb{G}[|\mu|](x) > \lambda\}$. Then

$$e_{\lambda}^{\sigma}(\mu) := \int_{E_{\lambda}[\mu]} d\sigma \le |\Omega|_{\sigma} e^{1 - \frac{\lambda}{\gamma \|\mu\|_{\mathfrak{M}^{b}}}} \qquad for \ all \ \lambda > 0, \tag{4.1}$$

for some $\gamma = \gamma(\theta, \operatorname{diam}(\Omega)) > 0$

Proof. If $\mu = \delta_a$ for some $a \in \Omega$, one has $0 \leq \mathbb{G}[\delta_a](x) \leq \frac{1}{2\pi} \ln\left(\frac{d_\Omega}{|x-a|}\right)$ where $d_\Omega = \operatorname{diam}(\Omega)$. Hence

$$E_{\lambda}[\delta_a] \subset B_{d_{\Omega}e^{-2\pi\lambda}} \Longrightarrow e^{\sigma}_{\lambda}(\delta_a) = \int_{E_{\lambda}[\delta_a]} d\sigma \le cd^{\theta}_{\Omega}e^{-2\theta\pi\lambda}$$

Let $E \subset \Omega$ be a Borel set, $\int_E d\sigma = |E|_{\sigma}$ and t > 0, then, as in Lemma 3.11,

$$\begin{split} \int_{E} \mathbb{G}[\delta_{a}] d\sigma &\leq t \int_{E} d\sigma - \int_{t}^{\infty} s de_{s}^{\sigma}(\delta_{a}) \\ &\leq t \left| E \right|_{\sigma} + c d_{\Omega}^{\theta} \left(t + \frac{1}{2\pi\theta} \right) e^{-2\theta\pi t}. \end{split}$$

If we choose $e^{-2\theta\pi t} = \frac{|E|_{\sigma}}{|\Omega|_{\sigma}}$ we infer

$$\int_{E} \mathbb{G}[\delta_{a}] d\sigma \leq \gamma |E|_{\sigma} \left(\ln \left(\frac{|\Omega|_{\sigma}}{|E|_{\sigma}} \right) + 1 \right).$$
(4.2)

For proving (3.39) we can assume that $\mu \ge 0$. Then there exists $\alpha_j > 0$ and $a_j \in \Omega$ such that

$$\mu = \sum_{j=1}^{\infty} \alpha_j \delta_{a_j} \Longrightarrow \sum_{j=1}^{\infty} \alpha_j = \|\mu\|_{\mathfrak{M}^b}.$$

Hence, for any Borel set $E \subset \Omega$,

$$\int_{E} \mathbb{G}[\mu](x) d\sigma(x) = \sum_{j=1}^{\infty} \alpha_j \int_{E} \mathbb{G}[\delta_{a_j}(x)] d\sigma(x) \le \gamma |E|_{\sigma} \left(\ln \left(\frac{|\Omega|_{\sigma}}{|E|_{\sigma}} \right) + 1 \right) \|\mu\|_{\mathfrak{M}^b}.$$
(4.3)

If $E = E_{\lambda}[\mu]$ we infer

$$\lambda e^{\sigma}_{\lambda}(\mu) \leq \gamma e^{\sigma}_{\lambda}(\mu) \left(\ln \left(\frac{|\Omega|_{\sigma}}{e^{\sigma}_{\lambda}(\mu)} \right) + 1 \right) \|\mu\|_{\mathfrak{M}^{b}} \,,$$

which implies the claim.

Theorem 4.2 Assume N = 2, $\sigma \in \mathcal{M}^+_{\frac{2}{2-\theta}}(\Omega)$ with $2 \ge \theta > 0$ and $g : \mathbb{R} \to \mathbb{R}$ a continuous function satisfying (1.1). If $a_{\infty}(g) = a_{-\infty}(g) = 0$, for any $\mu \in \mathfrak{M}_b(\Omega)$ problem (1.2) admits a very weak solution.

Proof. Let g^* be the monotone nondecreasing hull of g defined by (1.11). If $m = \sup\{g(r) : -r_0 \leq r \leq r_0\}$ and $m' = \inf\{g(r) : -r_0 \leq r \leq r_0\}$ then $g \leq g^* + m$ on \mathbb{R}_+ and $g^* + m' \leq g$ on \mathbb{R}_- . If $\{\eta_n\}$ is a sequence of mollifiers and $\mu = \mu^+ - \mu^-$, we set $\mu_n^+ = \mu^+ * \eta_n$, $\mu_n^- = \mu_- * \eta_n$, $\mu_n = \mu_n^+ = -\mu_n^-$ and denote by u_n the very weak solution of $-\Delta u_n + g(u_n)\sigma = \mu_n$ in Ω

$$\Delta u_n + g(u_n)\sigma = \mu_n \qquad \text{in } \Omega u_n = 0 \qquad \text{on } \partial\Omega.$$
(4.4)

Since $\|\mu_n\|_{L^1} \leq \|\mu\|_{\mathfrak{M}_b}$, there holds by Proposition 3.2,

$$\|u_n\|_{L^1} + \|\rho g(u_n)\|_{L^1_{\sigma}} \le c \,\|\mu\|_{\mathfrak{M}_b} + M,\tag{4.5}$$

and by Lemma 2.1,

$$\|u_n\|_{BMO} + \|\nabla u_n\|_{L^{2,\infty}} \le c \left(\|\mu\|_{\mathfrak{M}_b} + \|\rho g(u_n)\|_{L^1_{\sigma}}\right) \le c' \|\mu\|_{\mathfrak{M}_b}.$$
(4.6)

Again, there exists a set E with $c_{1,q}(E) = 0$ for any $q \leq 2-\theta$ such that $u_n(x) \to u(x)$ for all $x \in \Omega \setminus E$, hence $u_n(x) \to u(x)$ and $g(u_n(x)) \to g(u(x)) \, d\sigma$ -almost everywhere

in Ω . This implies that g(u) is σ -measurable. In order to conclude we have to prove that $g(u_n) \to g(u)$ in $L^1_{\sigma}(\Omega)$. Estimate (4.1) is valid, hence, for any t > 0,

$$\tau_n(t) = \int_{\{|u_n(x)| > t\}} d\sigma \le e_{t-M}^{\sigma}[\mu_n^+] + e_{t-M'}^{\sigma}[\mu_n^-] \le c e^{-\frac{t}{\gamma \|\|\mu\|_{\mathfrak{M}}}},$$

by Lemma 4.1. Since

$$|g(u_n)| \le (g_+^*(u_n) - g_-^*(u_n)) + m - m',$$

we have that

$$\int_{E} |g(u_{n})| \, d\sigma \leq \int_{E} g_{+}^{*}(u_{n}) \, d\sigma - \int_{E} g_{-}^{*}(u_{n}) \, d\sigma + (m - m') \, |E|_{\sigma}$$

$$\leq -\int_{t}^{\infty} g_{+}^{*}(s) d \, |\{u_{n} > s\}|_{\sigma} + \int_{-\infty}^{-t} g_{-}^{*}(s) d \, |\{u_{n} < s\}|_{\sigma} + (m - m') \, |E|_{\sigma}$$

$$\leq -\int_{t}^{\infty} \left(g_{+}^{*}(s) - g_{-}^{*}(-s)\right) d\tau_{n}(s) + \left(g_{+}^{*}(t) - g_{-}^{*}(-t) + m - m'\right) \, |E|_{\sigma} \, .$$

By integration by parts,

$$-\int_{t}^{\infty} \left(g_{+}^{*}(s) - g_{-}^{*}(-s)\right) d\tau_{n}(s) = \left(g_{+}^{*}(t) - g_{-}^{*}(-t)\right) \tau_{n}(t) + \int_{t}^{\infty} \tau_{n}(s) d\left(g_{+}^{*}(s) - g_{-}^{*}(-s)\right) \\ \leq \left(g_{+}^{*}(t) - g_{-}^{*}(-t)\right) \left(\tau_{n}(t) - ce^{-\frac{t}{\gamma \|\mu\|_{\mathfrak{M}^{b}}}}\right) \\ + \frac{c}{\gamma \|\mu\|_{\mathfrak{M}^{b}}} \int_{t}^{\infty} e^{-\frac{s}{\gamma \|\mu\|_{\mathfrak{M}^{b}}}} \left(g_{+}^{*}(s) - g_{-}^{*}(-s)\right) ds \\ \leq \frac{c}{\gamma \|\mu\|_{\mathfrak{M}^{b}}} \int_{t}^{\infty} e^{-\frac{s}{\gamma \|\mu\|_{\mathfrak{M}^{b}}}} \left(g_{+}^{*}(s) - g_{-}^{*}(-s)\right) ds.$$

$$(4.7)$$

By assumption the integral on the right-hand side is convergent. We end the proof as in Theorem B, first by fixing t large enough and then $|E|_{\sigma}$ small enough, and we derive the uniform integrability of $\{g(u_n)\}$.

A similar result holds when g has nonzero order of growth at infinity.

Theorem 4.3 Assume N = 2, $\sigma \in \mathcal{M}^+_{\frac{2}{2-\theta}}(\Omega)$ with $2 \ge \theta > 0$ and $g : \mathbb{R} \to \mathbb{R}$ a continuous function satisfying (1.1). If $0 < a_{\infty}(g) < \infty$ and $-\infty < a_{-\infty}(g) < 0$, there exists $\delta > 0$ such that for any $\mu \in \mathfrak{M}_b(\Omega)$ satisfying $\|\mu\|_{\mathfrak{M}_b} \le \delta$ problem (1.2) admits a very weak solution.

Proof. The proof is a straightforward adaptation of the previous one. The choice of δ is such that

$$\|\mu\|_{\mathfrak{M}_{b}} \leq \delta < \frac{1}{\gamma} \sup\left\{\frac{1}{a_{\infty}(g)}, -\frac{1}{a_{-\infty}(g)}\right\}$$
(4.8)
lows from (4.7).

and the conclusion follows from (4.7).

5 The supercritical case

5.1 Proof of Theorem D

Proof of assertion I. For k > 0 set $g_k(r) = \max\{g(-k), \min\{g(k), g(r)\}\}$ and denote by u_k the very weak solution of

$$-\Delta u + g_k(u)\sigma = \mu \qquad \text{in } \Omega u = 0 \qquad \text{on } \partial\Omega,$$
(5.1)

which exists by Theorem B. It follows from the proof of Theorem B (see (3.48) with $g = g_2$ and $g_1 = 0$) that

$$\int_{\Omega} |g_k(u_k)| d\sigma \le C,\tag{5.2}$$

where the constant C depends only on Ω and $|\mu|(\Omega)$. Thus the sequence of measures $\{g_k(u_k)\sigma\}$ is bounded. This implies that $\{u_k\}$ is bounded in $W^{1,q}(\Omega), q < \frac{N}{N-1}$, and thus that, up to a subsequence, it converges in $L^1(\Omega)$ to some $u \in W^{1,q}(\Omega)$, $q < \frac{N}{N-1}$. We can also assume that the convergence holds pointwise except on a set E with zero $c_{1,q}$ -capacity, which in turn is σ -negligible by Lemma 3.3 if we fix $q \in \left(1, \frac{N}{N-1}\right)$ such that $\theta > N - q$. We also have that u is finite but on a set with zero $c_{1,q}$ -capacity hence σ -negligible, therefore

$$g_k(u_k) \to g(u)$$
 σ -almost everywhere.

Applying Fatou's lemma in (5.2) yields $g(u) \in L^1_{\sigma}(\Omega)$.

By the maximum principle

$$-\mathbb{G}[|\mu|] \le u_k \le \mathbb{G}[|\mu|],\tag{5.3}$$

hence

$$g\left(-\mathbb{G}[|\mu|]\right) \le g_k(u_k) \le g\left(\mathbb{G}[|\mu|]\right),\tag{5.4}$$

since g is nondecreasing.

Because of assumption (1.13) and in view of (5.4), we infer from Lebesgue dominated convergence that $\rho g_k(u_k) \to \rho g(u)$ in $L^1_{\sigma}(\Omega)$. Thus we can pass to the limit in weak formulation of (5.1) with any $\zeta \in \mathbb{X}(\Omega)$.

Proof of assertion II. We first notice that if g is nondecreasing, vanishes at 0 and satisfies (1.14), then the function g_k defined above also satisfies (1.14) with the same constants a and b. We assume first that $\mu = \mu_r + \mu_s$ is nonnegative and we set $\mu_r^n = \mu_r * \eta_n$ where $\{\eta_n\}$ is a sequence of mollifiers. Let u_k^n be the solution of (5.1) with right-hand side $\mu_r^n + \mu_s$ and v_k^n the one of (5.1) with right-hand side μ_r^n (in both cases existence and uniqueness follows from Theorem B). Then $0 \le u_k^n \le v_k^n + \mathbb{G}[\mu_s]$, $v_k^n \ge 0$ and $\mathbb{G}[\mu_s] \ge 0$. Since g is non-decreasing, we deduce with (1.14) that

$$0 \le g_k(u_k^n) \le g_k(v_k^n + \mathbb{G}[\mu_s]) \le a \left(g_k(v_k^n) + g_k(\mathbb{G}[\mu_s])\right) + b.$$
(5.5)

Since

$$\|v_k^n\|_{L^1} + \|\rho g_k(v_k^n)\|_{L^1_{\sigma}} \le c \, \|\mu_r^n\|_{\mathfrak{M}_b} \le c \, \|\mu\|_{\mathfrak{M}_b} \,, \tag{5.6}$$

up to subsequences, the sequences $\{v_k^n\}$ and $\{u_k^n\}$ converge in $L^1(\Omega)$ to some $v^n \in L^1(\Omega)$ and u^n such that $\nabla v^n, \nabla u^n \in L^q(\Omega)$ for any $q < \frac{N}{N-1}$ when $k \to \infty$. As in I, $\{g_k(v_k^n)\}$ and $\{g_k(u_k^n)\}$ converge in $L^1_{\sigma}(\Omega)$ to $\{g(v^n)\}$ and $\{g(u^n)\}$ respectively. Furthermore v^n and u^n satisfy

$$-\Delta v^n + g(v^n)\sigma = \mu_r^n \qquad \text{in } \Omega \\ v^n = 0 \qquad \text{on } \partial\Omega,$$
(5.7)

and

$$-\Delta u^n + g(u^n)\sigma = \mu_s + \mu_r^n \qquad \text{in } \Omega u^n = 0 \qquad \text{on } \partial\Omega,$$
(5.8)

respectively and $0 \le u^n \le v^n + \mathbb{G}[\mu_s]$. As in the proof of Proposition 3.2, $v^n \to v$ in $L^1(\Omega)$ and $\rho g(v^n) \to \rho g(v)$ in $L^1_{\sigma}(\Omega)$ as $n \to \infty$, and v is a very weak solution of

$$-\Delta v + g(v)\sigma = \mu_r \qquad \text{in } \Omega v = 0 \qquad \text{on } \partial\Omega.$$
(5.9)

As above $\{u^n\}$ converge in $L^1(\Omega)$ to some $u \in L^1(\Omega)$ (always up to some subsequence), there holds $u \leq v + \mathbb{G}[\mu_s]$ and $g(u^n) \to g(u)$ σ -almost everywhere in Ω since the uniform bound on $\|\nabla u_n\|_{L^{\frac{N}{N-1},\infty}}$ holds. Furthermore

$$0 \le g(u^n) \le a \left(g(v^n) + g(\mathbb{G}[\mu_s]) \right) + b \Longrightarrow 0 \le g(u) \le a \left(g(v) + g(\mathbb{G}[\mu_s]) \right) + b,$$
(5.10)

and since $g(v^n) \to g(v)$ in $L^1_{\sigma}(\Omega)$, the sequence $\{g(u^n)\}$ is uniformly integrable in $L^1_{\sigma}(\Omega)$. Again this implies that $g(u^n) \to g(u)$ in $L^1_{\sigma}(\Omega)$ and u is a very weak solution of (1.2). If μ is signed measure, we construct successively the solutions u^n_k , \overline{u}^n_k and \underline{u}^n_k of (5.1) with right-hand side $\mu^n_r + \mu_s$, $|\mu^n_r| + |\mu_s|$ and $-|\mu^n_r| - |\mu_s|$ respectively, and the solutions \overline{v}^n_k and \underline{v}^n_k of (5.1) with right-hand side $\mu^n_r + \mu_s$, $|\mu^n_r| + |\mu_s|$ and $-|\mu^n_r| - |\mu_s|$ respectively. Then $\underline{v}^n_k - \mathbb{G}[\mu_s] \leq u^n_k \leq \overline{v}^n_k + \mathbb{G}[\mu_s]$ which implies by (1.15)

$$a\left(g_k(\underline{v}_k^n) + g_k(-\mathbb{G}[\mu_s])\right) + b \le g_k(u_k^n) \le a\left(g_k(\overline{v}_k^n) + g_k(\mathbb{G}[\mu_s])\right) + b.$$
(5.11)

Using the same estimates as above we conclude that $\lim_{n\to\infty} \lim_{k\to\infty} u_k^n = u$ exists in $L^1(\Omega)$, that $\lim_{n\to\infty} \lim_{k\to\infty} g_k(u_k^n) = g(u)$ holds σ almost everywhere in Ω and in $L^1_{\sigma}(\Omega)$, which ends the proof.

5.2 Reduced measures

We adapt here some of the results in [9] which turn out to be useful tools in our framework.

Lemma 5.1 Let $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}(\Omega)$ with $N \geq \theta > N - \frac{N}{N-1}$ and g be nondecreasing satisfying (1.1). Assume $\{\mu_n\} \subset \mathfrak{M}^+_b(\Omega)$ is an increasing sequence of good measures for problem (1.2) converging to $\mu \in \mathfrak{M}^+_b(\Omega)$. Then μ is a good measure.

Proof. Let u_{μ_n} be the solutions of (1.2) with right-hand side μ_n then for any $n, k \in \mathbb{N}$, $k \ge n$, we have since $u_0 \in C^{\alpha}(\overline{\Omega})$,

$$-m \le u_0 \le u_{\mu_n} \le u_{\mu_k}$$

for some $m \ge 0$ and then

$$g(-m) \le g(u_0) \le g(u_{\mu_n}) \le g(u_{\mu_k}).$$

We use $\zeta := (\eta_1 + \epsilon)^{\alpha} - \epsilon^{\alpha}$ as a test-function in the very weak formulation of the equation satisfied by $u_{\mu_n} - u_0$ as in the proof of (3.30); then, recalling that $-\Delta \zeta \ge 0$, we obtain that

$$\int_{\Omega} (g(u_{\mu_n}) - g(u_0))((\eta_1 + \epsilon)^{\alpha} - \epsilon^{\alpha}) d\sigma \le \int_{\Omega} (\eta_1 + \epsilon)^{\alpha} d\mu_n \le C\mu_n(\Omega) \le C\mu(\Omega),$$

where C is independent of n. Letting successively $\epsilon \to 0$ and $\alpha \to 0$ we obtain

$$0 \le \int_{\Omega} (g(u_{\mu_n}) - g(u_0)) d\sigma \le C.$$

Hence $\{u_{\mu_n}\}$ is bounded in $W_0^{1,q}(\Omega)$ for any $q < \frac{N}{N-1}$. Thus there exists $u \in W_0^{1,q}(\Omega)$, $q < \frac{N}{N-1}$, such that $u_{\mu_n} \uparrow u$ in $L^1(\Omega)$ and pointwise but for a set E with zero $c_{1,q}$ -capacity. Since $\theta > N - \frac{N}{N-1}$ we can find some $q < \frac{N}{N-1}$ such that $\theta > N-q$. It then follows from Lemma 3.3 that $\sigma(E) = 0$. Thus $g(u_{\mu_n}) \uparrow g(u) \sigma$ -almost everywhere. Fatou's lemma yields $\int_{\Omega} (g(u) - g(u_0)) d\sigma \leq C$, thus $g(u) \in L^1_{\sigma}(\Omega)$. By the dominated convergence theorem, $g(u_{\mu_n}) \to g(u)$ in L^1_{σ} . We can then pass to the limit in the equation satisfied by u_{μ_n} to obtain that $u = u_{\mu}$.

Proposition 5.2 Assume σ and g satisfy the assumptions of Lemma 5.1. Consider the set

$$Z = \left\{ x \in \Omega : \int_{\Omega} \mathbb{G}(x, y)^q \rho(y) d\sigma(y) = \infty \right\}.$$

If $\mu \in \mathfrak{M}_{b}^{+}(\Omega)$ is such that $\mu(Z) = 0$ then μ is good.

Proof. We adapt to our case the proof of [30][Thm 3.10]. Consider the sets

$$C_n = \{ x \in \Omega : \int_{\Omega} \mathbb{G}(x, y)^q \rho(y) d\sigma(y) \le n \}, \qquad n = 1, 2, \dots.$$

Since the function $x \to \int_{\Omega} \mathbb{G}(x, y)^q \rho(y) d\sigma(y)$ is lsc (by Fatou's lemma) the sets C_n are closed. Moreover $C_n \subset C_{n+1}$ and $\bigcup_n C_n = \Omega \setminus Z$. Define $\mu_n := 1_{C_n} \mu$ i.e. μ_n is the measure μ restricted to C_n . Then each μ_n satisfies (1.13). Indeed

$$\begin{split} \int_{\Omega} \mathbb{G}[|\mu_{n}|]^{q} \rho d\sigma &\leq \mu_{n}(\Omega)^{q-1} \int_{\Omega} \int_{\Omega} \mathbb{G}(x,y)^{q-1} d\mu_{n}(x) d\sigma(y) \\ &\leq \mu(\Omega)^{q-1} \int_{C_{n}} \Big(\int_{\Omega} \mathbb{G}(x,y)^{q-1} d\sigma(y) \Big) d\mu(x) \\ &\leq n\mu(\Omega)^{q}. \end{split}$$

It follows from Theorem D that μ_n is good. Since $0 \leq \mu_n \uparrow \mu$ we deduce from Lemma 5.1 that μ is good.

Lemma 5.3 Assume σ and g satisfy the assumptions of Lemma 5.1.

I- If $\mu \in \mathfrak{M}_b^+(\Omega)$ is a good measure, any $\nu \in \mathfrak{M}_b^+(\Omega)$ such that $\nu \leq \mu$ is a good measure.

II- Let $\mu, \mu' \in \mathfrak{M}_b^+(\Omega)$. If μ and $-\mu'$ are good measures, any $\nu \in \mathfrak{M}_b(\Omega)$ such that $-\mu' \leq \nu \leq \mu$ is a good measure.

Proof. Step 1. Assume $\mu \in \mathfrak{M}_b^+(\Omega)$ is a good measure. For k > 0 define g_k by $g_k(r) = \max\{g(-k), \min\{g(k), g(r)\}\}$, and denote by $u_{k,\mu}$ the solution of (5.1), which exists by Theorem B, and by u_{μ} the solutions of (1.2). Then $-m \leq u_0 \leq \min\{u_{\mu}, u_{k,\mu}\}$. If k > m, then $g_k(u_{k,\mu}) = \min\{g(k), g(u_{k,\mu})\} \leq g(u_{k,\mu})$. Hence

$$-\Delta(u_{\mu} - u_{k,\mu}) + (g_k(u_{\mu}) - g_k(u_{k,\mu})) \sigma \le 0.$$

Then $u_{\mu} \leq u_{k,\mu}$ by Lemma 3.6. Similarly $u_{k',\mu} \leq u_{k,\mu}$ for $k' \geq k > m$. Using η_1 as test-function we obtain

$$\int_{\Omega} (u_{k,\mu} - u_{\mu}) dx + \int_{\Omega} (g_k(u_{k,\mu}) - g_k(u_{\mu})) \eta_1 d\sigma = \int_{\Omega} (g(u_{\mu}) - g_k(u_{\mu})) \eta_1 d\sigma. \quad (5.12)$$

Since $g_k(r) \to g(r)$ for any $r \in \mathbb{R}$ and $|g_k(u_\mu)| \leq |g(u_\mu)|$ with $\rho|g(u_\mu)| \in L^1_{\sigma}(\Omega)$, the right-hand side converges to 0 as $k \to \infty$ and the second term on the left-hand side is nonnegative. Hence $u_{k,\mu} \to u_\mu$ in $L^1(\Omega)$ as $k \to \infty$, thus $\rho(g_k(u_{k,\mu}) - g_k(u_\mu)) \to 0$ in $L^1_{\sigma}(\Omega)$ which in turn yields $\rho g_k(u_{k,\mu}) \to \rho g(u_\mu)$ in $L^1_{\sigma}(\Omega)$.

Step 2: proof of I. Denote by $u_{k,\nu}$ the solution of

$$-\Delta u + g_k(u) = \nu \qquad \text{in } \Omega$$

$$u = 0 \qquad \text{in } \partial \Omega.$$
(5.13)

Then $-m \leq u_{k,\nu} \leq u_{k,\mu}$, $u_{k',\mu} \leq u_{k,\mu}$ for $k' \geq k > m$ by Lemma 3.6 and $g_k(u_{k,\nu}) \leq g_k(u_{k,\mu})$. Furthermore $\{u_{k,\nu}\}$ is bounded in $W_0^{1,q}(\Omega)$ for $1 < q < \frac{N}{N-1}$ and thus relatively compact in $L^1(\Omega)$. Therefore there exists $u \in W_0^{1,q}(\Omega)$ such that $u_{k,\nu} \downarrow u$ in $L^1(\Omega)$ and also pointwise up to a set with zero $c_{1,q}$ -capacity which is therefore a σ -negligible set. By Step 1, the set $\{\rho g_k(u_{k,\nu})\}$ is uniformly integrable in $L^1_{\sigma}(\Omega)$, this implies that $u = u_{\nu}$.

Step 3: Proof of II. Because $-\mu' \leq \nu \leq \mu$ there holds $u_{k,-\mu'} \leq u_{k,\nu} \leq u_{k,\mu}$ and $g_k(u_{k,-\mu'}) \leq g_k(u_{k,\nu}) \leq g_k(u_{k,\mu})$. Since the sets $\{u_{k,-\mu'}\}$, $\{u_{k,\nu}\}$ and $\{u_{k,\mu}\}$ are relatively compact in $L^1(\Omega)$ and bounded in $W_0^{1,q}(\Omega)$ for $1 < q < \frac{N}{N-1}$ and the sets $\{g_k(u_{k,-\mu'})\}$ and $\{g_k(u_{k,\mu})\}$ are uniformly integrable in $L^1_{\sigma}(\Omega)$, then, up to a subsequence, $u_{k,\nu} \to u$ in $L^1(\Omega)$ and σ -almost everywhere as $k \to \infty$. This implies that $g(u) \in L^1_{\sigma}(\Omega)$ and $\rho g_k(u_{k,\nu}) \to \rho g(u)$ in $L^1_{\sigma}(\Omega)$. Hence $u = u_{\nu}$.

The proof of the next result, based upon Zorn's lemma, is a variant of the one of [9, Th 4.1] which uses inverse maximum principle [9, Corollary 4.8].

Lemma 5.4 Assume σ and g satisfy the assumptions of Lemma 5.1. If $\mu \in \mathfrak{M}_b^+(\Omega)$ there exists a largest good measure smaller than μ , and it is nonnegative.

Proof. Let \mathcal{Z}_{μ} be the subset of all bounded nonnegative good measures smaller than μ . Notice first that \mathcal{Z}_{μ} is non-empty since it contains the regular part μ_r of μ with respect to the N-dimensional Hausdorff measure. We now show that \mathcal{Z}_{μ} is inductive. Let $\mathcal{C}_I := {\mu_i}_{i \in I}$ be a totally ordered subset of \mathcal{Z}_{μ} . For $\zeta \in C_0(\overline{\Omega}), \zeta \geq 0$, the set of nonnegative real numbers

$$\mathcal{C}_I(\zeta) := \left\{ \int_{\Omega} \zeta d\mu_i \right\}$$

is bounded from above by $\int_{\Omega} \zeta d\mu$. Note that can we extend μ as a positive linear form on $C_0(\overline{\Omega})$ since it is a Radon measure and $\mu(\partial\Omega) = 0$. Hence $\mathcal{C}_I(\zeta)$ admits an upper bound $L(\zeta)$ and there exists a sequence $\{i_k\} \subset I$ such that

$$\int_{\Omega} \zeta d\mu_{i_k} \uparrow L(\zeta) \le \int_{\Omega} \zeta d\mu \quad \text{as } k \to \infty.$$

By the Stone-Weiertrass theorem there exists a dense subset $\{\zeta_n\}$ of the set of nonnegative elements in $C_0(\overline{\Omega})$. By Cantor diagonal process there exists a subsequence $\{i_{n_k}\} \subset I$ such that

$$\int_{\Omega} \zeta_n d\mu_{i_{n_k}} \uparrow L(\zeta_n) \leq \int_{\Omega} \zeta_n d\mu \quad \text{ as } k \to \infty.$$

Clearly the map $\zeta_n \mapsto L(\zeta_n)$ is additive, positively homogeneous of order one and satisfies

$$L(\zeta) \leq \int_{\Omega} \zeta d\mu$$
 for all $\zeta \in C_0(\overline{\Omega}), \, \zeta \geq 0.$

Hence L extends as a positive linear functional on $C_0(\Omega)$, dominated by μ denoted by $\mu_{\mathcal{C}_I}$. Since μ is a Radon measure in Ω , $\mu_{\mathcal{C}_I}(\partial\Omega) = 0$, hence it is a Radon measure. Furthermore it is a good measure by Lemma 5.1. It follows that $\mu_{\mathcal{C}_I} \in \mathcal{Z}_{\mu}$. Moreover since $L(\zeta)$ is an upper bound of $\mathcal{C}_I(\zeta)$ for any nonnegative $\zeta \in C_0(\overline{\Omega})$, we have $\mu_{\mathcal{C}_I} \geq \mu_i$ for any $i \in I$. Hence the set \mathcal{Z}_{μ} is inductive.

As a consequence of Zorn's lemma, \mathcal{Z}_{μ} admits at least one maximal element that we denote μ^* . If ν is any nonnegative good measure smaller than μ it belongs to \mathcal{Z}_{μ} and hence it cannot dominate μ^* . It remains to prove that $\nu \leq \mu^*$. Set $\lambda = \sup\{\nu, \mu^*\}$ and let λ^* be a maximal element of \mathcal{Z}_{λ} . Since ν and μ^* are good measures, we have $\nu^* = \nu$ and $(\mu^*)^* = \mu^*$. It follows that $\lambda^* \geq \nu^* = \nu$ and $\lambda^* \geq (\mu^*)^* = \mu^*$ so that $\lambda^* \geq \sup\{\nu, \mu^*\} = \lambda$. This implies that $\lambda^* = \lambda \geq \mu^*$. On the other hand, since $\nu, \mu^* \leq \mu$, we have $\lambda \leq \mu$ and thus $\lambda^* \leq \mu$. By definition of a maximal element it implies that $\lambda^* = \lambda = \mu^*$, and finally $\mu^* = \sup\{\nu, \mu^*\}$. We infer $\nu \leq \mu^*$ and then μ^* is the maximum of \mathcal{Z}_{μ} .

Corollary 5.5 Assume σ and g satisfy the assumptions of Lemma 5.1. If $\mu, \nu \in \mathfrak{M}_{h}^{+}(\Omega)$ are good measures, then $\sup\{\mu,\nu\}$ is a good measure.

Proof. Set $\lambda = \sup\{\mu, \nu\}$. Then

$$\lambda \ge \lambda^* = (\sup\{\mu, \nu\})^* \ge \sup\{\mu^*, \nu^*\} = \sup\{\mu, \nu\} = \lambda.$$
 (5.14)

This implies $\lambda = \lambda^*$, hence λ is a good measure.

5.3 The capacitary framework

We start with the following regularity estimate for the Poisson problem

Lemma 5.6 For any $s \ge 0$ and $1 , the mapping <math>\mu \mapsto \mathbb{G}[\mu]$ is continuous from $\mathfrak{M}_b(\Omega) \cap H^{s-2,p}(\Omega)$ to $H^{s,p}(\Omega)$.

Proof. It is classical that the mapping $G_D : \lambda \mapsto u = G_D(\lambda)$ solution of $-\Delta u = \lambda$ in Ω and u = 0 on $\partial \Omega$ is continuous from $H^{s-2,p}(\Omega)$ to $H^{s,p}(\Omega)$ for 1

and $s > \frac{1}{p}$ (see e.g. [14, Example 3.15 p. 314]). Thus we are left with the case $0 \le s \le \frac{1}{p}$. If $\lambda \in \mathfrak{M}_b(\Omega)$, then $G_D(\lambda) = \mathbb{G}[\lambda]$ is a very weak solution, hence, since $\mathbb{X}(\Omega) \subset C_c^1(\overline{\Omega}) \cap \left(\bigcap_{1 < r < \infty} H^{2,r}(\Omega)\right),$ $-\int_{\Omega} G_D(\lambda) \Delta \zeta dx = \int_{\Omega} \zeta d\lambda \le \|\zeta\|_{H^{2-s,p'}} \|\lambda\|_{H^{s-2,p}}$ for all $\zeta \in \mathbb{X}(\Omega)$.

In particular, if $\zeta = \mathbb{G}[v]$, then $\|\zeta\|_{H^{2-s,p'}} \leq c \|v\|_{H^{-s,p'}}$ since -s > -2 + 1/p', and

$$\int_{\Omega} G_D(\lambda) v dx \le c \, \|v\|_{H^{-s,p'}} \, \|\lambda\|_{H^{s-2,p}} \quad \text{for all } v \in \Delta(\mathbb{X}(\Omega)).$$

In particular this inequality holds if $v \in C_c(\overline{\Omega})$ which is dense in $H^{-s,p'}(\Omega)$. Finally this inequality means that the mapping $v \mapsto \int_{\Omega} G_D(\lambda) v dx$ is a continuous linear form over $H^{-s,p'}(\Omega)$, it thus belongs to $H^{s,p}(\Omega)$.

Proposition 5.7 Let σ and g satisfy the assumptions in Theorem E. If $\mu \in \mathfrak{M}_b(\Omega)$ is such that $|\mu| \in H^{s-2,p}(\Omega)$ for some p > 1 and s > 0 such that $N - \theta < sp < N$ and $\frac{\theta p}{N-sp} \ge q$, then (1.3) admits a unique very weak solution.

Proof. By Lemma 5.6, if $|\mu| \in H^{s-2,p}(\Omega)$ then $\mathbb{G}[|\mu|] \in H^{s,p}(\Omega)$. By Proposition 2.4 $\|\mathbb{G}[|\mu|]\|_{L^q_{\sigma}} \leq c \|\mathbb{G}[|\mu|]\|_{H^{s,p}}$

if and only if $\sigma \in \mathcal{M}_r^+(\Omega)$ with $\frac{1}{r} = q\left(\frac{1}{q} - \frac{1}{p} + \frac{s}{N}\right) = \frac{N-\theta'}{N}$. Then $q = \frac{\theta'p}{N-sp}$. Hence, if $\frac{\theta p}{N-sp} \ge q$ we get $\theta \ge \theta'$ and then $\mathcal{M}_{\frac{N}{N-\theta}}^+(\Omega) \subset \mathcal{M}_{\frac{N}{N-\theta'}}^+(\Omega)$ by [2.7). We conclude by Theorem D.

Remark. This result covers the case q = p, in which any bounded measure such that $|\mu| \in H^{\frac{N-\theta}{q}-2,q}(\mathbb{R}^N)$ is eligible for solving problem (1.2).

Proof of Theorem E. If μ is absolutely continuous with respect to the $c_{2-s,p'}$ -capacity, so are μ^+ and $-\mu^-$. By [13] there exists an increasing sequence of positive bounded Radon measures $\mu_j \in H^{s-2,p}(\Omega)$ converging to μ^+ . By Proposition 5.7 μ_j is a good measure, hence by Lemma 5.1 μ^+ is a good measure. In the same way $-\mu^-$ is a good measure. Since $-\mu_- \leq \mu \leq \mu_+$, it follows from Lemma 5.3-II that μ is a good measure.

Proof of Proposition 1.1. Notice first that if $\mu \in \mathcal{M}_{\frac{N}{N-\theta^*}}(\Omega)$ with $\theta^* > N - sp$, then for any compact $K \subset \Omega$,

$$|\mu|(K) \le c' \left(c_{s,p}(K) \right)^{\frac{1}{p}}.$$
(5.15)

In particular μ is absolutely continuous w.r.t $c_{s,p}$ -capacity. Indeed under the assumption on θ^* we have $H^{s,p}(\Omega) \hookrightarrow L^1_{|\mu|}(\Omega)$. It follows that for any $v \in H^{s,p}(\Omega)$, $v \ge 1$ on K, we have

$$|\mu|(K) \le \int_{K} v d|\mu| \le ||v||_{L^{1}_{|\mu|}} \le C ||v||_{H^{s,p}}.$$

We deduce (5.15) taking the infimum over v. To apply Theorem E we need μ to be $c_{2-\frac{N-\theta}{q},q'}$ -diffuse. It thus suffices to take $\theta^* > N - sp$ with $s = 2 - \frac{N-\theta}{q}$ and p = q'. We obtain exactly the condition on θ^* stated in Proposition 1.1.

5.4 The case $g(u) = |u|^{q-1} u$.

In the sequel we consider the following equation

$$-\Delta u + |u|^{q-1} u\sigma = \mu \qquad \text{in } \Omega u = 0 \qquad \text{in } \partial\Omega,$$
(5.16)

where q > 1. A measure for which there exists a solution, necessarily unique by Lemma 3.5, is called *q-good*. Assume that $\sigma \in \mathcal{M}_{\frac{N}{N-\theta}}^+$ with $N \ge \theta > N - \frac{N}{N-1}$. Then the critical exponent q from the point of view of (1.8) in Theorem B is

$$q_{\theta} := \frac{\theta}{N-2},\tag{5.17}$$

which is larger than 1 if N > 2.

Let q > 1 and $\sigma \in \mathfrak{M}_b^+(\Omega)$. Recall that the Green function G of the Dirichlet Laplacian in Ω is defined on $\overline{\Omega} \times \overline{\Omega}$ with values in $[0, +\infty]$ with $G(x, x) = +\infty$, $x \in \Omega$, and G(x, y) = 0 if $x \in \partial\Omega$ or $y \in \partial\Omega$. We extend G to $\mathbb{R}^N \times \overline{\Omega}$ by setting G(x, y) = 0 if $(x, y) \in \overline{\Omega}^c \times \overline{\Omega}$. Hence $x \mapsto G(x, y)$ is lower semicontinuous in \mathbb{R}^N and $y \mapsto G(x, y)$ is lower semicontinuous in Ω , and thus is σ -measurable. Following [2, Sec. 2.3] we then consider the following set function with values in $[0, +\infty]$,

$$c_q^{\sigma}(E) = \inf\left\{\int_{\Omega} |v|^{q'} \, d\sigma : v \in L_{\sigma}^{q'}(\Omega), \, \mathbb{G}[v\sigma](x) \ge 1 \text{ for all } x \in E\right\}, \tag{5.18}$$

for any $E \subset \Omega$. According to the general theory developped in [2, Sec. 2.3] c_q^{σ} is a regular capacity in the sense of Choquet. Using the lower semicontinuity of $y \mapsto \mathbb{G}[v\sigma](y)$ (see [2, Prop 2.3.2]) it is easy to verify that for any compact set $K \subset \Omega$, there holds

$$c_q^{\sigma}(K) = \inf\left\{\int_{\Omega} |v|^{q'} \, d\sigma : v \in L_{\sigma}^{\infty}(\Omega), \, \mathbb{G}[v\sigma](x) \ge 1 \text{ for all } x \in K\right\}.$$
(5.19)

The dual formulation of the capacity is the following (see [2, Th 2.5.1]),

$$\left(c_q^{\sigma}(K)\right)^{\frac{1}{q'}} = \sup\left\{\lambda(K) : \lambda \in \mathfrak{M}_b^+(K), \, \|\mathbb{G}[\lambda]\|_{L^q_{\sigma}} \le 1\right\}$$
(5.20)

for $K \subset \Omega$, K compact. Existence of extremal measures satisfying equality in (5.20) is proved in [2, Th 2.5.3].

Remark. Note that the \geq inequality in (5.20) follows directly from the following one

$$\nu(K) \le \left(c_q^{\sigma}(K)\right)^{\frac{1}{q'}} \|\mathbb{G}\nu\|_{L^q_{\sigma}},\tag{5.21}$$

which holds for any $\nu \in \mathfrak{M}_{h}^{+}(\Omega)$ such that $\mathbb{G}[\nu] \in L_{\sigma}^{q}$ and any $K \subset \Omega$ compact.

We now give some sufficient conditions for a bounded measure to be absolutely continuous with respect to the capacity c_q^{σ} . First in view of (5.21) and the dual expression of the capacity it is clear that there holds:

Lemma 5.8 If $\nu \in \mathfrak{M}_b(\Omega)$ is such that $\mathbb{G}[|\nu|] \in L^q_{\sigma}(\Omega)$, then ν is absolutely continuous with respect to the capacity c^{σ}_q . This holds in particular if $\nu \in \mathfrak{M}_b(\Omega)$ is such that $|\nu| \in H^{s-2,p}(\Omega)$ for some p > 1 and s > 0 verifying $N - \theta < sp < N$ and $\frac{\theta p}{N-sp} \ge q$.

As a direct consequence we have

Lemma 5.9 If $\nu \in \mathfrak{M}_b(\Omega)$ is $c_{2-s,p'}$ -diffuse where s and p are as in Lemma 5.8, then ν is absolutely continuous with respect to the capacity c_a^{σ} .

Proof. If $\nu \geq 0$ there exists a sequence of nonnegative measures $\{\nu_n\} \subset H^{s-2,p}(\Omega)$ such that $\nu_n \uparrow \nu$. If K is a compact such that $c_q^{\sigma}(K) = 0$ then $\nu_n(K) = 0$ by Lemma 5.8 and thus $\nu(K) = 0$. When ν is a signed measure, we apply the above to its positive and negative part ν^{\pm} .

The following particular case will be useful:

Lemma 5.10 If $\nu \in \mathcal{M}_{\frac{N}{N-\theta}}(\Omega)$ with $N \ge \theta > N-2$, then ν is absolutely continuous with respect to the capacity c_a^{σ} .

Proof. We have $|\nu| \in \mathcal{M}_p(\Omega)$ for some $p > \frac{N}{2}$. We then obtain from (2.9) that $\mathbb{G}[|\nu|]$ is bounded so that $\mathbb{G}[|\nu|] \in L^q_{\sigma}(\Omega)$. The conclusion follows from the previous lemma. \Box

Remark. It is noticeable that if the support of a nonnegative measure μ does not intersect the support of σ , then μ is always q-good. This is due to the fact that $\mathbb{G}[\mu]$ is bounded on the support of σ , hence $\mathbb{G}[\mu] \in L^q_{\sigma}(\Omega)$ for any $q < \infty$ and the result

follows from Theorem D. Hence, a more accurate necessary condition must involve a notion of density of σ on its support, a property which has been developed by Triebel [26] in connection with fractal measures.

We recall that the θ -dimensional Hausdorff measure H^{θ} , $0 \leq \theta \leq N$, is defined on subsets E of \mathbb{R}^N by

$$H^{\theta}(E) = \lim_{\delta \to 0} \left(\inf \left\{ \sum_{j=1}^{\infty} (\operatorname{diam} U_j)^{\theta} : E \subset \bigcup_{j=1}^{\infty} U_j, \operatorname{diam} U_j \le \delta \right\} \right).$$
(5.22)

Definition 5.11 A nonnegative Radon measure σ on $\overline{\Omega}$ with support Γ is θ -regular with $0 \leq \theta \leq N$ if there exists c > 0 such that

$$\frac{1}{c}r^{\theta} \le |B_r(x)|_{\sigma} \le cr^{\theta} \qquad \text{for all } x \in \Gamma, \text{ for all } r > 0.$$
(5.23)

The support Γ of σ is called a θ -set.

By [26, Th 3.4] σ is equivalent in $\overline{\Omega}$ to the restriction $H^{\theta} \downarrow_{\Gamma}$ of H^{θ} to Γ in the sense that there exists c' > 0 such that

$$\frac{1}{c'}H^{\theta}(E\cap\Gamma) \le \sigma(E) \le c'H^{\theta}(E\cap\Gamma) \quad \text{for all } E \subset \overline{\Omega}, \ E \text{ Borel.}$$
(5.24)

The description of $L^p_{\sigma}(\Gamma)$ necessitates to introduce the scale of Besov spaces and their *trace* on Γ . For 0 < s < 1, $1 \leq p, q \leq \infty$, we denote by $B^s_{p,q}(\Omega)$ the space obtained by the real interpolation method by

$$B_{p,q}^{s}(\Omega) = \left[W^{1,p}(\Omega), L^{p}(\Omega) \right]_{s,q}.$$
 (5.25)

Details can be found in [23]. Its norm is equivalent to

$$\|\phi\|_{B^{s}_{p,q}} = \|v\|_{L^{p}} + \left(\int_{0}^{\infty} \frac{(\omega_{p}(t;v))^{q}}{t^{sq}} \frac{dt}{t}\right)^{\frac{1}{q}},$$
(5.26)

if $q < \infty$ and

$$\|\phi\|_{B^s_{p,\infty}} = \|v\|_{L^p} + \sup_{t>0} \frac{\omega_p(t;v)}{t^s},\tag{5.27}$$

where

$$\omega_p(t;\phi) = \sup_{|h| < t} \|v(.+h) - v(.)\|_{L^p}.$$

For $k \in \mathbb{N}_*$, $B_{p,q}^{k+s}(\Omega) = \{v \in W^{k,p}(\Omega) : D^{\alpha}v \in B_{p,q}^s(\Omega), \text{ for all } \alpha \in \mathbb{N}^N, |\alpha| = k\}$ with norm $\|v\|_{B^{k+s}} = \|v\|_{W^{k-1,p}} + \sum \|D^{\alpha}v\|_{B^s}$.

$$\|v\|_{B^{k+s}_{p,q}} = \|v\|_{W^{k-1,p}} + \sum_{|\alpha|=k} \|D^{\alpha}v\|_{B^{s}_{p,q}}.$$

If $\Gamma \subset \mathbb{R}^N$ is a closed set with zero Lebesgue measure, we consider the set

$$B_{p,q}^{s,\Gamma}(\mathbb{R}^N) = \left\{ v \in B_{p,q}^s(\mathbb{R}^N) : \langle v, \phi \rangle = 0 \quad \text{for all } \phi \in \mathcal{S}(\mathbb{R}^N) \text{ s.t. } \phi \lfloor_{\Gamma} = 0 \right\}, \quad (5.28)$$

endowed with the $B^s_{p,q}(\mathbb{R}^N)$ norm, where $\langle v, \phi \rangle$ is the pairing between $\mathcal{S}'(\mathbb{R}^N)$ and $\mathcal{S}(\mathbb{R}^N)$. If $v \in L^p_{\sigma}(\Omega)$ and σ has support $\Gamma \subset \overline{\Omega}$, the linear map

$$\phi \mapsto T_v^{\sigma}(\phi) = \int_{\Gamma} \phi v d\sigma \tag{5.29}$$

defined on $\mathcal{S}(\mathbb{R}^N)$ is a tempered distribution in \mathbb{R}^N . The following results are proved in [26, Th 18.2, 18.6].

Proposition 5.12 Assume σ is θ -regular, $0 < \theta < N$, with support $\Gamma \subset \mathbb{R}^N$, and let $v \in L^q_{\sigma}(\Omega)$ with 1 . There holds

$$|T_v^{\sigma}(\phi)| \le c \, \|v\|_{L^p_{\sigma}} \, \|\phi\|_{B^{\frac{N-\theta}{p'}}_{p',1}} \qquad \text{for all } \phi \in \mathcal{S}(\mathbb{R}^N).$$

$$(5.30)$$

It follows that $T_v^{\sigma} \in B_{p,\infty}^{-\frac{N-\theta}{p'},\Gamma}$ with $\|T_v^{\sigma}\|_{B_{p,\infty}^{-\frac{N-\theta}{p'}}} \leq c \|v\|_{L_{\sigma}^p}$. Moreover the map $v \in L_{\sigma}^p(\Gamma) \to T_v^{\sigma} \in B_{p,\infty}^{-\frac{N-\theta}{p'},\Gamma}$ is a linear isomorphism. We can thus denote $L_{\sigma}^p(\Gamma) \sim \left(B_{p',1}^{\frac{N-\theta}{p'},\Gamma}\right)' = B_{p,\infty}^{-\frac{N-\theta}{p'},\Gamma}$.

Proposition 5.13 Assume σ is θ -regular, $0 < \theta < N$ with support $\Gamma \subset \mathbb{R}^N$. Then for any $1 the restriction operation from <math>\mathcal{S}(\mathbb{R}^N)$ to $C(\Gamma)$, $\phi \mapsto \phi \downarrow_{\Gamma}$ can be extended as a continuous linear operator from $B_{p,1}^{\frac{N-\theta}{p}}(\mathbb{R}^N)$ to $L_{\sigma}^p(\Gamma)$ that we denote Tr_{Γ} . Furthermore this operator is onto.

Definition 5.14 If $\sigma \in \mathfrak{M}_b^+(\Omega)$ is θ -regular, $N \ge \theta > N-2$ with support $\Gamma \subset \Omega$ and m, q > 1, we set

$$c_{q',\infty}^{2-\frac{N-\theta}{q},\Gamma}K) = \inf\left\{ \|\zeta\|_{B^{2-\frac{N-\theta}{q}}_{q',\infty}}^{q'}: \zeta \in B^{2-\frac{N-\theta}{q},\Gamma}_{q',\infty}(\Omega) \ s.t. \ \zeta \ge \chi_K \right\},$$
(5.31)

where

$$B_{q',\infty}^{2-\frac{N-\theta}{q},\Gamma}(\Omega) = \left\{ \zeta \in B_{q',\infty}^{2-\frac{N-\theta}{q}}(\Omega) \ s.t. \ \Delta \zeta \in B_{q',\infty}^{-\frac{N-\theta}{q},\Gamma}(\Omega) \right\}.$$
 (5.32)

Notice that $B^{2-\frac{N-\theta}{q},\Gamma}_{q',\infty}(\Omega)$ is a closed subspace of $B^{2-\frac{N-\theta}{q}}_{q',\infty}(\Omega)$.

Proposition 5.15 Assume $\sigma \in \mathfrak{M}_b^+(\Omega)$ is θ -regular, $N \ge \theta > N-2$ with support $\Gamma \subset \Omega$ and q > 1. Then there exists a positive constant M > 0 such that

$$\frac{1}{M}c_q^{\sigma}(K) \le c_{q',\infty}^{2-\frac{N-\theta}{q},\Gamma}(K) \le Mc_q^{\sigma}(K),$$
(5.33)

for all compact set $K \subset \Omega$.

Proof. By standard elliptic equations and interpolation theory (see [23], [24]), for any $\psi \in B_{q',\infty}^{-\frac{N-\theta}{q},\Gamma}(\Omega)$, $\mathbb{G}[\psi\sigma] \in B_{q',\infty}^{2-\frac{N-\theta}{q}}(\Omega)$ and there holds

$$\frac{1}{c} \left\| \mathbb{G}[\psi\sigma] \right\|_{B^{2-\frac{N-\theta}{q}}_{q',\infty}} \le \left\| \psi \right\|_{B^{-\frac{N-\theta}{q},\Gamma}_{q',\infty}} \le c \left\| \mathbb{G}[\psi\sigma] \right\|_{B^{2-\frac{N-\theta}{q}}_{q',\infty}}.$$
(5.34)

By Proposition 5.12 we can replace $\|\psi\|_{B^{-\frac{N-\theta}{q},\Gamma}_{\sigma}}$ by $\|\psi\|_{L^{q'}_{\sigma}}$ in the above inequality, up to a change of constants c. Let $\{v_k\} \subset L^{\infty}_{\sigma}(\Omega)$ be such that $v_k \ge 0$, $\zeta_k := \mathbb{G}[v_k\sigma] \ge 0$ on K and $\|v_k\|_{L^{q'}_{\sigma}} \downarrow (c^{\sigma}_q(K))^{\frac{1}{q'}}$. Since (5.32) is equivalent to

$$\frac{1}{c} \|\zeta_k\|_{B^{2-\frac{N-\theta}{q}}_{q',\infty}} \le \|v_k\|_{L^{q'}_{\sigma}} \le c \|\zeta_k\|_{B^{2-\frac{N-\theta}{q}}_{q',\infty}},$$

we derive $c_{q',\infty}^{2-\frac{N-\theta}{q},\Gamma}(K) \ge \frac{1}{c^{q'}}c_q^{\sigma}(K)$. Similarly $c_{q',\infty}^{2-\frac{N-\theta}{q},\Gamma}(K) \le c^{q'}c_q^{\sigma}(K)$. \Box *Proof of Theorem F* By Lemma 5.10 the measure u^q vanishes on Borel sets with

Proof of Theorem F. By Lemma 5.10 the measure u^q vanishes on Borel sets with zero c_q^{σ} -capacity. Since $u \in L^q_{\sigma}(\Omega)$ the mapping

is a tempered distribution that we denote by T_u^{σ} , hence

$$|\langle \Delta u, \phi \rangle| = |\langle u, \Delta \phi \rangle| = \left| \int_{\Omega} u \Delta \phi d\sigma \right| \le \|u\|_{L^{q}_{\sigma}} \|\Delta \phi\|_{L^{q'}_{\sigma}}.$$

Using Proposition 5.12

$$\left\|\Delta\phi\right\|_{L^{q'}_{\sigma}} \le c \left\|\Delta\phi\right\|_{B^{-\frac{N-\theta}{q},\Gamma}_{q',\infty}} \le c' \left\|\phi\right\|_{B^{2-\frac{N-\theta}{q},\Gamma}_{q',\infty}}.$$

Therefore the nonnegative measure T_u^{σ} is a continuous linear form on $B_{q',\infty}^{2-\frac{N-\theta}{q},\Gamma}(\Omega)$. Therefore it vanishes on Borel sets with zero $c_{q',\infty}^{2-\frac{N-\theta}{q},\Gamma}$ -capacity, which actually coincide with Borel sets with zero zero c_q^{σ} -capacity.

5.5 Removable singularities

It is easy to prove that for any compact set $K \subset \Omega$, there exists $\mu_K \in \mathfrak{M}_b^+(K)$ such that $\int_{\Omega} (\mathbb{G}[\mu_K])^q d\sigma = 1$ and $c_q^{\sigma}(K) = \mu_K(K)$ (see [2][Th 2.5.3]). Since μ_K is an admissible measure, it follows from Theorem D that (1.3) is solvable with $\mu = \mu_K$, hence K is not removable. Although it could be conjectured that a compact set with zero c_q^{σ} -capacity is removable we can prove this assertion only for sigma-moderate solutions.

Definition 5.16 Let q > 1, $\sigma \in \mathcal{M}^+_{\frac{N}{N-\theta}}(\Omega)$ where $N \ge \theta > N-2$ and $K \subset \Omega$ a compact set. A nonnegative function $u \in L^1_{loc}(\overline{\Omega} \setminus K) \cap L^q_{\sigma, loc}(\overline{\Omega} \setminus K)$ is a sigma-moderate solution of

$$-\Delta u + |u|^{q-1} u\sigma = 0 \qquad in \ \Omega \setminus K u = 0 \qquad in \ \partial\Omega,$$
(5.35)

if there exists an increasing sequence $\{\mu_n\} \subset \mathfrak{M}_b^+(K)$ of q-good measures such that $u_{\mu_n} \to u$ in $L^1_{loc}(\overline{\Omega} \setminus K) \cap L^q_{\sigma, loc}(\overline{\Omega} \setminus K)$.

Theorem 5.17 Under the assumptions on q, σ and K of Definition 5.16, if $c_q^{\sigma}(K) = 0$ then the only sigma-moderate solution of (5.35) is the trivial one.

Proof. Since $c_q^{\sigma}(K) = 0$ the set of nonnegative q-good measures with support in K is reduced to the zero function by Theorem F. This implies the claim.

Remark. We conjecture that for any compact set $K \subset \Omega$, any nonnegative local solution of (5.12) is sigma-moderate. This would imply that a necessary and sufficient condition for a local nonnegative solution of (5.12) to be a solution in Ω is $c_q^{\sigma}(K) = 0$. However this type of result is usually difficult to prove, see [22], [17], [12] in the framework of semilinear equations with measure boundary data.

In order to find necessary and sufficient conditions for the removability of a compact set $K \subset \Omega$, we assume that σ is a positive measure in Ω absolutely continuous with respect to the Lebesgue measure, with a nonnegative density w. For proving our results we will assume that the function $\omega = w^{-\frac{1}{q-1}}$ is q'-admissible in the sense of [15, Chap 1]. One sufficient condition is that w belongs to the Muckenhoupt class A_q , that is

$$\sup_{B} \left(\frac{1}{|B|} \int_{B} w dx\right) \left(\frac{1}{|B|} \int_{B} w^{-\frac{1}{q-1}} dx\right)^{\frac{1}{p-1}} = m_{w,q} < \infty$$
(5.36)

for all ball $B \subset \mathbb{R}^N$.

If $K \subset \Omega$ is compact, we set

$$c_q^{\omega}(K) = \inf\left\{\int_{\Omega} |\Delta\zeta|^{q'} \,\omega dx : \zeta \in C_0^{\infty}(\Omega), \, \zeta \ge 1 \text{ in a neighborhood of } K\right\}.$$
(5.37)

This defines a capacity on Borel subsets of Ω . Since ω is q'-admissible, it satisfies Poincaré inequality, hence a set with zero c_q^{ω} -capacity is ω -negligible. Furthermore, following the proof of [2, Th 3.3.3], c_q^{ω} is equivalent to \dot{c}_q^{ω} defined by

$$\dot{c}_q^{\omega}(K) = \inf\left\{ \left\|\zeta\right\|_{W^{2,q'}_{\omega}}^{q'} : \zeta \in C_0^{\infty}(\Omega), \ 0 \le \zeta \le 1, \ \zeta \ge 1 \text{ in a neighborhood of } K \right\}.$$
(5.38)

The dual definition is (see [2, Th 2.5.1])

$$\left(c_q^{\omega}(K)\right)^{\frac{1}{q'}} = \sup\left\{\lambda(K) : \lambda \in \mathfrak{M}_b^+(K), \, \|\mathbb{G}[\lambda]\|_{L^q_{\omega}} \le 1\right\}.$$
(5.39)

Proof of Theorem G. Step 1: The condition is sufficient. We assume first that $L^q_{w,loc}(\Omega \setminus K) \cap u \in L^1(\Omega \setminus K)$ is a nonnegative subsolution of (1.22) in the sense of distributions in $\Omega \setminus K$ where $K \subset \Omega$ is a compact subset with c^{ω}_q -capacity zero. There exists a sequence of functions $\{\zeta_k\} \subset C_0^{\infty}(\Omega)$ with value in [0, 1], value 1 in a neighborhood of K and such that $\|\Delta\zeta_k\|_{L^{q'}_{\omega}} \to 0$ when $k \to \infty$. Let $\rho \in C_0^{\infty}(\Omega)$, $0 \leq \rho \leq 1$, such that $\rho = 1$ in a neighborhood of K containing the support of the ζ_k . Using $\phi_k := (1 - \zeta_k)^{\alpha} \rho^{\alpha}$, with $\alpha > 1$, in the very weak formulation of equation (1.22) we obtain,

$$\int_{\Omega} u^{q} \phi_{k} w dx \leq \int_{\Omega} u \Delta \phi_{k} dx
\leq \alpha \int_{\Omega} u (1 - \zeta_{k})^{\alpha} \rho^{\alpha - 1} \Delta \rho dx - 2\alpha \int_{\Omega} u (1 - \zeta_{k})^{\alpha - 1} \nabla \zeta_{k} \cdot \nabla \rho^{\alpha} dx
- \alpha \int_{\Omega} u (1 - \zeta_{k})^{\alpha - 1} \rho^{\alpha} \Delta \zeta_{k} dx + \alpha (\alpha - 1) \int_{\Omega} u (1 - \zeta_{k})^{\alpha - 2} \rho^{\alpha} |\nabla \zeta_{k}|^{2} dx
+ \alpha (\alpha - 1) \int_{\Omega} u (1 - \zeta_{k})^{\alpha} \rho^{\alpha - 2} |\nabla \rho|^{2} dx.$$
(5.40)

Notice that the second integral in the right-hand side vanishes since $\nabla \zeta_k \cdot \nabla \rho^{\alpha} = 0$ by the assumption on their support. If we choose $\alpha = 2q'$, we can bound the remaining

integrals as follows:

$$\begin{split} \left| \int_{\Omega} u(1-\zeta_{k})^{2q'-1} \rho^{2q'} \Delta \zeta_{k} dx \right| &\leq \left(\int_{\Omega} u^{q} \phi_{k} w dx \right)^{\frac{1}{q}} \left(\int_{\Omega} |\Delta \zeta_{k}|^{q'} (1-\zeta_{k})^{q'} \rho^{2q'} \omega dx \right)^{\frac{1}{q'}} \\ &\leq \left(\int_{\Omega} u^{q} \phi_{k} w dx \right)^{\frac{1}{q}} \left(\int_{\Omega} |\Delta \zeta_{k}|^{q'} \omega dx \right)^{\frac{1}{q'}} , \\ \left| \int_{\Omega} u(1-\zeta_{k})^{2q'} \rho^{2q'-1} \Delta \rho dx \right| &\leq \left(\int_{\Omega} u^{q} \phi_{k} w dx \right)^{\frac{1}{q}} \left(\int_{\Omega} |\Delta \rho|^{q'} (1-\zeta_{k})^{2q'} \rho^{q'} \omega dx \right)^{\frac{1}{q'}} \\ &\leq \left(\int_{\Omega} u^{q} \phi_{k} w dx \right)^{\frac{1}{q}} \left(\int_{\Omega} |\Delta \rho|^{q'} \omega dx \right)^{\frac{1}{q'}} , \\ \left| \int_{\Omega} u(1-\zeta_{k})^{2q'-2} \rho^{2q'} |\nabla \zeta_{k}|^{2} dx \right| &\leq \left(\int_{\Omega} u^{q} \phi_{k} w dx \right)^{\frac{1}{q}} \left(\int_{\Omega} |\nabla \zeta_{k}|^{2q'} \rho^{2q'} \omega dx \right)^{\frac{1}{q'}} \\ &\leq \left(\int_{\Omega} u^{q} \phi_{k} w dx \right)^{\frac{1}{q}} \left(\int_{\Omega} |\nabla \zeta_{k}|^{2q'} \omega dx \right)^{\frac{1}{q'}} , \end{split}$$

and finally

$$\begin{aligned} \left| \int_{\Omega} u(1-\zeta_k)^{2q'} \rho^{2q'-2} \left| \nabla \rho \right|^2 dx \right| &\leq \left(\int_{\Omega} u^q \phi_k w dx \right)^{\frac{1}{q}} \left(\int_{\Omega} \left| \nabla \rho \right|^{2q'} (1-\zeta_k)^{2q'} \omega dx \right)^{\frac{1}{q'}} \\ &\leq \left(\int_{\Omega} u^q \phi_k w dx \right)^{\frac{1}{q}} \left(\int_{\Omega} \left| \nabla \rho \right|^{2q'} \omega dx \right)^{\frac{1}{q'}}. \end{aligned}$$

Since the Gagliardo-Nirenberg inequality holds with the q'-admissible weight ω , we have for some $\tau \in (0, 1)$ and some c = c(q, N) > 0,

$$\left(\int_{\Omega} |\nabla\zeta_k|^{2q'} \,\omega dx\right)^{\frac{1}{2q'}} \leq c \left(\int_{\Omega} |\Delta\zeta_k|^{q'} \,\omega dx\right)^{\frac{\tau}{q'}} \|\zeta_k\|_{L^{\infty}}^{1-\tau}$$

$$\leq c' \left(\int_{\Omega} |\Delta\zeta_k|^{q'} \,\omega dx\right)^{\frac{\tau}{q'}}.$$
(5.41)

Therefore, if we set

$$X_k = \left(\int_{\Omega} u^q \phi_k w dx\right)^{\frac{1}{q}} \quad \text{and} \ Z_k = \left(\int_{\Omega} |\Delta \zeta_k|^{q'} \,\omega dx\right)^{\frac{1}{q'}},$$

we obtain the inequation

$$X_k^q \le c_1 X_k Z_k + c_2 X_k + c_3 X_k Z_k^{\tau}, \tag{5.42}$$

for some positive constants c_1, c_2, c_3 depending on q, N and ρ . By definition of ζ_k we have $Z_k \to 0$. We thus deduce that $X_k^q \leq cX_k$ with q > 1 and then that the sequence $\{X_k\}$ is bounded. Since $\zeta_k \to 0$ almost everywhere, we have $\phi_k \to \rho^{2q'}$ almost everywhere. It then follows by Fatou's lemma that

$$\int_{\Omega} u^q \rho^{2q'} w dx \le c. \tag{5.43}$$

We deduce that $u \in L^q_{w,loc}(\Omega)$. Since $\omega^{-\frac{q'}{q}} \in L^1_{loc}(\Omega)$, we obtain that $L^1_{loc}(\Omega)$ by Hölder's inequality. If $u \in L^q_{w,loc}(\Omega \setminus K) \cap u \in L^1(\Omega \setminus K)$ is a distributional solution of (1.22) in $\Omega \setminus K$, then |u| is a nonnegative subsolution with the same integrability constraints and we derive $u \in L^q_{w,loc}(\Omega) \cap L^1_{loc}(\Omega)$.

If $\phi \in C_0^{\infty}(\Omega)$, we take $\phi(1-\zeta_k)^{2q'}$ for test function of equation (1.22) in $\mathcal{D}'(\Omega \setminus K)$,

$$-\int_{\Omega} u\Delta(\phi(1-\zeta_k)^{2q'})\,dx + \int_{\Omega} |u|^{q-1} u\phi(1-\zeta_k)^{2q'}w\,dx = 0.$$

Since $u \in L^q_{w,loc}(\Omega)$, ϕ has compact support, and $\zeta_k \to 0$ almost everywhere, we can pass to the limit as $k \to +\infty$ in the second integral using Lebesgue convergence theorem and obtain

$$\int_{\Omega} |u|^{q-1} u\phi(1-\zeta_k)^{2q'} w \, dx \to \int_{\Omega} |u|^{q-1} u\phi w \, dx.$$

Moreover we can pass to the limit in the first integral expanding the laplacian. Using that $u \in L^1_{loc}(\Omega)$ and that $\Delta \zeta_k \to 0$ in $L^{q'}_{\omega}$, it is easy to prove from the previous computation that

$$\int_{\Omega} u(1-\zeta_k)^{q'} \Delta \phi dx \to \int_{\Omega} u \Delta \phi dx \quad \text{as } k \to \infty,$$

and

$$\lim_{k \to \infty} \int_{\Omega} u(1-\zeta_k)^{2q'-1} \nabla \zeta_k \cdot \nabla \phi dx = 0 = \lim_{k \to \infty} \int_{\Omega} u(1-\zeta_k)^{2q'-1} \phi \Delta \zeta_k dx.$$

Hence

$$-\int_{\Omega} u\Delta\phi dx + \int_{\Omega} u^q \phi w dx = 0 \tag{5.44}$$

Step 2: The condition is necessary. Let K be a compact set with positive c_q^{ω} capacity. According to [2][Th 2.5.3] there exists an extremal $\mu_k \in \mathfrak{M}_b^+(K)$ in the
dual formulation (5.39) of the capacity. According to Theorem D, problem (5.16)

with $\mu = \mu_K$ admits a positive solution which is therefore a positive solution of (5.35).

Aknowledgments The authors have been supported by the MathAmsud program 13Math-03 QUESP with fundings from CNRS, Ministère des Affaires Étrangères et Européennes, CONICET and MINCyT.

References

- [1] D. Adams. Traces of potentials II. Indiana Univ. Math. J. 22, 907-918 (1973).
- [2] D. Adams, L. Hedberg. Function spaces and potential theory. Grundleheren der Math. Wiss. **314**, Springer-Verlag (1999).
- [3] P. Baras, M. Pierre. Singularités éliminables pour des équations semi-linéaires. Ann. Inst. Fourier 34, 117-135 (1984).
- [4] Ph. Benilan, H. Brezis. Nonlinear problems related to the Thomas-Fermi equation. Unpublished paper (1975). After Benilan's death a detailed version appeared in (2003), see the next reference.
- [5] Ph. Benilan, H. Brezis. Nonlinear problems related to the Thomas-Fermi equation. Dedicated to Philippe Bénilan, J. Evol. Eq. 3, 673-770 (2003).
- [6] Ph. Benilan, H. Brezis, M. Crandall. A semilinear equation in $L^1(\mathbb{R}^N)$. Ann. Sc. Norm. Sup. Pisa Cl. di Scienze **2**, 523-555 (1975).
- [7] P. Billingsley. Convergence of probability measures. Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York (1999).
- [8] H. Brezis, F. Browder. Strongly nonlinear elliptic boundary value problems. Ann. Sc. Norm. Sup. Pisa - Cl. di Scienze 5, 587-603 (1978).
- [9] H. Brezis, M. Marcus, A. Ponce. Nonlinear Elliptic Equations with Measures Revisited. Ann. Math. Studies 163, 55-109, Princeton Univ. Press (2007).
- [10] H. Brezis, A. Ponce. Kato's inequality when Δu is a measure. C. R. Acad. Sci. Paris, Ser. I **338**, 599-604, (2004).
- [11] G. Dolzmann, N. Hungerbühler, S. Müller. Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side. J. Reine Angew. Math. 520, 1-35 (2000).

- [12] E. B. Dynkin. Superdiffusion and Positive Solutions of Nonlinear Partial Differential Equations. Amer. Math. Soc., Providence, Rhode Island, Colloquium Publications 34, 2004.
- [13] D. Feyel, A. de la Pradelle. Topologies fines et compactifications associées à certains espaces de Dirichlet. Ann. Inst. Fourier 27, 121-146 (1977).
- [14] G. Grubb, Pseudo-differential boundary problems in L_p spaces. Communications in Part. Diff. Equ. 15, 289-340 (1990).
- [15] J. Heinonen, T. Kilpeleinen, O. Martio. Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover Publishing Co (2006).
- [16] M. Marcus, L. Véron. The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case. Arch. Rat. Mech. Anal. 144, 201-231 (1998).
- [17] M. Marcus, L. Véron. Capacitary estimates of positive solutions of semilinear elliptic equations with absorption. J. Europ. Math. Soc 6, 483-527 (2004).
- [18] M. Marcus, L. Véron. Nonlinear second order Elliptic Equations involving measures. Series in Nonlinear Analysis and Applications 21, De Gruyter (2014).
- [19] T. Miyakawa. On Morrey spaces of measures: basic properties and potential estimates. *Hiroshima Math. J.* 20, 213-220 (1990).
- [20] V.G. Maz'ya. Sobolev spaces. Springer, Berlin, NewYork (1985).
- [21] V.G. Maz'ya, I. Verbitsky. Capacitary inequalities for fractional integrals with applications to partial differential equations and Sobolev multipliers, *Ark.Mat.* 3, 81-115 (1995).
- [22] B. Mselati. Classification and Probabilistic Representation of Positive Solutions of a Semilinear Elliptic Equations. Mem. Am. Math. Soc. 168, 2004.
- [23] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. North-Holland Mathematical Library vol. 18, North-Holland (1978).
- [24] H. Triebel. Theory of Function Spaces. Modern Birkhäuser Classics, Birkhäuser Verlag (1982).
- [25] H. Triebel. Theory of Function Spaces II. Modern Birkhäuser Classics, Birkhäuser Verlag (1992).
- [26] H. Triebel. Fractals and Spectra. Modern Birkhäuser Classics, Birkhäuser Verlag (1997).

- [27] J. L. Vazquez. On a semilinear equation in \mathbb{R}^2 involving bounded measures, *Proc. Roy. Soc. Edinburgh* **95A**, 181-202 (1983).
- [28] L. Véron. Singularities of solutions of second order quasilinear equations. Chapman and Hall/CRC Research Notes in Mathematics Series (1996).
- [29] L. Véron. Elliptic equations involving measures. Stationary partial differential equations, Vol. I, 593-712, Handb. Differ. Equ., North-Holland, Amsterdam (2004).
- [30] L. Véron, C. Yarur, Boundary value problems with measures for elliptic equations with singular potential, J. Functional Analysis, 262, 733-772, 2012.
- [31] V.I. Yudovich. Some estimates connected with integral operators and with solutions of elliptic equations. *Soviet Math.* 7, 746-749 (1961).