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Abstract. The purpose of this paper is to formulate sufficient existence
conditions for a critical equation involving the p(x)-Laplacian of the form
(0.1) below posed in R

N . This equation is critical in the sense that the

source term has the form K(x)|u|q(x)−2u with an exponent q that can be
equal to the critical exponent p∗ at some points of RN including at infin-
ity. The sufficient existence condition we find are local in the sense that
they depend only on the behaviour of the exponents p and q near these
points. We stress that we do not assume any symmetry or periodicity of
the coefficients of the equation and that K is not required to vanish in
some sense at infinity like in most existing results. The proof of these
local existence conditions is based on a notion of localized best Sobolev
constant at infinity and a refined concentration-compactness at infinity.
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In this paper we address the existence problem for the p(x)-Laplace oper-
ator with a source that has critical growth in the sense of the Sobolev embed-
dings. To be precise, we consider the equation

− Δp(x)u + λk(x)|u|p(x)−2u = f(x, u) in R
N , (0.1)

where λ > 0, the p(x)-Laplacian operator −Δp(x) is defined as usual as
−Δp(x)u = −div(|∇u|p(x)−2∇u) and the source term f has the form f(x, u) =
K(x)|u|q(x)−2u for some nonnegative continuous function K that has a limit
K(∞) at infinity. The exponents p, q : R

N → [1,+∞) are Log-Hölder con-
tinuous functions having a limit p(∞) and q(∞) at infinity and satisfying
1 < infRN p ≤ sup

RN p < N and 1 ≤ q(x) ≤ p∗(x) := Np(x)/(N − p(x)),
x ∈ R

N . We will assume that equation (0.1) is critical at infinity in the sense
that q(∞) = p∗(∞). Notice that the critical set A := {x ∈ R

N : q(x) = p∗(x)}
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can be non-empty as well. The main purpose of this paper is to find conditions
on the coefficients p, q, k,K to obtain the existence of a non-trivial solution
to (0.1) without any periodicity or symmetry assumptions of these coefficients
and without requiring K to vanish at infinity.

The p(x)-Laplacian, and more generally variable exponent spaces, have
been the subject of an intense research activity in the fields of both partial
differential equations and harmonic analysis. This interest comes from the
possible applications of these spaces as well as the new variety of phenomenon
that appear in comparison to the traditional setting of constant exponent
spaces.

From the point of view of applications, the p(x)-Laplacian appears in
two main applied problems. The first one deals with fluid mechanic where
this operator is useful in the modelling of the so-called electrorheological flu-
ids. These fluids have the peculiarity of modifying their mechanical properties
in presence of external factors such as electromagnetic field. We refer to M.
Ružička’s book [34] where this theory is fully developed. The second appli-
cation comes form the field of image processing where the p(x)-Laplacian is
used to design image restauration processes that behave differently according
to the smoothness of the image. This way noise can be removed from an image
preserving the boundaries. We refer to Chen et al.’s paper [16].

From the points of view of partial differential equations, we mention as
an example one striking features of the variable exponent setting and refer to
[24] and [32] for general overviews of recent results concerning PDE involv-
ing the p(x)-Laplacian. It is well-known that, in the constant exponent set-
ting, the immersion of the Sobolev space W 1,p

0 (U), with U a smooth bounded
domain, into LNp/(N−p)(U) is never compact. However in the variable setting
the immersion of W 1,p(·)(U) into Lq(·)(U) can be compact even if the critical
set {x ∈ Ū : q(x) = p∗(x)} is non-empty provided that this set is “‘small”’
and we have a control on how the exponent q reaches p∗ (see [30]). Moreover
it was recently proved in [10] that there exists an extremal for the embedding
of W

1,p(·)
0 (U) into Lq(·)(U) with q(·) ≤ p∗(·), if q is subcritical in a sufficiently

big ball.
In the constant exponent setting, equations like (0.1) in a bounded

domain with critical exponent, or in an unbounded domain with subcritical or
critical exponent, have been widely studied since the seminal paper by Aubin
[7] and Brezis-Nirenberg [14] who dealt with equations involving the Laplacian
operator. The initial motivation for the study of this kind of equations comes
from their appearance in differential geometry (the so-called Yamabé prob-
lem). Aubin’s and Brezis-Nirenberg’s results and methods have been extended
in various directions to deal with critical equations involving the 1-Laplacian,
the p-Laplacian, the bilaplacian, ... with various boundary conditions, either
in domains of R

N or on Riemannian manifolds (see e.g. [18,35–37] and the
references therein.)

In contrast there are relatively few results in the variable exponent set-
ting. Concerning the subcritical case, we mention the papers [1,3,19–21,40,41].
For the critical case, we refer to [2,4–6,27,42,43]. The authors of these papers
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prove existence and multiplicity of solutions for equation similar to (0.1). The
major difficulty in proving the existence of solutions is the possibility of a
loss of mass at infinity and, in the case of critical problem, the possibility of
concentration, either around some points or at infinity. The authors of the
aforementionned papers circumvent this problem usually assuming one or var-
ious of the following conditions: (i) some symmetry on the coefficients of the
equation (in most cases the coefficients are supposed radial) since it is well-
known since Strauss’ paper [38] (see also [28]) that the presence of symmetry
improves Sobolev embeddings, (ii) some periodicity condition since the peri-
odicity virtually reduces the problem to a problem set in an bounded domain,
(iii) perturbing f adding some subcritical term, (iv) requiring that K van-
ishes at infinity in the sense that K belongs to some Lr(·)(RN ) space or that
lim|x|→+∞ K(x) = 0.

To deal with the concentration phenomenon, the famous concentration-
compactness principle (CCP) due to Lions [29], originally formulated for crit-
ical problems in bounded domain and later extended to deal with critical
problem in unbounded domains by Chabrowski [15], is of prime importance
since it describes the concentration by a weighted sum of Dirac masses and
the loss of mass by measures “‘supported at infinity”‘. The CCP allows to
formulate existence conditions for critical equations that are local in the sense
that they rely only on the behaviour of the coefficients of the equation near
the possible concentration points.

The CCP has recently been extended to the variable exponent setting in
[13] (and independently in [39]) for a bounded domain, and in [42] and [43] for
an unbounded domain. However in these versions, the Sobolev constant used in
the statement to compare the weights of the Dirac masses is a global Sobolev
constant which does not reflects the local behaviour of the exponents p and
q near the concentrations points. A refined version of the CCP for bounded
domain was then later proved in [10] introducing the notion of localized Sobolev
constant. This notion was then used in [9] to formulate existence conditions for
an equation like (0.1) in a bounded domain relying only on the local behaviour
near concentration points. We also mention the papers [11] and [12] where
the same program as been carried for equations on a bounded domain with
nonlinear boundary conditions. A systematic and self-contained treatment of
critical Sobolev immersion and critical equations in bounded domain can be
found in the book [8].

Our purpose in this paper is twofold. First we want to prove a refined
CCP at infinity in the spirit of [15] together with a notion of localized Sobolev
constant at infinity so as to capture the behaviour of p and q at infinity. We
then want to apply this CCP to provide sufficient local existence conditions for
the equation 0.1 without any of the assumptions usually done. In particular
we will not require any periodicity or symmetry of the coefficients nor will we
require the function K to vanish in some sense at infinity. Instead we will see
that, analogously to what we did in [9–12], if K does not vanish at infinity,
then, to prevent the loss of mass or concentration at infinity, it is enough
to require that p and q have a local minimum, resp. maximum, at infinity,
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and that the hessian matrix of p or q at infinity (see definition 5.5 below) is
non-zero.

The paper is organized as follows. In the first section we collect some basic
definitions and results concerning the variable exponent Lebesgue and Sobolev
spaces that will be needed in this paper. We state the main assumptions on
the exponents p and q in the second section. We then introduce the notion
of localized best Sobolev constant at infinity in the next section and study
its relation with the usual Sobolev constant. As an application we prove in
the fourth section a refined version of the concentration-compactness principle
at infinity that we apply in the next section to obtain a sufficient condition
of existence for equation 0.1. We collect in “Appendix A” a result concern-
ing a compact embedding, which we believe has independent interest, and in
“Appendix B” the lengthy test-function computations used to prove the local
existence conditions.

1. Preliminaries on variable exponent spaces

In this section we review some preliminary results regarding Lebesgue and
Sobolev spaces with variable exponents that will be used throughout this
paper. All these results and a comprehensive study of these spaces with an
exhaustive bibliography can be found in the books [17] and [33].

1.1. Lebesgue spaces

Consider a measurable function p : R
N → [1,+∞]. The variable exponent

Lebesgue space Lp(·)(RN ) is the space of measurable functions u : RN → R

such that the following Luxembourg norm is finite:

‖u‖Lp(·)(RN ) = inf
{

λ > 0 :
∫

RN

φp(x)

( |u(x)|
λ

)
dx ≤ 1

}
< ∞,

where for t ≥ 0, φp(t) = tp if p < ∞ and φ∞(t) = 0 if t ≤ 1 and φ∞(t) = ∞ if
t > 1 (see Def. 3.2.1 and Remark 3.2.3 in [17]).

The following Hölder inequality holds (see e.g. [17][lemma 3.2.20]):

Proposition 1.1. Let p, q, s : RN → [1,+∞] be measurable functions such that

1
s(x)

=
1

p(x)
+

1
q(x)

for a.e. x ∈ R
N .

Let f ∈ Lp(·)(RN ) and g ∈ Lq(·)(RN ). Then fg ∈ Ls(·)(RN ) with

‖fg‖Ls(·)(RN ) ≤
((s

p

)+

+
(s

q

)+)
‖f‖Lp(·)(RN )‖g‖Lq(·)(RN ). (1.1)

It is usually convenient to study the so-called modular ρ(u) :=
∫
RN |u|p(x)

dx instead of the norm ‖u‖Lp(·)(RN ). The following result provide some relations
between the two (see [17][Chap 2-1]):
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Proposition 1.2. Assume that p is bounded. For u ∈ Lp(·)(RN ) and {uk}k∈N ⊂
Lp(·)(RN ), we have

u 
= 0 ⇒
(
‖u‖Lp(·)(RN ) = λ ⇔ ρ(

u

λ
) = 1

)
.

‖u‖Lp(·)(RN ) < 1(= 1;> 1) ⇔ ρ(u) < 1(= 1;> 1).

‖u‖Lp(·)(RN ) > 1 ⇒ ‖u‖p−

Lp(·)(RN )
≤ ρ(u) ≤ ‖u‖p+

Lp(·)(RN )
.

‖u‖Lp(·)(RN ) < 1 ⇒ ‖u‖p+

Lp(·)(RN )
≤ ρ(u) ≤ ‖u‖p−

Lp(·)(RN )
.

lim
k→∞

‖uk‖Lp(·)(RN ) = 0 ⇔ lim
k→∞

ρ(uk) = 0.

lim
k→∞

‖uk‖Lp(·)(RN ) = ∞ ⇔ lim
k→∞

ρ(uk) = ∞.

Assume now that 1 < p− ≤ p+ < ∞, where p− := ess − infRN p and
p+ := ess−sup

RN p. Then Lp(·)(RN ) is a separable and reflexive Banach space,
and the smooth functions with compact support are dense in Lp(·)(RN ).

1.2. Sobolev spaces

Consider a measurable function p : R
N → [1,+∞]. The variable exponent

Sobolev space W 1,p(·)(RN ) is defined by

W 1,p(·)(RN ) = {u ∈ W 1,1
loc (RN ) : u ∈ Lp(·)(RN ) and |∇u| ∈ Lp(·)(RN )}.

The corresponding norm for this space is

‖u‖W 1,p(·)(RN ) = ‖u‖Lp(·)(RN ) + ‖∇u‖Lp(·)(RN ).

As with the variable Lebesgue spaces, if 1 < p− ≤ p+ < ∞ then W 1,p(·)(RN ) is
a separable and reflexive Banach space and the smooth functions with compact
support are dense in W 1,p(·)(RN ).

As usual, we denote the conjugate exponent of p(.) by p′(x) =
p(x)/(p(x) − 1) and the Sobolev exponent by

p∗(x) =

{
Np(x)

N−p(x) if p(x) < N,

∞ if p(x) ≥ N.

The standard Sobolev embedding theorem and Poincaré inequality still
hold provided that p satisfies a regularity condition called Log-Hölder conti-
nuity (see [17]) defined by the following condition: there exists C > 0 such
that

|p(x) − p(y)| ≤ C

ln(e + 1/|x − y|) , x, y ∈ R
N , x 
= y.

Proposition 1.3. Let p : RN → [1,+∞), p+ < N , be a Log-Hölder continuous
function and let q : RN → [1,+∞) be a measurable function such that q ≤ p∗.
Then, for any bounded smooth domain U ⊂ R

N , ‖u‖ := ‖∇u‖Lp(·)(U) is a norm

in W
1,p(·)
0 (U) equivalent to the usual norm. Moreover there is a continuous

embedding from W 1,p(·)(U) into Lq(·)(U), which is also compact if q is strictly
subcritical in the sense that infU p∗ − q > 0.
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We denote by D1,p(·)(RN ) the closure of C∞
c (RN ) for the norm

‖∇u‖Lp(·)(RN ). Let us assume that p(·) is Log-Hölder continuous function and
also that there exists p(∞) := lim|x|→+∞ p(x) and a constant C ′ > 0 such
that

|p(x) − p(∞)| ≤ C ′

ln(e + |x|) for all x ∈ R
N .

Under these conditions,

Proposition 1.4. There is a continuous embedding from D1,p(·)(RN ) into
Lp∗(·) (RN ).

Once again we refer to the book [17] for full proofs of these results.

2. Assumptions on the exponents p and q

In this paper, the exponents p and q will always be measurable functions
p, q : RN → [1,+∞) satisfying the following assumptions:

(H1) p and q have a modulus of continuity ρ in the sense that for any x, h ∈
R

N ,

p(x + h) = p(x) + ρ(h), and q(x + h) = q(x) + ρ(h)

with limh→0 ρ(h) ln |h| = 0.
(H2) there exist real numbers p(∞) and q(∞) such that

lim
|x|→+∞

|p(x) − p(∞)| ln |x| = 0 and lim
|x|→+∞

|q(x) − q(∞)| ln |x| = 0

(2.1)
(H3) denoting p− := infRN p, p+ := sup

RN p, we assume that

1 < p− ≤ p+ < N and p ≤ q ≤ p∗ :=
Np

N − p
.

We denote A := {x ∈ R
N : q(x) = p∗(x)} the critical set which can be

empty or not.
We assume that ∞ is critical in the sense that q(∞) = p∗(∞).

Assumption (H1) is slightly stronger than the usual Log-Hölder continu-
ity assumption, which is natural to assume to have the Sobolev embeddings
theorems. We need this stronger version to be able to perform some test-
function computation. Assumption (H2) can be thought in the same way as
(H1) as a stronger version of a Log-Hölder continuity at infinity. Log-Hölder
continuity at infinity (also called Log-Hölder decay condition) is a classical
assumption when dealing for instance with the maximal function in R

N (see
[17][Chap.4]). Assumption (H3) says that we are assuming that the infinity is
critical. We stress that the critical set A can contain other points that ∞ where
q = p∗. The case where infinity is subcritical, in the sense that q(∞) < p∗(∞),
will be treated elsewhere.
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3. Localized best Sobolev constant at infinity

Given a smooth open subset U ⊂ R we denote by S(p(·), q(·), U) the best
Sobolev constant for the embedding of W

1,p(·)
0 (U) into Lq(·)(U), namely

S(p(·), q(·), U) := inf
u∈W

1,p(·)
0 (U), u �=0

‖∇u‖Lp(·)(U)

‖u‖Lq(·)(U)

.

Let x0 ∈ A be a critical point i.e. q(x0) = p∗(x0). Taking in the previous
definition a ball U = Bx0(ε) centered at x0 with small radius ε > 0, and
noticing that S(p(·), q(·), Bx0(ε)) is non-decreasing in ε, we can consider the
best localized Sobolev constant Sx0 at x0 defined by

Sx0 = lim
ε→0

S(p(·), q(·), Bx0(ε)) = sup
ε>0

S(p(·), q(·), Bx0(ε)). (3.1)

This notion was introduced in [10] to study precisely the concentration phe-
nomenon at x0 and obtain a refined concentration-compactness principle.

To study the Sobolev embedding at infinity, we consider in an analogous
way, the best Sobolev constant SR = S(p(·), q(·),RN \ BR) in R

N\BR, where
we denote BR := B0(R), R > 0. Noticing that SR is non-decreasing in R, we
define the localized best Sobolev constant S∞ at infinity taking the limit of
SR as R → +∞:

Definition 3.1. The localized best Sobolev constant S∞ at infinity is defined
as

S∞ = lim
R→+∞

S(p(·), q(·),RN \ BR) = sup
R>0

S(p(·), q(·),RN \ BR). (3.2)

Since the localized best Sobolev constant Sx0 depends only on the
behaviour of p and q near a critical point x0, it is natural to try to compare it
with the usual best Sobolev constant K(N, r), r ∈ [1, N), corresponding to the
embedding of the constant-exponent space D1,r(RN ), the closure of C∞

c (RN )
for the norm ‖∇u‖Lr(RN ), into LNr/(N−r)(RN ), namely

K(N, r)−r := inf
u∈C∞

c (RN ), u �=0

∫

RN

|∇u|r dx

( ∫

RN

|u| Nr
N−r dx

)N−r
N

. (3.3)

It was proved in [10] that Sx0 ≤ K(N, p(x0))−1 with equality if p has a local
minimum at x0 and q a local maximum. The next two results show that these
two properties still hold for S∞.

Proposition 3.2. Assume that ∞ is critical in the sense that q(∞) = p(∞)∗.
Then

S∞ ≤ K(N, p(∞))−1, (3.4)
where K(N, p(∞)) is defined in (3.3) (with r = p(∞)) and S∞ in (3.2).

Proof. Given φ ∈ C∞
c (RN ), φ 
≡ 0, we consider the rescaled function φλ defined

for λ > 0 small by

φλ(x) = λ
−N

p∗(xλ) φ
(x − xλ

λ

)
, (3.5)
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where the points xλ ∈ R
N are such that |xλ| ≥ 1/λ. It then follows from

assumptions (H1) and (H2) that

q(xλ + λy) = q(∞) + ε1
λ(y), p(xλ + λy) = p(∞) + ε2

λ(y), (3.6)

and
p(xλ + λy) = p(xλ) + ε3

λ(y), (3.7)
where the functions εi

λ, i = 1, 2, 2, satisfy

|εi
λ(y)| ≤ ελ with lim

λ→0
ελ ln λ = 0 (3.8)

uniformly for y in a compact set.
Fix some R > 0. Since limλ→+∞ |xλ| = +∞, we have that supp φλ ⊂

R
N\BR for λ > 0 small enough. It follows that

S(p(·), q(·),RN \ BR) ≤ lim inf
λ→0

‖∇φλ‖p(·)
‖φλ‖q(·)

. (3.9)

We now estimate each terms in the right hand side of this inequality. First, in
view of (3.6),

∫

RN

|φλ(x)|q(x) dx =
∫

RN

λ
N

(
1− (q(∞)+ε1λ(y))

(p(∞)+ε2
λ
(y))∗

)
|φ(y)|q(∞)+ε1

λ(y) dy.

Recalling that φ has compact support and that q(∞) = p(∞)∗, we deduce
using (3.8) that

lim
λ→+∞

∫

RN

|φλ(x)|q(x) dx =
∫

RN

|φ|q(∞) dx.

According to the definition of the ‖ · ‖q(·) norm we can then write

1 =
∫

RN

( φλ(x)
‖φλ‖q(·)

)q(x)

dx = (1 + o(1))‖φλ‖−q(∞)+o(1)
q(·)

∫

RN

|φ|q(∞) dx.

We then deduce that
lim
λ→0

‖φλ‖q(·) = ‖φ‖q(∞). (3.10)

We treat the gradient term analogously. First, as λ → 0,
∫

RN

|∇φλ(x)|p(x) dx =
∫

RN

λ
N

(
1− p(xλ+λy)

p∗(xλ)

)
−p(xλ+λy)|∇φ|p(xλ)+λy dy

→
∫

RN

|∇φ|p(∞) dy.

Then, writing
∫
RN

(
|∇φλ(x)|
‖∇φλ‖p(·)

)p(x)

dx = 1 as above, we deduce that

lim
λ→0

‖∇φλ‖p(·) = ‖∇φ‖p(∞). (3.11)

Coming back to (3.9), we thus deduce in view of (3.10) and (3.11) that
when q(∞) = p(∞)∗, there holds that

S(p(·), q(·),RN\BR) ≤ ‖∇φ‖p(∞),RN

‖φ‖p(∞)∗,RN
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for every φ ∈ C∞
c (RN ) and any R > 0. It follows that for any R > 0,

S(p(·), q(·),RN\BR) ≤ K−1(N, p(∞)).

Taking the limit R → +∞ yields (3.4). �

The next result gives a sufficient condition on p and q to have the equality
in (3.4). The proof follows the line of [10] with an additional difficulty. Indeed
the proof there ultimately relies on Hölder inequality in a ball Bx0(ε). Here
the analogous of this ball is the ball centered at infinity R

N\BR which has
infinite volume. To overcome this difficulty, we adapt a trick apparently due
to Nekvinda [31] which amounts to say that, for a given constant c ∈ (0, 1)
and a variable exponent ε(x), an integral like

∫
RN \BR

cε(x) dx can be made
arbitrarily small provided that ε converge fast enough to +∞ at infinity.

Theorem 3.3. If ∞ is a local maximum of q and a local minimum of p in the
sense that

p(x) ≥ p(∞) and q(x) ≤ q(∞) (3.12)

for |x| large, where p(∞) and q(∞) are given in assumption (H2), then, if
q(∞) = p∗(∞),

S∞ = K(N, p(∞))−1, (3.13)

where K(N, p(∞)) is defined in (3.3) and S∞ in (3.2).

Proof. Notice that the result is trivial if p is constant in R
N\BR for some R >

0. We thus assume from now on that the set {x ∈ R
N\BR s.t. p(x) 
= p(∞)}

has positive measure for any R > 0 big.
In view of (3.4), we only have to prove that

S∞ ≥ K−1(N, p(∞)). (3.14)

As a first step, we claim that for any R > 0 and u ∈ C∞
c (RN\BR),

‖u‖Lq(·)(Rn\BR) = R
N

q(∞) (1 + o(1))‖uR‖LqR(·)(RN \B1)
(3.15)

and

‖∇u‖Lp(·)(Rn\BR) = R
N

p(∞)∗ (1 + o(1))‖∇uR‖LpR(·)(RN \B1)
, (3.16)

where uR(x) := u(Rx), pR(x) := p(Rx), qR(x) := q(Rx), and o(1) does not
depend on u and goes to 0 as R → ∞ uniformly in y ∈ R

N\BR. We only prove
(3.15) since the proof of (3.16) is similar. We have

‖u‖Lq(·)(Rn\BR) = inf
{

λ > 0 s.t.
∫

Rn\BR

∣∣∣u(x)
λ

∣∣∣
q(x)

dx ≤ 1
}

= inf
{

λ > 0 s.t.
∫

Rn\B1

∣∣∣ uR(x)
λR−N/qR(y)

∣∣∣
qR(y)

dy ≤ 1
}

.

Notice that

R
− N

qR(y)+
N

q(∞) = exp
{ N

qR(y)q(∞)

(
q(Ry) − q(∞)

)
ln R

}



 19 Page 10 of 36 N. Saintier and A. Silva NoDEA

goes to 1 as R → ∞ uniformly in y ∈ R
N\B1 in view of (2.1) and recalling

that q is bounded. It follows that

‖u‖Lq(·)(Rn\BR) = inf
{

λ > 0 s.t.
∫

Rn\B1

∣∣∣ uR(x)
λR−N/q(∞)(1 + o(1))

∣∣∣
qR(y)

dy ≤ 1
}

,

from which we deduce (3.15).
It follows from (3.15), (3.16) and the fact that the map u ∈ C∞

c (RN\BR)
→ uR ∈ C∞

c (RN\B1) is biyective, that when q(∞) = p(∞)∗,

S(p(·), q(·),RN\BR) = (1 + o(1))S(pR(·), qR(·),RN\B1)

where o(1) → 0 as R → ∞. To conclude the proof, it thus suffices to prove
that

lim inf
R→∞

S(pR(·), qR(·),RN\B1) ≥ S(p(∞), q(∞),RN\B1).

This will hold if we can prove that for any u ∈ C∞
c (RN\B1),

‖∇u‖Lp(∞)(RN \B1) ≤ (1 + o(1))‖∇u‖LpR(·)(RN \B1)
(3.17)

and
‖u‖Lq(∞)(RN \B1) ≥ (1 + o(1))‖u‖LqR(·)(RN \B1)

. (3.18)

We prove (3.17) (the proof of (3.18) is similar). Fix some c ∈ (0, 1). Using
Hölder inequality (1.1) and the hypothesis that ∞ is a local minimum of p, we
have

‖∇u‖Lp(∞)(RN \B1) = c−1‖c∇u‖Lp(∞)(RN \B1)

≤ c−1
((p(∞)

pR

)+

+
(p(∞)

sR

)+)

×‖∇u‖LpR(·)(RN \B1)
‖c‖LsR(·)(RN \B1)

,

where sR is defined by 1
sR

= 1
p(∞) − 1

pR
and

(
p(∞)
pR

)+

= sup
RN \B1

p(∞)
pR

. It
follows from (H2) that

‖∇u‖Lp(∞)(RN \B1) ≤ c−1(1 + o(1))‖∇u‖LpR(·)(RN \B1)
‖c‖LsR(·)(RN \B1)

.

We now estimate ‖c‖LsR(·)(RN \B1)
. We write c in the form c = e−γ , γ > 0.

Then ∫

RN \B1

csR(x) dx =
∫

RN \B1

exp
(

− γ
p(∞)pR(x)

pR(x) − p(∞)

)
dx

≤
∫

RN \B1

exp
(

− γ

pR(x) − p(∞)

)
dx.

The last inequality follows from the fact that pR ≥ p(∞) ≥ 1. Fix some δ > 0
small such that γ

δ > N . Then for R big (depending on δ) we have in view of
assumption (2.1) that

0 ≤ pR(x) − p(∞) ≤ δ

ln R|x| for |x| ≥ 1.
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Then∫

RN \B1

csR(x) dx ≤
∫

RN \B1

(
R|x|

)− γ
δ

dx = R− γ
δ ωN−1

∫ +∞

1

rN−1− γ
δ dr

=
R− γ

δ ωN−1
γ
δ − N

which goes to 0 as R → ∞. Recall that we assume that the set {x ∈
R

N\B1 s.t.
sR(x) 
= ∞)} has positive measure for any R > 0 big. It follows that

∫
RN \B1

csR(x) dx > 0 so that in view of [17][Lemma 3.2.5],

‖c‖LsR(·)(RN \B1)
≤ max

{(∫

RN \B1

csR(x) dx
) 1

s
−
R ;

( ∫

RN \B1

csR(x) dx
) 1

s
+
R

}
.

As
∫
RN \B1

csR(x) dx → 0 as R → ∞ and 1
s+

R

=
(

1
sR

)−
= infRN \B1

1
p(∞) − 1

pR
=

0, we obtain ‖c‖LsR(·)(RN \B1)
≤ 1. In conclusion, for any c ∈ (0, 1) we have for

R big enough depending on c only that

‖∇u‖Lp(∞)(RN \B1) ≤ c−1(1 + o(1))‖∇u‖LpR(·)(RN \B1)
.

(3.17) follows. �

Observe that if, in the proof of prop 3.2, we take λ → +∞ with
|xλ| � λ, we can easily show that S∞ = 0 if ∞ is subcritical in the sense that
q(∞) < p(∞)∗. The details are given in the proof of the next proposition below.
Conversely it seems natural to expect that S∞ > 0 if ∞ is critical. The proof
happens to be non-trivial. To see the difficulty, notice that the proof of this fact
in the constant exponent case goes as follows: we assume that K(n, p)−1 = 0
so that there exists a sequence (uk)k of compactly supported smooth function
such that

∫ |∇uk|p dx → 0 and
∫ |uk|p∗ dx = 1. Using the invariance by trans-

lation and dilatation of the norm, we can assume that each uk is supported in
the unit ball B and then use the embedding W 1,p

0 (B) ↪→ Lp∗
(B) to obtain a

contradiction.
Since the invariance by translation and dilatation is lost in the variable

exponent setting, this scheme of proof does not work anymore. Instead we will
translate the problem to the sphere using the stereographic projection.

In the course of the proof we will need a Hardy inequality which is essen-
tially a particular case of a general result proved in [22].

Proposition 3.4. For any v ∈ D1,p(·)(RN ), we have that |x|−1v ∈ Lp(·)(RN )
and there exists a constant C > 0 independent of v such that

‖|x|−1v‖Lp(·)(RN ) ≤ C‖∇v‖Lp(·)(RN ). (3.19)

Proof. Let I1u(x) =
∫
RN

u(y)
|x−y|N−1 dy be the fractional integral of u. As a par-

ticular case of [22][Thm 4.1], we have the existence of a constant C > 0 such
that for any u ∈ Lp(·)(RN ), |x|−1I1u ∈ Lp(·)(RN ) with

‖|x|−1I1u‖Lp(·)(RN ) ≤ C‖u‖Lp(·)(RN ).
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Taking u = |∇v| with v ∈ D1,p(·)(RN ), we obtain

‖|x|−1I1(|∇v|)‖Lp(·)(RN ) ≤ C‖∇v‖Lp(·)(RN ).

Independently, it is well-known (see e.g. [23][Lemma 7.14]) that for any v ∈
C∞

c (RN ), |v| ≤ C(N)I1(|∇v|) with a constant C(N) depending only on N .
The result easily follows. �

Our result is the following:

Proposition 3.5. There holds that S∞ > 0 if and only if q(∞) = p(∞)∗.

Proof. Assume that q(∞) < p∗(∞). As in the proof of prop. 3.2, we fix some
φ ∈ C∞

c (RN ), φ 
≡ 0, and consider for λ → +∞ the rescaled functions φλ

defined by (3.5), where the points xλ ∈ R
N are such that limλ→+∞

|xλ|
λ = +∞.

It then follows from assumption (H1)–(H2) that for y in a compact set, we can
write (3.6)–(3.8) and, since supp φλ ⊂ R

N − BR for λ big, also (3.9). Then as
before, we have

∫

RN

|φλ(x)|q(x) dx = λ
N

(
1− (q(∞)+ελ)

(p(∞)+ελ)∗

) ∫

RN

|φ(y)|q(∞)+ελ dy.

As lim infλ→+∞ 1 − q(∞)+ελ

(p(∞)+ελ)∗ > 0, we have
∫
RN |φλ(x)|q(x) dx → ∞. On the

other hand, as before limλ→+∞
∫
RN |∇φλ(x)|p(x) dx =

∫
RN |∇φ|p(∞) dy. We

conclude that S∞ = 0.
Assume now that q(∞) = p(∞)∗. Let Φ : SN\{P} → R

N be the stereo-
graphic projection centered at the north pole P of the sphere SN . It is well-
known (see e.g. [26][lemma 3.4]) that the pull-back by Φ−1 of the standard
metric h of SN is the metric conformal to the Euclidean metric ξ given by

(Φ−1)∗h = φξ with φ(x) = 4(1 + |x|2)−2.

In particular for any function u : SN\{P} → R there hold∫

SN

u dvh =
∫

RN

u ◦ Φ−1 dv(Φ−1)∗h =
∫

RN

(u ◦ Φ−1)φN/2 dx

and

|∇u|2h = |∇(u ◦ Φ−1)|2ξ ◦ Φ.

To a function u : RN → R with compact support, we associate a function
û : SN → R with compact support in S

N − {P} defined by

û = (uφβ) ◦ Φ where 2β := − N

q(∞)
= 1 − N

p(∞)
. (3.20)

We also define the exponent p̂ and q̂ on Sn by

p̂ = p ◦ Φ and q̂ = q ◦ Φ. (3.21)

We first claim that if u ∈ Lq(·)(RN ) is supported in R
N\BR then∫

SN

|û|q̂(·) dvh = (1 + oR(1))
∫

RN

|u|q(·) dx, (3.22)
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where limR→+∞ oR(1) = 0 uniformly in u. Indeed
∫

SN

|û|q̂(·) dvh =
∫

RN

|uφβ |q(·) dvφξ =
∫

RN \BR

|u|q(·)φβq(·)+N/2 dx

with βq(x) + N/2 = n
2q(∞) (q(∞) − q(x)). Using (H2), it is easy to see that

lim|x|→+∞ φ(x)βq(x)+N/2 = 1 which proves the claim.
We now claim that there exists a constant C > 0 such that for any

u ∈ C1(RN ),
∫

SN

|∇û|p̂(·)
h dvh ≤ C

∫

RN

|∇u|p(·) dx + C

∫

RN

|u|p(·)

|x|p(·) dx. (3.23)

To prove this we begin writing that
∫

SN

|∇û|p̂(·)
h dvh =

∫

RN

|∇(uφβ)|p(·)
φξ dvφξ =

∫

RN

|∇(uφβ)|p(·)
ξ φ

N−p(·)
2 dx

≤ C

∫

RN

|∇u|p(·)φβp(·)+ N−p(·)
2 dx + C

∫

RN

|u|p(·)|∇φ|p(·)φ(β−1)p(·)+ N−p(·)
2 dx

≤ C

∫

RN

|∇u|p(·)φ
N

2p(∞) (p(∞)−p(x)) dx

+C

∫

RN

|u|p(·)
( |∇φ|

φ

)p(·)
φ

N
2p(∞) (p(∞)−p(x)) dx.

As before, using (H2) we see that lim|x|→+∞ φ(x)
N

2p(∞) (p(∞)−p(x)) = 1. We thus
obtain

∫

SN

|∇û|p̂(·)
h dvh ≤

∫

RN

|∇u|p(·) dx +
∫

Rn

|u|p(·)
( |∇φ|

φ

)p(·)
dx.

Moreover direct computation shows that |∇φ|
φ = 4|x|

1+|x|2 ≤ C
|x| . The result fol-

lows.
We can now prove that S∞ > 0. Assume on the contrary that S∞ = 0.

In particular SR = 0 for any R > 0. We can thus find smooth functions uR,
R > 0, compactly supported in R

N\BR such that

lim
R→+∞

‖∇uR‖p(·) = 0 and ‖uR‖q(·) = 1. (3.24)

Then in view of (3.22) and (3.23), the functions ûR defined on S
N from uR

according to (3.20) satisfies
∫

SN

|ûR|q̂ dvh = 1 + oR(1) (3.25)

and ∫

SN

|∇ûR|p̂(·)
h dvh ≤ oR(1) + C

∫

RN

|uR|p(·)

|x|p(·) dx
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Using Hardy inequality (3.19), we see that the integral in the right hand side
is oR(1) since

∫

RN

|uR|p(·)

|x|p(·) dx ≤ max
{

‖|x|−1uR‖p+

Lp(·)(RN )
, ‖|x|−1uR‖p−

Lp(·)(RN )

}

≤ C max
{

‖∇uR‖p+

Lp(·)(RN )
, ‖∇uR‖p−

Lp(·)(RN )

}

= oR(1).

We thus deduce that ∫

SN

|∇ûR|p̂(·)
h dvh = oR(1). (3.26)

We now obtain a contradiction between (3.25) and (3.26). To see this denote
by Ψ : SN\{S} → R

N the stereographic proyection from the south pole S, and
consider the functions ûR ◦Ψ−1 and the exponents p̂◦Ψ−1 and q̂ ◦Ψ−1. Recall
that the ûR are supported in ball of SN centered at P whose radius becomes
smaller and smaller as R → +∞. Since the pullback by Ψ−1 of h restricted to
these balls is a metric in B1 ⊂ R

N bounded above and below by (1 + ε)ξ and
(1 − ε)ξ for arbitrary small ε, we obtain as before that

∫

B1

|∇(ûR ◦ Ψ−1)|p̂◦Ψ−1
dx = oR(1),

and
∫

B1

|ûR ◦ Ψ−1|q̂◦Ψ−1
dx ≥ 1 + oR(1).

Recalling that ûR ◦ Ψ−1 ∈ C∞
c (B1) for R big, this contradicts the Poincare

inequality in B1. �

As an easy but useful corollary we have that

Corollary 3.6. If q(∞) = p(∞)∗, then D1,p(·)(RN ) ↪→ Lq(·)(RN ).

Proof. As R → +∞, we have that SR := S(p(·), q(·),RN \BR) → S∞ > 0. We
can thus take R > 0 such that SR > 0. Let η : RN → [0, 1] be a C∞ function
with compact support in B2R and such that η = 1 in BR. We then descompose
a function u ∈ C∞

c (RN ) as u = ηu + (1 − η)u. Since (1 − η)u is supported in
R

N \ BR, we have

‖u‖Lq(·)(RN ) ≤ ‖ηu‖Lq(·)(RN ) + ‖(1 − η)u‖Lq(·)(RN ) ≤ ‖u‖Lq(·)(B2R)

+S−1
R ‖∇((1 − η)u)‖Lp(·)(RN )

≤ ‖u‖Lq(·)(B2R) + S−1
R ‖u‖Lp(·)(B2R) + S−1

R ‖∇u‖Lp(·)(RN \BR)

We conclude using the embedding D1,p(·)(RN ) ↪→ Lp∗(·)(RN ) ↪→ Lq(·)(B2R) ∩
Lp(·)(B2R). �
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4. Concentration–compactness principle at infinity

This section is devoted to the description of the default of compactness of a
sequence of functions (un)n ⊂ D1,p(·)(RN ). This will be done by establishing
a version of Lions’concentration-compactness principle (CCP) in that setting.

The CCP originally due to P.L. Lions [29] was established in the frame-
work of constant-exponent spaces over a bounded domain. It explains the
possible loss of compactness of the un by their weak convergence to Dirac
masses. The weights of the Dirac masses are related to the best sobolev con-
stant (3.3). It was later extended by Chabrowski [15] to unbounded domain,
still for constant-exponent spaces, by introducing measures supported at infin-
ity related to the best sobolev constant (3.3). An extension to variable expo-
nent spaces over a bounded domain was done independently in [13] and [39],
and over unbounded domain by [42]. In those papers the weights of the Dirac

masses are related to the Sobolev constant infu∈C∞
c (RN )

‖∇u‖
Lp(·)(RN )

‖u‖
Lq(·)(RN )

. Notice

that this Sobolev constant is global in the sense that it depends on the
behaviour of p and q in all RN . This is not satisfactory since a Dirac mass
is supported at a single point and thus the weights should depend only on
the behaviour of p and q near that point. A refined version of the CCP was
proven in [10] where the weights of the Dirac masses are related to the localized
Sobolev constant (3.1).

The purpose of this section is to state a CCP in R
N where the weight of

the “‘Dirac mass at infinity”’ is related to the localized Sobolev constant at
infinity (3.2).

Theorem 4.1. Assume that ∞ is critical in the sense that q(∞) = p(∞)∗. Let
(un)n ⊂ D1,p(·)(RN ) be a weakly convergent to u ∈ D1,p(·)(RN ). Then there
exist two bounded measures μ and ν, an at most enumerable set of indices
I, points xi ∈ A (the critical set defined in (H3)), and positive real numbers
μi, νi, i ∈ I, such that the following convergence hold weakly in the sense of
measures,

|∇un|p(x) dx ⇀ μ ≥ |∇u|p(x) dx +
∑

μiδxi
, (4.1)

|un|q(x) dx ⇀ ν := |u|q(x) dx +
∑

νiδxi
, (4.2)

Sxi
ν

1
p(xi)

∗
i ≤ μ

1
p(xi)

i for all i ∈ I, (4.3)

where Sxi
is the localized Sobolev constant at the point xi defined in (3.1).

Moreover, if we define

ν∞ = lim
R→∞

lim sup
n→∞

∫

|x|>R

|un|q(x) dx,

μ∞ = lim
R→∞

lim sup
n→∞

∫

|x|>R

|∇un|p(x) dx,
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then

lim sup
n→∞

∫

RN

|∇un|p(x) dx = μ(RN ) + μ∞, (4.4)

lim sup
n→∞

∫

RN

|un|q(x) dx = ν(RN ) + ν∞, (4.5)

S∞ν
1

q(∞)∞ ≤ μ
1

p(∞)∞ , (4.6)

where S∞ is the localized Sobolev constant at infinity defined in (3.2).

The first part of the theorem, namely (4.1)–(4.3), was proved in [10].
The 2nd part, namely (4.4)–(4.6) was proved in [42] but with a global Sobolev
constant in (4.3). The main contribution of the present theorem is inequality
(4.6) with the presence of the localized Sobolev constant at infinity. This will
allow us to formulate in the next sections a local condition at infinity for the
existence of a solution to (0.1).

Proof. Observe first that since ∞ is critical, we have in view of corollary 3.6
that (un)n is bounded in Lq(·)(RN ) which implies the existence of the finite
measure ν. We then refer to [10] for the proof of (4.1)–(4.3) and concentrate
on (4.4)–(4.6).

A detailed proof of (4.4)–(4.5) can be found in [42][thm 2.5]. We briefly
sketch it for the sake of completeness.

Consider a smooth function φ : [0,+∞) → [0, 1] such that φ ≡ 0 in
[0, 1] and φ ≡ 1 in [2,+∞). Then φR(x) := φ(|x|/R) is smooth and satisfies
φR(x) = 1 for |x| ≥ 2R, φR(x) = 0 for |x| ≤ R and 0 ≤ φR(x) ≤ 1. We then
write that∫

RN

|∇un|p(x) dx =
∫

RN

|∇un|p(x)φR dx +
∫

RN

|∇un|p(x)(1 − φR) dx. (4.7)

Observe first that∫

{|x|>2R}
|∇un|p(x) dx ≤

∫

RN

|∇un|p(x)φ
p(x)
R dx ≤

∫

{|x|>R}
|∇un|p(x) dx

so that

μ∞ = lim
R→∞

lim sup
n→∞

∫

RN

|∇un|p(x)φ
p(x)
R dx. (4.8)

In the same way

ν∞ = lim
R→∞

lim sup
n→∞

∫

RN

|un|q(x)φ
q(x)
R dx. (4.9)

On the other hand, since 1 − φR is smooth with compact support, we have by
definition of μ that for R fixed,

lim
n→+∞

∫

RN

(1 − φR)|∇un|p(x) dx =
∫

RN

(1 − φR) dμ.

Noticing that limR→+∞
∫
RN φR dμ = 0 by dominated convergence, we obtain

lim
R→∞

lim sup
n→∞

∫

RN

(1 − φR)|∇un|p(x) dx = μ(RN ). (4.10)



NoDEA Equations involving the p(x)-Laplacian... Page 17 of 36  19 

Plugging (4.8) and (4.10) into (4.7) yields (4.4). The proof of (4.5) is similar.
We prove (4.6). By definition of SR = S(p(·), q(·),RN \BR) we can write

that

SR‖unφR‖Lq(·)(RN \BR) ≤ ‖∇(unφR)‖Lp(·)(RN \BR)

≤ ‖(∇un)φR‖Lp(·)(RN \BR)

+‖un∇φR‖Lp(·)(B2R\BR). (4.11)

Observe that since un → u in L
p(·)
loc (RN ) we have

lim sup
n→+∞

∫

B2R\BR

|un|p(x)|∇φR|p(x) dx

=
∫

B2R\BR

|u|p(x)|∇φR|p(x) dx

≤ C‖|u|p(·)‖
L

p∗(·)
p(·) (B2R\BR)

‖|∇φR|p(·)‖
L

N
p(·) (RN )

≤ C‖|u|p(·)‖
L

p∗(·)
p(·) (B2R\BR)

.

Since u ∈ Lp∗(·) we deduce that

lim
R→+∞

lim sup
n→+∞

‖un∇φR‖Lp(·)(B2R\BR) = 0. (4.12)

Independently, letting p+
R = sup|x|≥R p(x) and p−

R = inf |x|≥R p(x), we have

‖(∇un)φR‖Lp(·)(RN \BR) ≤ max

{(∫

RN

|(∇un)φR|p(x) dx

) 1
p
+
R ,

(∫

RN

|(∇un)φR|p(x) dx

) 1
p

−
R

}

Given ε > 0 we then have for R big that

‖(∇un)φR‖Lp(·)(RN \BR) ≤ max

{(∫

RN

|(∇un)φR|p(x) dx

) 1
p(∞)−ε

,

(∫

RN

|(∇un)φR|p(x) dx

) 1
p(∞)+ε

}
.
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Analogously,

‖unφR‖Lq(·)(RN \BR) ≥ min

{(∫

RN

|unφR|q(x) dx

) 1
q+

,

(∫

RN

|unφR|q(x) dx

) 1
q−

}

≥ min

{(∫

RN

|unφR|q(x) dx

) 1
q(∞)−ε

,

(∫

RN

|unφR|q(x) dx

) 1
q(∞)+ε

}
.

Assume for instance that there exists R0 such that
∫
RN |(∇un)φR0 |p(x) dx < 1

and
∫
RN |unφR0 |q(x) dx<1 so that

∫
RN |(∇un)φR|p(x) dx<1 and

∫
RN |unφR0 |q(x)

dx < 1 for all R > R0. The others cases can be handled similarly. Then (4.11)
gives for R big,

SR

(∫

RN

|unφR|q(x) dx

) 1
q(∞)−ε

≤
(∫

RN

|(∇un)φR|p(x) dx

) 1
p(∞)+ε

+‖un∇φR‖Lp(·)(B2R\BR).

Taking limit as n → ∞ and then as R → ∞, we obtain in view of (4.8), (4.9)
and (4.12) that

S∞ν
1

q(∞)−ε∞ ≤ μ
1

p(∞)+ε∞

for any ε > 0. We thus deduce (4.6). �

5. Local existence condition for equation (0.1)

In this section we use the CCP at infinity Theorem 4.1 to obtain local existence
condition for an equation like (0.1) namely

−Δp(x)u + λk(x)|u|p(x)−2u = K(x)|u|q(x)−2u in R
N .

Besides assumptions (H1), (H2), (H3) we will also assume in this section that
(H4) the nonlinearity is superlinear in the sense that q− > p+ where p+ =

sup
RN p and q− = infRN q.

(H5) k : RN → [0,+∞) is continuous bounded and such that the embedding
from D1,p(·)(RN ) into Lp(·)(RN , k dx) is compact.

(H6) K : RN → [0,+∞) is continuous and has a limit at infinity K(∞) :=
lim|x|→+∞ K(x).

A sufficient condition on k for the compact embedding in (H5) to hold is
given in prop. 5.7 in “Appendix A”. It follows in particular that the infimum

infu∈D1,p(·)(RN )

∫
RN |∇u|p(x) dx∫
RN |u|p(x) kdx

is positive. Then there exists C, λ0 > 0 such that
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for any u ∈ D1,p(·)(RN ) and any λ > −λ0,

A

∫

RN

|∇u|p(x) dx + λ

∫

RN

k|u|p(x) dx ≥ C

∫

RN

|∇u|p(x) dx (5.1)

where A := 1/p+−1/q−

1/p−−1/q− ∈ (0, 1]. Notice that A = 1 only when p is constant.
In that case we can take for λ0 the first eigenvalue in the problem −Δpu =
λk|u|p−2u and the restriction λ > −λ0 becomes standard. From now on we
will assume that λ > −λ0.

We will look for a solution of (0.1) as a critical point of the associated
functional

F(u) :=
∫

RN

|∇u|p(x)

p(x)
+ λk(x)

|u|p(x)

p(x)
− K(x)

|u|q(x)

q(x)
dx, u ∈ D1,p(·)(RN ).

(5.2)
Recall that a sequence (un)n∈N ⊂ D1,p(·)(RN ) is a Palais-Smale sequence (P-
S for short) for F if the sequence (F(un))n is bounded and F ′(un) → 0 in
D1,p(·)(RN )′. Moreover F is said to satisfy the P-S condition at level c if
any P-S sequence (un)n ⊂ D1,p(·)(RN ) for F such that F(un) → c has a
subsequence strongly convergent in D1,p(·)(RN ). We will prove that F satisfies
the P-S condition at level small enough depending on the localized Sobolev
constant Sx, x ∈ A, and S∞.

We first prove a preliminary lemma which is more or less classical.

Lemma 5.1. Let (un)n ⊂ D1,p(·)(RN ) be a Palais-Smale sequence for F . Then,
up to a subsequence, there exists u ∈ D1,p(·)(RN ) such that un → u weakly in
D1,p(·)(RN ) and u is a weak solution of (0.1) with F(u) ≥ 0.

Moreover letting μ, ν, μi, νi, μ∞, ν∞ be as in the concentration-compact-
ness principle Theorem 4.1 when applied to (un)n we have the following esti-
mates:

νi ≥ SN
xi

K(xi)
− N

p(xi) , μi ≥ SN
xi

K(xi)
1− N

p(xi) if K(xi) > 0, (5.3)
μi = νi = 0 if K(xi) = 0, (5.4)

and a similar result at infinity:

ν∞ ≥ SN
∞K(∞)− N

p(∞) , μ∞ ≥ SN
∞K(∞)1− N

p(∞) if K(∞) > 0, (5.5)
μ∞ = ν∞ = 0 if K(∞) = 0. (5.6)

Proof. The proof is more or less classical so we will be sketchy. We first
prove that (un)n is bounded in D1,p(·)(RN ). Recalling the definition of a P-S
sequence, it is easily seen that

C + o(1)‖un‖D1,p(·)(RN ) ≥F(un) − 1
q− 〈F ′(un), un〉

≥
(

1
p+

− 1
q−

) ∫

RN

|∇un|p(x) dx

+
∫

RN

(
1

p(x)
− 1

q−

)
λk|un|p(x) dx.
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The claim will follow if we can prove that the rhs is greater than C
∫
RN |∇u|p(x)

dx. This is trivial if λ ≥ 0. If λ < 0, writing that 1
p(x) − 1

q− ≤ 1
p− − 1

q− and
using (5.1), we see that the rhs is greater than
(

1
p− − 1

q−

){
A

∫

RN

|∇u|p(x) dx + λ

∫

RN

k|u|p(x) dx
}

≥ C

∫

RN

|∇u|p(x) dx

from which we deduce the claim.
Up to a subsequence we can thus assume that (un)n weakly converges in

D1,p(·)(RN ) to some u, and then also that the convergence holds in L
r(·)
loc (RN )

for any strictly subcritical variable exponent r. Moreover since the embed-
ding from D1,p(·)(RN ) into Lp(·)(k dx,RN ) is compact, we also have that
u ∈ Lp(·)(k dx,RN ) and un → u in Lp(·)(k dx,RN ).

Estimates (5.3)–(5.6) are a direct consequence of (4.3), (4.6) and the
following:

μi = νiK(xi) for any i ∈ I, (5.7)

and
μ∞ = K(∞)ν∞. (5.8)

To prove (5.7), we fix a concentration point xi, a smooth function
φ : R

N → [0, 1] with compact support in B2 such that φ = 1 in B1, and
consider φδ(x) := φ(|x − xi|/δ). Notice that the sequence (unφδ)n is bounded
in D1,p(·)(RN ) since (un)n is bounded in in D1,p(·)(RN ) and in Lp(·)(Bxi

(2δ)).
We then write that

o(1) = 〈F ′(un), unφδ〉
=

∫

RN

|∇un|p(x)φδ dx −
∫

RN

K|un|q(x)φδ dx

+
∫

RN

un|∇un|p(x)−2∇un∇φδ dx

+λ

∫

RN

k|un|p(x)φδ dx.

Since un → u in L
p(·)
loc (RN ) we obtain by passing to the limit n → +∞ that

∫

RN

φδ dμ −
∫

RN

Kφδ dν +
∫

RN

k|u|p(x)φδ dx

= − lim
n→+∞

∫

RN

un|∇un|p(x)−2∇un∇φδ dx. (5.9)

Observe that
∣∣∣
∫

RN

(un − u)|∇un|p(x)−2∇un∇φδ dx
∣∣∣

≤ C

δ
‖un − u‖Lp(·)(Bxi

(2δ))‖|∇un|p(x)−1‖
L

p(·)
p(·)−1 (RN )

≤ C

δ
‖un − u‖Lp(·)(Bxi

(2δ))
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which goes to 0 as n → +∞ for δ fixed. Moreover
∣∣∣
∫

RN

u|∇un|p(x)−2∇un∇φδ dx
∣∣∣

≤ C

δ
‖|∇un|p(x)−1‖

L
p(·)

p(·)−1 (RN )
‖u‖Lp∗(·)(Bxi

(2δ))‖1‖LN (Bxi
(2δ))

≤ C‖u‖Lp∗(·)(Bxi
(2δ))

where the constant C does not depend on n. We thus obtain from (5.9) that
∫

RN

φδ dμ −
∫

RN

Kφδ dν + λ

∫

Bxi
(2δ)

k|u|p(x)φδ dx = O
(
‖u‖Lp∗(·)(Bxi

(2δ))

)
.

Letting δ → 0 then gives (5.7).
To prove (5.8), we fix φ : R

N → [0, 1] smooth such that φ ≡ 0 in B1

and φ ≡ 1 in R
N\B2, and then consider φR(x) := φ(x/R). Notice that for a

given R > 0, the sequence (unφR)n is bounded in D1,p(·)(RN ) since (un)n is
bounded in D1,p(·)(RN ) and also in Lp(·)(B2R \ BR). Then

o(1) = 〈F ′(un), unφR〉
=

∫

RN

|∇un|p(x)φ
p(x)
R dx −

∫

RN

K|un|q(x)φ
q(x)
R dx

+
∫

RN

un|∇un|p(x)−2∇un∇φR dx

+λ

∫

RN

k|un|p(x)φ
p(x)
R dx.

=: An − Bn + Cn + λDn. (5.10)

In view of (4.8) and (4.9),

lim
R→+∞

lim sup
n→+∞

An = μ∞ and lim
R→+∞

lim sup
n→+∞

Bn = K(∞)ν∞.

Independently, since un → u in L
p(·)
loc (RN ) we have for a fixed R that

∣∣∣
∫

RN

(un − u)|∇un|p(x)−2∇un∇φR dx
∣∣∣

≤ C

R
‖un − u‖Lp(·)(B2R\BR)‖|∇un|p(·)−1‖

L
p(·)

p(·)−1 (RN )

≤ C

R
‖un − u‖Lp(·)(B2R\BR)

which goes to 0 as n → +∞. Moreover,
∣∣∣
∫

RN

u|∇un|p(x)−2∇un∇φR dx
∣∣∣

≤ ‖u‖Lp∗(·)(RN \BR)‖|∇un|p(·)−1‖
L

p(·)
p(·)−1 (RN )

‖∇φR‖N

≤ C‖u‖Lp∗(·)(RN \BR)
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which goes to 0 as R → +∞ uniformly in n. We deduce that

lim
R→+∞

lim sup
n→+∞

Cn = 0.

Eventually, since un → u in Lp(·)(k dx,RN ) and u ∈ Lp(·)(k dx,RN ),

lim
R→+∞

lim
n→+∞ Dn = lim

R→+∞

∫

RN

k|u|p(x)φ
p(x)
R dx

≤ lim
R→+∞

∫

{|x|≥R}
k|u|p(x) dx = 0.

Thus letting n → +∞ and then R → +∞ in (5.10) yields (5.8).
It follows from (5.3)–(5.4) that there are at most a finite number of

concentration points. Mimicking the proof of [43][Thm 3.1], we can prove that
∇un → ∇u a.e. and then that u is a weak solution of (0.1). Recalling that
p+ < q− and that K is non-negative it is then easily seen that F(u) ≥ 0.
Indeed

F(u) ≥
∫

RN

1
p(x)

(
|∇u|p(x) + λk(x)|u|p(x)

)
dx − 1

q−

∫

RN

K(x)|u|q(x) dx

=
∫

RN

( 1
p(x)

− 1
q−

) (
|∇u|p(x) + λk(x)|u|p(x)

)
dx.

It is easily proved, in the same way we proved that (un)n is bounded in
D1,p(·)(RN ), that the r.h.s is greater than C

∫
RN |∇u|p(x) dx which is non-

negative. �
The previous lemma gives easily the following

Proposition 5.2. The functional F defined in (5.2) verifies the PS condition
at level c for all real numbers c satisfying

c < inf
x∈A∪{∞}, K(x)>0

1
N

SN
x K(x)1− N

p(x) .

Proof. Let (un)n be a PS sequence for F of level c. Up to a subsequence, we can
assume that (un)n converges to some u weakly in in D1,p(·)(RN ) and strongly
in Lp(·)(RN ). Let μ, ν, μi, νi, μ∞, ν∞ be as in the concentration-compactness
principle Theorem. 4.1 when applied to (un)n. Then

c = lim
n→∞ F(un) =

∫

RN

1
p(x)

dμ +
∫

RN

k(x)
p(x)

|u|p(x) dx −
∫

RN

1
q(x)

dν

≥ F(u) +
∑

i

{ μi

p(xi)
− K(xi)νi

p(xi)∗
}

+
μ∞

p(∞)
− K(∞)ν∞

q(∞)
.

Since F(u) ≥ 0, we deduce, using (5.7), (5.8) and (5.3)–(5.6), that

c ≥
∑

x∈{xi, i∈I}∪{∞}, K(x)>0

1
N

SN
x K(x)1− N

p(x)

from which the result follows. �
A direct application of the Mountain-pass theorem combined with propo-

sition 5.2 then yields the following existence condition:
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Theorem 5.3. Assume (H1)–(H6) and that there exists v ∈ D1,p(·)(RN ) such
that

sup
t>0

F(tv) < inf
x∈A∪{∞}, K(x)>0

1
N

SN
x K(x)1− N

p(x) . (5.11)

Then there exists λ∗ > 0 such that (0.1) has a non-trivial solution for any
λ > −λ∗.

Notice that if ∞ is subcritical, i.e. q(∞) < p(∞)∗, then S∞ = 0 in view of
prop. 3.5. In that case the right hand side in (5.11) becomes non-positive and
the Theorem becomes useless. The reason is that (5.5) reduces to μ∞, ν∞ ≥ 0
which gives no information about the loss of mass at infinity. To solve this
problem, the definition of S∞ must be modified. The results we obtained in
that case will be presented elsewhere.

Proof. Notice first that F has the mountain-pass geometry. Indeed F(0) = 0
and, if ‖u‖D1,p(·)(RN ) = r is small enough, then using the coercivity assumption
(5.1) and Cor. 3.6, we have

F(u) ≥ 1
p+

∫

RN

|∇u|p(x) dx +
∫

RN

λ

p(x)
k|u|p(x) dx − 1

q− max
{

‖u‖q+

q(·), ‖u‖q−

q(·)
}

so that

p+F(u) ≥
∫

RN

|∇u|p(x) +
λp+

p(x)
k|u|p(x) dx

−C max
{

‖u‖q+

D1,p(·)(RN )
, ‖u‖q−

D1,p(·)(RN )

}
.

Notice that the integral in the rhs is greater than C
∫
RN |∇u|p(x) dx if λ >

−λ0p−

Ap+ =: −λ∗. Thus F(u) ≥ Crp+ − Crq−
which is positive by (H4).

Let v ∈ D1,p(·)(RN ) satisfying (5.11). It easily follows from (H4) that
F(tu) < 0 for t > 0 big. In view of proposition 5.2, we can then apply the
Mountain-pass theorem to obtain a critical point of F . �
Proposition 5.4. The infimum in the r.h.s. of (5.11) is attained at some point
of A ∪ {∞}.
Proof. We first prove that the function x ∈ A → Sx is lower semi-continuous.
Consider x0 ∈ A, (xn)n ⊂ A such that xn → x0 and fix some ε > 0. There
exists n(ε) ∈ N such that Bxn

(ε/3) ⊂ Bx0(ε) for n ≥ n(ε). It follows that

S(p(·), q(·), Bx0(ε)) ≤ S(p(·), q(·), Bxn
(ε/3)) ≤ Sxn

for n ≥ n(ε). Then lim infn→+∞ Sxn
≥ S(p(·), q(·), Bx0(ε)) for any ε. Letting

ε → 0 gives lim infn→+∞ Sxn
≥ Sx0 .

To prove the proposition, it thus suffices to prove that this function
is also lower semi-continuous at infinity in the sense that for any sequence
xn ∈ A such that |xn| → +∞, there holds lim infn→+∞ Sxn

≥ S∞. Fix
some R > 0 and then n0 ∈ N such that |xn| ≥ R + 1. Then for n ≥
n0, Bxn

(ε) ⊂ R
N\BR for any ε < 1. It follows that for such n and ε,

S(p(·), q(·), Bxn
(ε)) ≥ S(p(·), q(·),RN\BR). Taking the limit in ε and then in

n gives lim infn→+∞ Sxn
≥ S(p(·), q(·),RN\BR). We obtain the result taking

the limit R → +∞. �
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Assume that the infimum in the right hand side of (5.11) is attained
at a point x0 ∈ A. According to the result in [9], the condition (5.11) will
hold for some v if p and q are C2 in a neighborhood of x0, p (resp. q) has a
local minimum (resp. maximum) at x0 and at least one of the hessian matrix
D2p(x0) or D2q(x0) is non-zero. We will now see that the same kind of result
holds if the infimum in the right hand side of (5.11) is attained at infinity. To
do this we need the following definition:

Definition 5.5. We say that a function f : R
N → R has a Taylor expan-

sion of order 2 at ∞, or equivalently that f is C2 at infinity, if there exists
f(∞), a1, .., aN ∈ R and ai,j ∈ R, i, j = 1, .., N , such that

f(x) = f(∞) +
N∑

i=1

ai
xi

|x|2 +
1
2

N∑
i,j=1

ai,j
xixj

|x|4 + o
( 1

|x|2
)
, |x| � 1. (5.12)

We say that a1, .., aN are the first order partial derivatives of f at ∞ and that
the ai,j are the second-order partial derivatives of f at ∞.

We denote ∂if(∞) := ai, ∇f(∞) := (∂1f(∞), ..., ∂Nf(∞)) the gradient
of f at ∞, ∂ijf(∞) := ai,j and D2f(∞) := (∂ijf(∞))i,j=1,..,N ∈ R

N×N the
Hessian matrix of f at ∞.

Notice that the usual algebraic rules of computations of partial derivatives
apply for the partial derivatives at ∞.

This definition is justified by the following argument. Denoting by ΦN :
S

N − {P} → R the stereographic projection from the north pole P , we can
define f̃ : SN → R by f̃ = f ◦ΦN . Then, if there exists f(∞) := lim|x|→∞ f(x),
f̃ is continuous on S

N , and studying f near ∞ is equivalent to study f̃ near
P . To do so we consider the chart (SN − {S},ΦS) around P , where ΦS is the
stereographic projection from the south pole S. Then, in this chart, assuming
f̃ of class C2, we can write a Taylor expansion of f̃ at 0 = ΦS(N):

f̃(x) = a0 +
N∑

i=1

aixi +
1
2

N∑
i,j=1

aijxixj + o(|x|2), x ∈ S
N close to P,

(5.13)

where xi is the i-th component of ΦS(x). Notice that ai = ∂if̃(0) and aij =
∂ij f̃(0). Then (5.13) can be rewritten as

f(x) = a0 +
N∑

i=1

ai(ΦS(Φ−1
N (x)))i

+
1
2

N∑
i,j=1

aij(ΦS(Φ−1
N (x)))i(ΦS(Φ−1

N (x)))j + o(|ΦS(Φ−1
N (x))|2)

for x ∈ R
N , |x| � 1. Since ΦS(Φ−1

N (x)) = x
|x|2 , we see that (5.13) is equivalent

to (5.12).
Assume that f has a limit at ∞ in the sense that there exists f(∞) :=

lim|x|→∞ f(x). We say that f has a local minimum (resp. maximum) at ∞
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if f(x) ≥ f(∞) (resp. f(x) ≤ f(∞)) for |x| � 1. If this is the case and
if moreover f has a Taylor expansion of order 2, then ∇f(∞) = 0 and the
hessian matrix D2f(∞) is nonnegative (resp. non-positive).

We can now state our existence result for equation (0.1).

Theorem 5.6. Assume that assumptions (H1)–(H6) hold, that N ≥ 4, and that
among the points of A ∪ ∞ at which the infimum in (5.11) is attained, there
is one, say x0, such that p(x0) <

√
N and p and q are C2 at x0 and have

respectively a local minimum and a local maximum) at x0. Assume moreover
that

• if x0 
= ∞, then λk(x0) < 0 if p(x0) ∈ (1, 2) or, if p(x0) ∈ [2,
√

N) with
N ≥ 5, then at least one of the hessian matrices D2p(x0) or D2q(x0) is
non-zero,

• if x0 = ∞ then for |x| � 1, k(x) = O(|x|−β) for some β > 2, and at
least one of the hessian matrices D2p(∞) or D2q(∞) is non-zero.

Then there exists λ∗ > 0 such that equation (0.1) has a non-trivial solution
for λ > −λ∗.

Proof. When x0 
= ∞, the statement is a consequence of [9]. We thus assume
from mow on that x0 = ∞. For ease of notation we let p := p(∞) and q :=
q(∞). In view of our assumption we can apply Theorem. 3.3 to obtain

S∞ = K(N, p)−1.

It is well-known that the extremals for K(N, p)−1 are of the form

Uλ,x0(x) := cε
N−p

p U
(
ε(x − x0)

)
, x0 ∈ R

N , ε > 0, c ∈ R
∗,

where U(x) = (1 + |x| p
p−1 )

p−N
p . Given some direction ν ∈ R

N , |ν| = 1, and
positive real numbers rε as in Remark 5.14 below, consider the function uε

defined by (5.19) in “Appendix B”. Letting C := K(N, p)− N
q ‖U‖−1

q , it is easily
seen that W := CU satisfies −ΔpW = W q−1. We then consider wε(x) :=
Cuε(x) as test-function in place of v in (5.11). In view of the definition of F
in (5.2) we then have

Jε(t) := F(twε) =
∫

RN

g(x, t)|∇uε|p(x) dx +
∫

RN

h(x, t)|uε|p(x) dx

−
∫

RN

f(x, t)|uε|q(x) dx

with

g(x, t) =
(tC)p(x)

p(x)
, f(x, t) =

(tC)q(x)K(x)
q(x)

, h(x, t) =
(tC)p(x)k(x)

p(x)
.

Consider

J0(t) :=
(tC)p

p
‖∇U‖p

p − (tC)qK(∞)
q

‖U‖q
q = K(N, p)−N

( tp

p
− tq

q
K(∞)

)
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and

J1(t) :=
N(tC)qK(∞)

2q2
A(q, ν)‖U‖q

q − N(tC)p

2p2
A(p, ν)‖∇U‖p

p

=
n

2
K(N, p)−N

( tq

q2
K(∞)A(q, ν) − tp

p2
A(p, ν)

)
.

where

A(p, ν) :=
N∑

i,j=1

∂i,jp(∞)νiνj = (D2p(∞)ν, ν)

and

A(q, ν) :=
N∑

i,j=1

∂i,jq(∞)νiνj = (D2q(∞)ν, ν).

Using prop. 5.8, 5.10 and 5.12 and Remark 5.14 in “Appendix B”, we then
obtain that

Jε(t) = J0(t) + J1(t)
| ln ε|
|xε|2 + o

( ln ε

|xε|2
)

(5.14)

C1 uniformly in t for t in a compact subset of [0,+∞). Observe that J0 attains
its maximum at t0 := K(∞)

1
p−q with J0(t0) = 1

N K(N, p)−NK(∞)− N−p
p .

Moreover this is a non-degenerate maximum since J ′′
0 (t0) = (p− q)K(N, p)−N

K(∞)
2−p
q−p 
= 0. It follows that Jε attains its maximum at tε = t0 + a ln ε

|xε|2 +

o
(

ln ε
|xε|2

)
with a = − J ′

1(t0)
J ′′
0 (t0)

. We thus obtain

sup
t≥0

F(twε) = sup
t≥0

Jε(t) = Jε(tε) = J0(t0) + J1(t0)
| ln ε|
|xε|2 + o

( ln ε

|xε|2
)

where

J1(t0) =
N

2
K(N, p)−NK(∞)

p
p−q

( 1
q2

A(q, ν) − 1
p2

A(p, ν)
)
.

Recall that for any direction ν, A(p, ν) ≥ 0 ≥ A(q, ν) since p(·) and q(·) have a
local minimum and maximum respectively at infinity. It follows in particular
that J1(t0) ≤ 0 for any direction ν. For the strict inequality to hold, it thus
suffices to assume that there exists a direction ν such that A(p, ν) > 0 or
A(q, ν) < 0 i.e. to assume that one of the hessian matrices D2p(∞) or D2q(∞)
is non-zero. If this holds we then have that J1(t0) < 0 and thus (5.11) holds. �

Appendix A: A compact embedding from D1,p(·)(RN) into
Lp(·)(RN , k dx)

In this section, we give a sufficient condition for assumption (H6) to hold i.e. to
have a compact embedding from D1,p(·)(RN ), the closure of C∞

c (RN ) for the
norm ‖∇u‖Lp(·)(RN ), into the weighted Lebesgue space Lp(·)(RN , k dx). Such
a result was proved in the constant-exponent framework in [15][lemma 1]. We
adapt his proof to the variable exponent setting.
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Proposition 5.7. Consider a measurable function s : RN → [1,+∞] such that

s ≥ p and infRN p∗ − s > 0. Assume that k ∈ L1(RN ) ∩ L
s(·)

s(·)−p(·)
loc (RN ) is

non-negative and satisfies

lim
|x|→∞

‖k‖
L

s(·)
s(·)−p(·) (Q(x,l))

= 0

for some l > 0. Here Q(x, l) denotes the cube centered at x with sides of
length l parallel to the axis. Then D1,p(·)(RN ) is compactly embedded into
Lp(·)(RN , k dx).

The proof follows closely the proof [15][lemma 1] with the following useful
trick due to P. Hasto [25][Thm 2.4] in the final step. Given a sequence (qj)j

in (1,+∞), consider the space �(qj) of sequences x = (xj)j such that ρ(x) :=∑
j |xj |qj < ∞. This space is endowed with the norm ‖x‖

	(qj) := inf {λ >

0 s.t. ρ(x/λ) ≤ 1}. A. Nekvinda [31][Thm 4.3] proved that if there exists q(∞)
such that |qj −q(∞)| ≤ C/ ln (e+j) then �(qj) ≈ �q(∞). Using this result Hasto
[25][Thm 2.4] proved that given a partition of RN by cubes Ql, l ≥ 1, of same
length satisfying

dist(Qk, 0) < dist(Ql, 0) if k < l, (5.15)

and if p is log-Holder continuous exponent such that

|p(x) − p(∞)| ≤ C/ ln (e + |x|) for all x ∈ R
N , (5.16)

then

‖g|Lp(·)(RN ) ≈ ‖(‖g‖Lp(·)(Qj))j‖	(qj) ≈ ‖(‖g‖Lp(·)(Qj))j‖	p(∞) , (5.17)

where qj = p+
Qj

. Actually the first ≈ follows from the first part of the proof
of [25][Thm 2.4]. It is easily seen that we can take qj of the form qj = p(xj)
where xj ∈ Qj . In particular we will use this result with qj = p−

Qj
.

Proof. Without loss of generality we may assume that l = 1. We first verify
that it is sufficient to show that for every δ > 0 there exists j > 0 such that

‖f − fχQ(0,j)‖Lp(·)(RN ,k dx) < δ (5.18)

for all f ∈ D1,p(·)(RN ) such that ‖∇f‖Lp(·)(RN ) ≤ 1. Here χQ(0,j) denotes the
characteristic function of the cube Q(0, j). In fact, assume that (5.18) holds
and take a bounded sequence (fn)n in D1,p(·)(RN ). Since s is assumed to be
strictly subcritical, we can assume that there exists f ∈ D1,p(·)(RN ) such that
fm → f in Ls(·)(Q(0, R)) for any R > 0 and ∇fm ⇀ ∇f in Lp(·)(RN ). It
follows from (5.18) that

‖fm − f‖Lp(·)(RN \Q(0,j),k dx) < 2δ.

On the other hand we have using Hölder inequality that∫

Q(0,j)

|fm − f |p(·)k dx ≤ ‖|fm − f |p(·)‖
L

s(·)
p(·) (Q(0,j))

‖k‖
L

s(·)
s(·)−p(·) (Q(0,j))

≤ C max
{

‖fm − f‖p+

Ls(·)(Q(0,j))
; ‖fm − f‖p−

Ls(·)(Q(0,j))

}
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which goes to 0 as m → +∞ since fm → f in Ls(·)(Q(0, j)), We can thus
conclude that fm → f in Ls(·)(RN ).

We now prove (5.18). We fix a function f ∈ D1,p(·)(RN ) such that
‖∇f‖Lp(·)(RN ) ≤ 1, and consider a partition of R

N by cubes Ql, l ≥ 1, of
unit side length satisfying (5.15). Independently, given η > 0 we fix j ∈ N such
that

‖k‖L1(RN \Q(0,j)) ≤ η

and

‖k‖
L

s(·)
s(·)−p(·) (Ql)

< η for every Ql outside Q(0, j).

Denote fQl
:=

∫
Ql

f(x) dx the mean-value of f on Ql. Then by Sobolev and
Poincaré inequality there exists a constant C independent of f and Ql such
that

‖f − fQl
‖Ls(·)(Q) ≤ C‖∇f‖Lp(·)(Ql)

and

|fQl
| ≤ C‖f‖Lp∗(·)(Ql) ≤ C‖f‖Lp∗(·)(RN ) ≤ C‖∇f‖Lp(·)(RN ) = C.

Let p+
l := maxQl

p and p−
l := minQl

p. It follows that for any cube Ql we have
∫

Ql

|f |p(·)k dx ≤ 2p+−1

∫

Ql

|f − fQl
|p(·)k dx + 2p+−1

∫

Ql

|fQl
|p(·)k dx

= C‖|f − fQl
|p(·)‖

L
s(·)
p(·) (Ql)

‖k‖
L

s(·)
s(·)−p(·) (Ql)

+ C

∫

Ql

k dx

≤ C max
{

‖∇f‖p+
j

Lp(·)(Ql)
; ‖∇f‖p−

j

Lp(·)(Ql)

}
η + C

∫

Ql

k dx.

Since ‖∇f‖Lp(·)(RN ) ≤ 1, we eventually obtain for any cube Ql that
∫

Ql

|f |p(·)r dx ≤ C‖∇f‖p−
j

Lp(·)(Ql)
η + C

∫

Ql

k dx.

Summing these inequalities over all the cubes Ql outside Q(0, j) using (5.17)
to handle the first term, we obtain

∫

RN \Q(0,j)

|f |p(·)k dx ≤ Cη + C

∫

RN \Q(0,j)

k dx ≤ Cη

which is (5.18). �

Appendix B: Test-functions computations at infinity

Let U(x) = (1 + |x| p(∞)
p(∞)−1 )− N−p(∞)

p(∞) . It is well-known that U is an extremal for
K(N, p(∞))−1. Given a cut-off function η ∈ C∞

c ([0,+∞), [0, 1]) supported in
[0, 2] such that η ≡ 1 in [0, 1], points xε ∈ R

N of the form xε := rεν where
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ν ∈ R
N , |ν| = 1, and rε = |xε| → +∞ as ε → 0, and a real number α > 1 to

be specified later, we consider the test function

uε(x) = ε
N−p(∞)

p(∞) U(ε(x − xε))η(εα|x − xε|), ε � 1. (5.19)

We first compute the expansion of a term like
∫

f |uε|q(x) dx.

Proposition 5.8. Assume that q and f ∈ C(RN ) have a Taylor expansion at
∞ of order 2 with ∇f(∞) = ∇q(∞) = 0 and p(∞) ≤ N+2

2 . Assume also that
rε and α > 1 are such that

ε−2α � |xε|2 � | ln ε|
ε

N(α−1)
p(∞)−1−δ

. (5.20)

for some small δ > 0. Then∫

RN

f |uε|q(x) dx = A0 + A1
| ln ε|
|xε|2 + o

( ln ε

|xε|2
)
, (5.21)

where, denoting A(q, ν) :=
∑n

i,j=1 ∂i,jq(∞)νiνj = (D2q(∞)ν, ν),

A0 = f(∞)
∫

RN

Uq(∞)(x) dx and

A1 = −Nf(∞)
2q(∞)

A(q, ν)
∫

RN

Uq(∞)(x) dx.

Remark 5.9. Notice first that |xε| � ε−α � | ln ε| so that | ln ε|
|xε|2 → 0. Inde-

pendently it is possible to choose rε and α > 1 satisfying (5.20). Indeed it

suffices to choose α > 1 so that ε−2α � εδ− N(α−1)
p(∞)−1 . Notice now that since

p(∞) < N+2
2 , choosing α > N

N−2p(∞)+2 implies that N(α−1)
p(∞)−1 − 2α > 0 which

gives the result. If we make the more restrictive assumption that p(∞) ≤ √
N ,

then N
N−2p(∞)+2 ≤ 1. In that case it thus suffices to take α > 1.

Proof. First
∫

RN

f |uε|q(x) dx =
∫

B(ε1−α)

f(xε + x/ε)ε
N

(
q(xε+x/ε)

q(∞) −1

)
U(x)q(xε+x/ε) dx+Rε

(5.22)

with

Rε =
∫

B(2ε1−α)\B(ε1−α)

f(xε + x/ε)ε
N

(
q(xε+x/ε)

q(∞) −1

)
U(x)q(xε+x/ε)η(εα−1|x|) dx.

We estimate the different terms appearing in these integrals. All the
expansion will be uniform in |x| ≤ 2ε1−α i.e. |x|

ε ≤ 2ε−α. Recall that |xε| � |x|
ε

uniformly for |x|
ε ≤ 2ε−α by (5.20).

First, for |x| ≤ 2ε1−α, |xε +x/ε|2 = |xε|2
(
1+O

(
1

εα|xε|
))

with εα|xε|| �
1. So,

|xε + x/ε|−4 = |xε|−4
(
1 + O

( 1
εα|xε|

))
. (5.23)
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independently, since q has a Taylor expansion at ∞ of order 2 with ∇q(∞) = 0,
we have

q(x) = q(∞) +
1
2

n∑
i,j=1

∂i,jq(∞)
xixj

|x|4 + o
( 1

|x|2
)

for |x| � 1.

We thus have uniformly in |x| ≤ 2ε1−α that

q(xε + x/ε) − q(∞)

=
1
2

N∑
i,j=1

∂i,jq(∞)(xi
ε+xi/ε)(xj

ε+xj/ε)|xε|−4
(
1+O

( 1
εα|xε|

))
+o

( 1
|xε|2

)

=
1
2
A(q, ν)

1
|xε|2 + o

( ln ε

|xε|2
)
. (5.24)

It follows in particular that uniformly for |x| ≤ 2ε1−α,

ε
N

(
q(xε+x/ε)

q(∞) −1

)
= exp

{ N

q(∞)

(
q(xε + x/ε) − q(∞)

)
ln ε

}

= 1 − NA(q, ν)
2q(∞)

| ln ε|
|xε|2 + o

( ln ε

|xε|2
)
, (5.25)

and also that

U(x)q(xε+εx) = U(x)q(∞) exp
{

(q(xε + εx) − q(∞)) ln U(x)
}

= U(x)q(∞)
{

1 + o
( ln ε

|xε|2
)

ln U(x)
}

.

Eventually,

f(xε + εx) = f(∞) +
1
2
∂i,jf(∞)

xi
εx

j
ε

|xε|4 + o
( 1

|xε|2
)

= f(∞) + o
( ln ε

|xε|2
)
.

Using the previous expansion, we can rewrite (5.22) as
∫

RN

f |uε|q(x) dx = f(∞)
(
1 − NA(q, ν)

2q(∞)
| ln ε|
|xε|2

)∫

B(ε1−α)

U(x)q(∞) dx

+o
( ln ε

|xε|2
)∫

B(ε1−α)

U(x)q(∞)
(
1 + ln U(x)

)
dx + Rε.

with

|Rε| ≤ C

∫

B(2ε1−α)\B(ε1−α)

U(x)q(∞)(1−γ) dx.

Here γ is a given small positive number and the above estimate of Rε holds
for ε � 1 since |xε| � |x|

ε uniformly for |x|
ε ≤ 2ε−α by (5.20).

To conclude, notice that Uq(∞) ln U is integrable in R
N and that∫

RN \B(ε1−α)

U(x)q(∞)(1−γ) dx ≤ C

∫

ε1−α

r− p(∞)
p(∞)−1N(1−γ)rN−1 dr

≤ Cε
N(α−1)
p(∞)−1 (1−γp(∞))
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which is o
(

ln ε
|xε|2

)
by (5.20) for a small enough γ. �

We now compute the asymptotic expansion of a term like
∫
RN g(x)

|∇uε|p(x) dx.

Proposition 5.10. Assume that p and g ∈ C(RN ) have a Taylor expansion of
order 2 at ∞ with ∇p(∞) = ∇g(∞) = 0 and that p(∞) <

√
N . Assume also

that rε and α > 1 are such that

ε−2α � |xε|2 � | ln ε|
ε

(α−1)(N−p(∞))
p(∞)−1

. (5.26)

Then
∫

RN

g|∇uε|p(x) dx = B0 +
| ln ε|
|xε|2 B1 + o

( ln ε

|xε|2
)
,

where, denoting A(p, ν) :=
∑n

i,j=1 ∂i,jp(∞)νiνj,

B0 = g(∞)
∫

RN

|∇U |p(∞) dx, and

B1 = −Ng(∞)
2p(∞)

A(p, ν)
∫

RN

|∇U |p(∞) dx.

Remark 5.11. We can find rε and α > 1 such that (5.26). Indeed it suffices to

have ε−2α � ε− (α−1)(N−p(∞))
p(∞)−1 i.e. (α−1)(N−p(∞))

p(∞)−1 − 2α > 0. Since N ≥ 4 and

p(∞) <
√

N ≤ N+2
3 , we thus need α > N−p(∞)

N−3p(∞)+2 . Notice that N−p(∞)
N−3p(∞)+2 >

1.

Proof. Since the proof is very similar to that of the previous proposition, we
will be sketchy. Denote uε = Uεηε with Uε(x) = ε

N−p(∞)
p(∞) U

(
ε(x − xε)

)
and

ηε(x) := η(εα|x − xε|). We first write that
∫

RN

g(x)|∇uε|p(x) dx =
∫

{εα|x−xε|≤1}
g(x)|∇Uε|p(x) dx + Rε (5.27)

where

Rε =
∫

{1≤εα|x−xε|≤2}
g(x)

∣∣∣ηε∇Uε + Uε∇ηε

∣∣∣
p(x)

dx.

Notice that

|Rε| ≤ C

∫

{1≤εα|x−xε|≤2}
|∇Uε|p(x) + |Uε|p(x)εαp(x) dx

≤ C

∫

B(2ε1−α)\B(ε1−α)

ε
N

(
p(xε+x/ε)

p(∞) −1

)

×
{

|∇U |p(xε+x/ε) + ε(α−1)p(xε+x/ε)Up(xε+x/ε)
}

dx.
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It follows from (5.25) with p in place of q and from the fact that p has a local
minimum at ∞ with |xε| � ε−α that

|Rε| ≤ C

∫

RN \B(ε1−α)

|∇U |p(∞) + ε(α−1)p(∞)Up(∞) dx.

Using that |U ′(r)| ≤ Cr− N−1
p(∞)−1 with p(∞) <

√
N ≤ N+1

2 , it is then easily
seen that

|Rε| ≤ Cε(α−1) N−p(∞)
p(∞)−1 + Cε(α−1)p(∞)ε(α−1)( p(∞)(N−p(∞))

p(∞)−1 −N) ≤ Cε
(α−1)(N−p(∞)

p(∞)−1

which is o
(

ln ε
|xε|2

)
by (5.26).

We can thus rewrite (5.27) as

∫

RN

g(x)|∇uε|p(x) dx =
∫

B(ε1−α)

g(xε + x/ε)ε
N

(
p(xε+x/ε)

p(∞) −1

)
|∇U |p(xε+x/ε) dx

+ o
( ln ε

|xε|2
)
.

As in the previous proposition we then obtain
∫

RN

g(x)|∇uε|p(x) dx = g(∞)
(
1 − NA(p, ν)

2p(∞)
| ln ε|
|xε|2

)∫

B(ε1−α)

|∇U |p(∞) dx

+ o
( ln ε

|xε|2
)∫

B(ε1−α)

|∇U |p(∞)(1 + ln |∇U |) dx

+ o
( ln ε

|xε|2
)
.

We conclude recalling that
∫

B(RN \ε1−α)
|∇U |p(∞) dx = o

(
ln ε

|xε|2
)
, which we

already noticed when estimating Rε, and noticing that |∇U |p(∞)(1 + ln |∇U |)
is integrable. �

We eventually compute the asymptotic expansion of an expression like∫
RN h(x)|uε(x)|p(x) dx:

Proposition 5.12. Assume that p has a Taylor expansion of order 2 at ∞ with
∇p(∞) = 0 and p(∞) <

√
N , that h ∈ L∞(RN ) satisfies h(x) = O(|x|−β) for

|x| � 1, and also that rε, α > 1 and β > 2 are such that

ε−α � |xε| and |xε|2−β � εp(∞)(1+γ) (5.28)

for some small γ > 0. Then
∫

RN

h(x)|uε(x)|p(x) dx = o
( ln ε

|xε|2
)
.

Remark 5.13. If ε−α � |xε| then to obtain |xε|2−β � εp(∞)(1+γ), it suffices
to choose β > 2 so that εα(β−2) � εp(∞)(1+γ). This holds for a small γ > 0 if
β > 2 + p(∞)/α.
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Proof. First
∣∣∣
∫

RN

h(x)up(x)
ε dx

∣∣∣

≤
∫

B(2ε1−α)

|h(xε + x/ε)|εN

(
p(xε+x/ε)

p(∞) −1

)
ε−p(xε+x/ε)U(x)p(xε+x/ε) dx

≤ C

∫

B(2ε1−α)

|h(xε + x/ε)|ε−p(xε+x/εU(x)p(xε+x/ε) dx

where the 2nd inequality is a consequence of (5.25). Since |xε| � ε−α,
(5.23) holds. We thus have uniformly for x ∈ B(2ε1−α) that |h(xε + x/ε)| =
O(|xε|−β), and also, for a given γ > 0 small, that ε−p(xε+x/ε) ≤ ε−p(∞)(1+γ).
Thus∣∣∣

∫

RN

h(x)up(x)
ε dx

∣∣∣ ≤ O(|xε|−β)ε−p(∞)(1+γ)

∫

B(2ε1−α)

U(x)p(xε+x/ε) dx

≤ o
( ln ε

|xε|2
)∫

B(2ε1−α)

U(x)p(xε+x/ε) dx

where we used (5.28) in the second inequality. To conclude, notice that the
integral in the r.h.s is finite. Indeed, uniformly for x ∈ B(2ε1−α) ∩ {U ≤ 1},
we have p(xε + x/ε) ≥ p(∞) (because p has a local minimum at infinity) and
U ∈ Lp(∞)(RN ) when p(∞) <

√
N . �

Remark 5.14. Summing-up the different remarks following the three previous
propositions, we see that their conclusions hold if p(∞) <

√
N with N ≥ 4

and β > 2. Indeed it suffices to choose α > N−p(∞)
N−3p(∞)+2 > 1 big enough so that

β > 2 + p(∞)/α, and then to take rε = |xε| so that rε � ε−α.
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