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Abstract

In this paper we find estimates for the optimal constant in the critical Sobolev trace inequality A1 ({2)|lu ||L1(3 ) = llullyi )
that are independent of (2. These estimates generalize those of [J. Fernandez Bonder, N. Saintier, Estimates for the Sobolev trace
constant with critical exponent and applications, Ann. Mat. Pura. Aplicata (in press)] concerning the p-Laplacian to the case p = 1.

We apply our results to prove the existence of an extremal for this embedding. We then study an optimal design problem related
to A1, and eventually compute the shape derivative of the functional 2 — A ({2).

© 2007 Elsevier Ltd. All rights reserved.
MSC: 35P15 (49Q10; 49Q20)
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Let {2 be a bounded smooth domain of R" . It is well known that the trace embedding from wbh1(©2) into L' (802)
is continuous, where W11(£2) is the usual Sobolev space of functions u € LY(£) such that Vu € L'(£2). The best
constant for this embedding is then defined by

() = - [ IVuldx + [ Iuldx’ "
wewti@\wit) o luldHN
where W(;’l (£2) denotes the closure for the W' !-norm of the space of smooth functions with compact support in {2,
and HV=1 is the (N — 1)-dimensional Hausdorff measure. The purpose of this paper is to obtain estimates of A1 ({2)
under geometric assumptions on 9 {2, and to apply them to some shape optimization problems related to A1 ({2).
It turns out to be more convenient when dealing with A ({2) to rewrite (1) as a minimization problem in the space
BV (£2) of functions of bounded variation (see [1,8,22]) in the following way:

v dx
w@= e JelVult/oludy @)
ueBV (£2),u£0 on 352 fB.Q |I/t|d.I'IN_1
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The equivalence between (1) and (2) follows from the fact that given u € BV ({2), there exist u, € C°({2) such that
u, = u on 342 and the u,’s approximate u in the sense that u,, — u in L'(2) and fQ [Vu,|dx — fﬂ |Vu| (see [5,
12]).

We can also express A1 ({2) in a more geometric way as an isoperimetric type problem. We recall that a set A C 2
is said to be of finite perimeter if its characteristic function x4 belongs to BV (R"). It then follows from the coarea
formula that

dAN {2 A
M@= i 2ADCHA

i , 3)
ACQ.xaeBVRM AN

where |[0A N 2| and |A N 32| stand for H”__1(8A N 2) and H""'(A N 312) respectively. This infimum is always
attained by some set of finite perimeter A C (2 that we call an eigenset. We refer the reader to [15] for a detailed proof
of this result.

We end this presentation of A1(£2) by recalling its value in the case where {2 = By(R) is a ball or an annulus
{2 = Bo(R) \ Bo(r). As remarked in [2, Remark 1], it follows from [19] that

|12 ; |12
M) = 11902 1992| — 4)
1 otherwise.

Moreover, if |£2|/]02] < 1, then u = |312|"!x is a minimizer, and the only normalized one if |£2]/]02] = 1,
whereas if |{2|/]|042| > 1, there is no extremal for A ({2).

We first consider the problem of the existence of an extremal for A1 ({2). Since the immersion W1 (2) — L1(802)
is not compact, the existence of minimizers for A1 ({2) does not follow by standard methods. Indeed this problem has
already been considered in [2,5] where it is proved that A1 ({2) is attained as soon as

r(2) < 1. 4)

We will provide an alternative proof of this result. Notice that according to [2,5], the large inequality in (5) always
holds. We refer the reader to [2] for the derivation of the Euler equation satisfied by a minimizer. According to [19],
A = 1 is the best first constant in the embedding wWhl(2) — LY(980) in the sense that for any € > 0 there exists
B¢ > 0 such that for any u € BV ({2),

/ |u|dHN_1§(1+e)/ |Vu|+BEf |u|dx, (6)
042 9} £

and 1 is the lowest constant such that such an inequality holds for any € > 0 and any u € BV ({2). The inequality (5)
is then the usual condition ensuring that A1 ({2) is attained when dealing with a critical problem (see e.g. [3,7]).

Our first result provides a local geometric condition on {2 for (5) to hold. Before stating it, we need a definition. We
say that a point x € 942 is a “good point” if the curvature of 92 at x is big enough, or more precisely if the principal

curvatures A, ..., Ay—1 of 32 at x are all positive and satisfy H = Z,N: _11 A; > 1, and if the graph of 92 around x
is close to the parabola y — (1/2) > A; yl.2 when considered in a local coordinate system such that x = 0 and the unit
outward normal derivative at 0 of 32 is (0, ..., 0, 1) (see (12) for a precise statement).

The result is the following:

Theorem 1. [f there exists a “good point” x € 32, then (5) holds.

Similarly, we can also prove that (5) holds when a part of 92 is close to a convex cone of vertex x € d{2 and angle in
(0, 7w /2), that is a non-flat cone, since in that case the “curvature” of 02 at x is infinite.

It is well known that for p > 1, the trace embedding WP (0) < LP(3£) is continuous and compact. In particular
the best constant A, ({2) for this embedding, namely

p p
@ = el
ueWLr (\W, 7 (12) fa(z lulPdH

’
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is attained by some positive u , normalized by |, 90 ugdH N=1'— 1. To show the existence of an extremal for A{(2),
the authors of [2] approached A (§2) via A ,(§2). They proved that

Ap(£) = A (82) asp — 1, (7)
and also that

Theorem 2. If L1 ({2) < 1, there exists a nonnegative function u € BV (§2) normalized by fa() lu|dHN=1 = 1, which
attains the infimum in the definition of A1(§2), and such that

up — u in LY(002) and /‘IVuplpdxﬁ/‘ |Vul
(9] 9]

as p — 1.

We will give a short proof of this result, different from the one provided in [2,5].
As an immediate corollary, we have that

Corollary 1. If 042 has a “good point”, then A1({2) is attained.

As an application of Theorem 1, we study a shape optimization problem related to A1({2). Given « € (0, |{2]),
where |{2| denotes the volume of (2, and a measurable subset A C {2 of volume «, we first consider the minimization
problems

. S IVul + |uldx
AA= inf NoT
ue€BV(2),u00ndN f39|“|dH B
u=0 inA
and
Vul? + |u|Pdx
)‘p,A = inf f(Z | | |N|—1
we WhP )\ Wy (2) Joq luIPdH
u=0 inA

It is easily seen that 1, 4, p > 1, is attained. As regards A1 4, we have, in the same spirit as what we had for A ({2),
that

Theorem 3. If
Aa <1,

there exists an extremal for Ay . Moreover this inequality holds as soon as there exists a good point x € 3{2 such
that A N B, (r) = @ for some r > Q.

Remark that A, 4, p > 1, does not change if we modify A on a set of Lebesgue measure zero. To give a meaning
to Ap.a, p > 1, when |A] = 0, the authors of [10] modified A, 4 by considering Wj\’p(ﬁ) = ch(fz \ A) in place
of Wh7(£2). In the case p = 1, we introduce in a similar way in place of BV (£2) the set BV, ({2) of the functions
u € BV ({2) that can be approximated by a sequence u. € cg°(fz \ A) in the sense that uc — u in L'(£2) and
fQ |Vue| — fQ |Vu|. We can then prove as in [8] that BV ({2) = BV ({2) if and only if cap;(A) = 0, where
cap;(A) denotes the 1-capacity of A defined by

cap;(A) = inf{f [Vul,u € BV(R"), A C int{u > 1}}.
]Rn

In the case where A is compact, the coarea formula implies that cap;(A) = inf |dw| where the infimum is taken over
all the smooth open subsets w C R" containing A (see [18]). We consider the minimization problem

. S IVul + |uldx
mn .
UEBVA(2), u#0 on 8082 [y ) lu|dHN !

! —_—
)‘1,A -
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Then A1 4 < )‘/I,A with equality when cap,(A) = 0. If cap,(A) > 0, both cases Aj 4 = )‘/I,A and Aj 4 < )‘/I,A can
occur. For example if a part of the boundary of £2 C R? has curvature big enough (e.g. like a smooth version of the
set Qs , defined below next to Theorem 6), then A ({2) will be attained by some xc where C C 2. Then if we put a
small curve A in the interior of 2\ C, xc € BVa({2) and thus Ay = A; 4 = )‘/1,A' In contrast, if 2 C R? is a ball
such that |9 (2| = |{2|, then we know that X1 ({2) is attained only by the ux, u € R. Then if A is a small segment
inside 2, 11,4 < )‘/1,A'

We now want to minimize A, 4, p > 1, when A runs over all the measurable subsets of {2 of volume «, i.e. we
look at the following shape optimization problem:

Apla) = AC(}I}\gl:a hp.a
for p > land « € (0, |£2]).

The optimization problem A,(a), p > 1, has been considered recently. The existence of an optimal set has
been established in [10], and its regularity investigated in [11] for p = 2. The optimization problem A ,(«) with
a critical exponent has been considered in [9]. Such problems of optimal design appear in several branches of applied
mathematics, especially for the case p = 2, for example in problems of minimization of the energy stored in the
design under a prescribed loading. We refer the reader to [4] for more details.

We prove the following relation between A, («) and A ():

Theorem 4. We have
limsup A, (o) < Aj(e). ®)

p—>1
Moreover, if there exists a good point x € 32, then

lim A, () = A (a). ©)
p—1

The proof of this theorem gives the existence of an extremal u € BV (§2) for 1 («) but, since we can only prove that
[{u = 0} > o and not [{# = 0}| = «, we cannot assert the existence of an optimal hole A such that A1(«) = A1 4.
However if we consider the following modified optimal design problem:

- \Y% dx

() = inf Jo u|+|u|1 : (10)
{ueBV(Q),u;éOonBQ Jo0 luldHN=
{u =0} =«

we can prove that

Theorem 5. If there exists a good point x € 02, then A1 (@) is attained by some u. In particular {u = 0} is an optimal
hole for A1 (o).

It follows from [10] that A, (o) = Xp(a), p > 1, where Xp(a) is defined by
- fQ|Vu|p+|u|pdx

Mer’p(Q)\Wé’p(Q) fag |M|de
{u=0} =«

but for the same reason as before, we cannot establish the convergence of A pla) to () asp — 1.

Our last result concerning A is the computation of the first variation, the so-called shape derivative, of the
functional 2 — A1(£2). Let R : R" — R” be a C! vector-field, and 25 = T5({2), where Tj is the Cl-diffeomorphism
defined for é small by

Ts(x) = x +5R(x).

We will prove that the map § — A1 ({2s) is continuous at § = 0, and also differentiable at § = 0 under an additional
uniqueness assumption holding for example when {2 is a ball.
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Remark that if we allow perturbations of the domains that are less regular, we may not have continuity of A ({2s)
as the following example shows. Let Q = [0, 1]V be the unit cube of R, and let 0Os5.y = QU As  with

Asy=I[1,14n]1x[0,81x [0, 1N2, &§,1n>0.

Then taking x4 as a test-function for estimating A1(Qs), we get

) )
tn — 0

A1(Qs) <

as 8 — 0if n > 4. This shows that, even if |QsAQ| — 0 or Qs — Q in Hausdorff distance, we do not have
continuity of A1(Qs). Indeed A1(Qs) — 0 # A1(Q).

Shape analysis is the subject of an intense research activity. We refer the reader to for example [14] for an
introduction to this field. To the best of the author’s knowledge, the shape analysis of a problem involving the L'-norm
of the gradient has only been considered up to know in [13,21] where the authors deal with the best constant for the
embedding of W1 1(£2) into L' (£2).

Our result is the following:

Theorem 6. We have
M U25) — A1 (92)

as 8 — 0. Moreover, if we assume that .1(§2) < 1 and that there exists a unique nonnegative extremal u € BV ()
for A (§2) normalized by faQ udHN=V =1, then u = |A N3N~ x4 for some set of finite perimeter A C 2, and the
map § — A1((2s) is differentiable at 5§ = 0 with

N-—1
IANaQ|

where f(X) =divR — (X; DR.X), X € R", v is the Radon—Nikodym derivative of Vu with respect to |Vu|, n is the
unit outward normal to 32, and 3* A is the reduced boundary of A (see [1,8,22]).

d -
gkl(ﬂa)w:o = /Q {fWxoann — A1) fF(M) xanan — (R, v) xa+a} (11)

In the particular case where (2 is such that A;({2) < 1 and {2 is its own unique eigenset (i.e. A = (_2), formula (11)
writes as
dHN—l
|042]
Denoting by div, the divergence operator of the manifold (942, g), where g is the metric induced by the Euclidean

metric on d{2, by H the mean curvature of d{2 (i.e. the sum of the principal curvatures of 92), and by Ry the
tangential part of R, we have (see [12]):

d - . - -
(D) mg = f ((R. 7)) — 1 (2)(div R — (i: DR.))
982

div R — (#; DR.i) = divg Ry + H(R, 7i)

We thus get according to Green’ formula that

d _ dHN-!
@M(Qa)w:o = ./a(z(l — M(Q)H)(R’H)W'

The paper is organized as follows. We prove Theorems 1-5 in the following section and Theorem 6 in the last one.
1. Proof of Theorems 1-4

1.1. Proof of Theorem 1

Let xo € 32 be a “good point”. By taking an appropriate coordinate system, we can assume that xo = 0 and that
there exists r > 0 such that

B, N2 ={(y,t) € B, t > p(y)}
B, N3N ={(y,t) € B, t =p(y)}
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where y = (y1, ..., yn—1) € RN=1 B, is the Euclidean ball centered at the origin and of radius r, and

1
p(y) = §|y|§<1 + 0(y|"))

for some o > 0, with
N-1
2 2
Iyly = Z AiYis
i=1

where the );’s are the principal curvatures of 92 at 0. We assume that « is such that as € — 0,

1y e RN"1 p(y) < €2/28Aly e RY 7L [ylx < €}l = o(eV ), (12)

where AAB = (A \ B) U (B \ A) denotes the symmetric difference of the sets A, B C RN~1 and |A| the volume of
A. A sufficient condition for (12) to hold is o > 2.
‘We consider the test-functions

ue(y,t) = XQﬂ{ngg(;Z/z}(y, 1).

Assume for the moment that the following asymptotic developments hold:

/Q |Vue| = bly_ eV + oM, (13)
wzév—z N+1 N+1
/g lue|ldydr = 2N+ DN = l)me +o0(e"™), (14)
and
N—1 _ _N—1z) “’?v-zz)“i N+1 N+1
/39 lue|dH =c by_+ 2N DN + 1)\/m6 + o(e ), (15)

where by, | = [{y e RV"1|y|; < 1}| and wfv_z = |{y € RN=1, " y? = 1}]. It then follows that

fg V| +IQ e |dx
<
T Jyg lueldHN

&
)

=Y aite %),
+2(N—1)(N+1)b1kv_1 H)\i{ Z }e + o(e”)

from which we deduce Theorem 1.
We now prove (13)—(15). In view of (12),

Al

/Q Vel = l{o(y) < €2/2} = l{Iylx < €}l + o)
= eN_lbf‘v_l +0(eN+1)

which proves (13). We now prove (14). We first note that

€22
/|u€|dydt:/ / dt ) dy
2 {p()=e?/2} \Vp()

2

€ 1

= —{Iylr <ell —f ~IyB (1 + 0(y|*)dy + o€Vt
2 {lyli<e} 2

b eN+1

DNt v € / yRdy + o(eN ).
2 2 Juyn=n
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Denoting by bi,_l (resp. a)i,_z) the volume of the unit ball (resp. the unit sphere) of RY~! for the usual Euclidean
metric £, we have

& &
b= by_y _ )

N T N =DYTTA

and, by the coarea formula,

1 1
Yy = —— / / ylgdHN =2 | de
v/{lylxsl} JITx Jo \iye=n ~©
£

)

T N+ DY

Hence
w% 2 N+1 N+1
luc|dyds = = eVt oe™th
/Q ‘ 2(N + (N — DYTT A

which is (14). Eventually, to prove (15), we write that

/ ucldHY ! = / J1+Vpldy
292 {p(y)<€?/2}
= / ,/1+|Vp|2dy+0(€N+1)
e
1
=/ (1+52x$y3+0(|y|§)) dy 4 o(eV 1)
e

_ €
= N+ S / 33232y + oeN )
{lyli=s1}

with, using the symmetry of the sphere and then the coarea formula,

oA 2
Afyrdy = yidy
/uyusl}z o VITx Jiyle<ny ™

DA 2
R Iy 2dy
(N — Dy/TTx Juyle<y
. a)i,fzz)\i
(N — DN + DV M
Hence
£
w Zk,‘
luc|dHN ! = N-1ph o N=2 eVt 4 o(eN T
/m ‘ N1 = DIV + DYTT A

which is (15).
We now assume that, at a point x € 92, {2 is close to the cone C,, = {Aw, A > 0}, where w is a subset of the unit
sphere of RY, in the sense that

le 712 — x) N Bo(1)| ~ |C,y N Bo(1)],

le19(2 — x) N Bo(1)| ~ [dC,, N Bo(1)],
le™1(2 — x) N 3By(1)| ~ |Coy N B(1)]
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as € — 0. Using ue = x0nag, (¢) as a test-function, we have
f uedx = |20 Be(e)| ~ €"|Cyy N Bo(1)],
)
/ uedo = 1302 N Bye(e)| ~ eV 1aC, N By(1)],
82

f |Vue| = [2N03B ()] ~ eV 1C, N3Bo(1)] = €" o),
a2

with
[0C, N Bp(1)| = /1 |[0(rw)|dr = M,
0 N -1
and thus
A< L + O(e) = w + O (e).
[0C, N Bo(1)] [dw]

Hence if (N —1)|w| < |dw|, we get (5). In the particular case where w is a spherical cap, i.e. the intersection of d By(1)
with a half-space H™ defined by an affine hyperplane H, in such a way that C,, is convex of angle a € (0, /2], we
can get in a similar way that

o < W= DIHOBWDI_ (V=1 sin ! (@)bly._,
[H NoBy(1)] snlN_z(oz)a)‘;\,_2
= sin(a).
Hence if e 1 (2 — x) is asymptotically close to the cone C,, with angle o € (0, 7/2), (5) holds.
1.2. Proof of Theorem 2

We adapt to our case the argument of [6]. In view of (7), the sequence (1)) ,~1 is bounded, from which it follows
that the sequence (||up|lyy1.») is bounded, and eventually that the sequence (u,,) is bounded in BV ({2). In particular,
there exists u € BV ({2) such that, up to a subsequence, u,, — u strongly in L9({2) forallq < N/(N — 1) and a.e.
In particular, u > 0 a.e. According to [16] (see also [5]) and in view of (6), there exist a subset / C N, a sequence of
points (x;);e; C 92 and sequences of positive reals (i;)ies, (Vi)ier, and two measures  and v, with supp v C 912,
such that

VipPdx — > |[Vu| + Y vidy,,

o N (16)
upPdHN "~ v = JuldHY !+ " vis,,.

iel

Leto, = |Vup|”_2Vup. Given g € [1, +00), it is easily seen, using Holder’s inequality, that (0,) is bounded in
L4(£2) for p small enough. Hence there exists o € N> L9(§2) such that o, — o weakly in L9 ({2) for every g > 1.
Notice that 0 € L*°({2) with |0 ||oc < 1. Indeed for any ¥ € C2°({2, R"), we have

/Qowdx 1 /Q opprdx

= lim
) Zd
Passing to the limit in the Euler equation for u ,, namely

. —1
< lim |Vu,|” ||w||p=/ I ldx.
p—1 N

/ o—,,vwdx+/ b~ ydx =AP(Q)/ ub'ydHENT, vy e WhP (@), (17)
2 2 252

we get, in view of (7), that

{—dlva—l—l:O in {2 (18)

o.n=Ar1(02) on 4{2,
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where 7 is the unit outward normal to 92. Let ¢ € C°°(f2). Passing to the limit in (17) with ¥ = u ¢, using (7), we
obtain

/ ¢du+/ ro¢dx+/ ugpdx =k1(9)/ ¢dv. (19)
) £ £ 902

According to the definition of the measure o Vu, defined weakly by integration by parts (see [6]), and in view of (18),
we have

/uaV¢>dx =/ diV(¢u0)dx—/ ¢u(diva)dx—/ ¢ (oVu)
02 9} [0} (9]

= xl((z)/ dudHN ! —f ¢>udx—/ (o Vu). (20)
342 (9] £2

Plugging this in (19) and using the definitions of u and v, we eventually get

Vu| —oV A —1 0y | -
/qu ul — oVu) < (hy )/Qcp(Zv )

iel
Since |oVu| < ||o|leolVu| < |Vu| and A1 < 1 by assumption, we deduce that v; = O for all i € I. In particular
faQ udHN~! = 1. Moreover, inserting (20) into (19), we see that u = o Vu < |Vu|. Hence s = |Vul|.

1.3. Proof of Theorem 3

The proof of the first part is analogous to the proof of Theorem 2. As regards the second part, just remark that since
the principal curvatures at good points x € 02 are positive, we have supp ue C By (r) for € small, where u, is the
sequence of test-functions considered in the proof of Theorem 1. Hence the u,’s are also admissible test-functions for
AlLA-

1.4. Proof of Theorem 4

We first prove (8). Given € > 0, let D C {2 measurable, | D| = «, be such that
A(D) < Ai(a) +e.
The same arguments as were used to prove (7) show that A ,(D) — A;(D) as p — 1 (see [2]). Hence

limsupA,(a) < lim A, (D) = A1(D) < Aj(a) +e€.
p—1 p—1

Since € is arbitrary, we deduce (8).
As regards (9), we first note that

. S IVul? + |u|Pdx
Apla) = inf N1
ueWLr (), |u=0}za [y0 lulPdHN=

and, in the same way,

Vu| + uldx
A (o) = inf JolVu fQNl_ll
ueBV (). u=0)ze [y luldH

For p > 1, it is known (see [10]) that the last infimum is attained by some non-negative u, normalized by
faQ |up|1’7dHN_1 = 1, and satisfying |{u, = 0}| = «. Independently, since there exists a good point x € 9{2,
we have

M) < 1. (21)
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Indeed, let D C {2 be measurable of volume « and consider D' = (D\ Bc(r))UD forasmallr > Oand D C 2
being such that |D'| = « and D C {2\ B, (r). Then D' N By (r) = @, and thus, according to Theorem 1,

M) < (D) < 1,
as we wanted to prove. Now, as in the proof of Theorem 1 and in view of (21), we have that, along a subsequence,

up—>u in L'(£2) and a.e.

/qup|pdx—>/ [Vul

/ udHY ' = 1im [ uhdHV"' =1
a0 p=>1J30

as p — 1, for some non-negative u € BV (§2). In particular |{u = 0}| > «. Hence

o = [ 1Vuplras s [ upprar= [ vurs [ o
9} (0] 9} 9}
> Ai(a).

This proves (9).
1.5. Proof of Theorem 5

A straightforward modification of the proof of (3) allows us to rewrite (10) as

- aC N1 C

M) = _inf |—|+|| 22)
Cc xceBv@®R) |CNILYY
2\ C| =«

Let (C,) be a minimizing sequence for this problem. As in the proof of Theorem 4, the existence of a good point
x € d{2 implies that

M@ < 1. (23)
In particular, for n large enough,
10C, N 2]+ |Cul < 2|C, N3] < 2[042],

from which we deduce that (xc,) is bounded in BV ({2). Hence there exists a set of finite perimeter C such that
Xc, — Xc in L'(£) and a.e. In particular |2\ C| = «. Moreover, as in the proof of Theorem 6 below, we can deduce
from (23) that [, |Vxc,| = [o|Vxc,l ie. [0C, N 2] — [9C N £2|, and fml xc,dHN ! — fam xcdHN-1,
ie. |C,NAS2| — |Cp N3L2]|. Hence C attains the infimum in (22), which proves Theorem 5.

2. Proof of Theorem 6

To simplify the notation, we let A = A1 (§2) and As = A1(§2s).
According to the change of variable formula for functions of bounded variations [12], and the change of variable
formula for the boundary integral [14], we have that

)\,5 = inf Qs(u)

ueBV (£2),u#0 on 92
with
[ (DTs)~ v||det DT5||Vu| + [, ul|det DTs|dx

Qo) = Jyq lulI'(DTs)~Yii||det DTs|dHN !

’



N. Saintier / Nonlinear Analysis 69 (2008) 2479-2491 2489

where v is the Radon—-Nikodym derivative of Vu with respect to [Vu|, and 7 is the unit outward normal to 2. We also
let O = Qg, namely

B fQ |Vl +fQ |u|dx

0 = e
so that
As = inf Ou).

= in
ueBV (£2),u#0on 92
We first prove that for any u € BV ({2),
Qs(u) = (1+ 0(8)Q(u)

where the O(8) is uniform in u. The continuity of § — XAs at § = 0 then easily follows. Let u € BV ({2). Since
|v| = 1|Vul-a.e., we can assume that |v| = 1 everywhere. Then

(DTs) 'v|=1— (v, DR.V)S + 0(8), (24)
and in the same way,

"(DTs) " '7| = 1 — (7, DR.1)S + 0(5). (25)
We also have

|det DTs| = det DTs = 1 4 &(div R) + 0(3), (26)
all the 0(8) being uniform in x € 2. Since R € C1(2), we get

(1+ 0@) [(IVu| + |uldx)
(1+0) fy0 luldHN-1

as we wanted to prove. Theorem 6 then easily follows.

We now assume that A < 1. Since then lim sups_, g As < 1, it follows from Theorem 2 that there exists a nonnegative
extremal vs € BV ({2s) for A5 normalized by fBQa vsdHVN ! = 1. Letus = vs o Ts € BV (£2). Then the sequence
(us) is bounded in BV ({2). Indeed, according to (24) and (26), we have

Qs(u) = =4+ 0()Q(u),

f |Vu5|+/ u(gdx:/ |(DT8_1)_lvva||detDT5_1||Vv5|—i—/ vs|det DT '|dx
(0] 02 (s 25

= (1+ 0(8))/ [Vus| + vsdx = (1 + O(8))As
25

= (1+o(1)r.
There thus exists a nonnegative u € BV ({2) such that us — u in L'(£2). Moreover, as in the proof of Theorem 2,
Vus| = > |Vul+ ) vidy,,
iel
usldHN ™! —~ v = [uldHV '+ " b6y,
iel
We can now obtain

[0 IVul + z;vi + [ udx
IAS]

iel

A = lim As = lim Qs(vs) = lim(1 + O(8)) O (us) >
§—0 §—0 §—0

AfyoudHNT 43

iel

fBQ udHNil + Z Ul’ ’

iel
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i€ A jc Vi =) ;s vi-Since A < 1, we must have v; = 0 forall i € I, so that

1= / vsdHNV ! = / usdHY =1 +0(1) = / udHY ! 4+ 0(1).
82 82 912
Using the inferior semi-continuity of the total variation, we can now write

fQ|Vu| +f9udx -

A =limAis =lim Q5(vs) = lim(1 + O(8)) Q(us) = [oudBNT =

Hence u is an eigenfunction for A and

/IVM5|—>/ Val,
(0] (93

(27)
/ u(gdHN_1 — / udHN-1,
afn 982
We now prove the formula for the derivative (11). We first get using (24)—(26) that
fQ (1 +68fW)+0(8)) |Vul + fQ(l + 8div R + 0(8))udx
Q(S(u) = - N—1
L0(1+8f @)+ 0(8)udH
_A+8 ([ fWVul + udiv Rdx) + 0(8)
N 1+6 [, f@udHN=1 + 0(5)
=144 (/ (fW)|Vu| + udiv Rdx) — A/ f(ﬁ)udHN1> + 0(8),
) 382
where
f(X)=divR — (X, DR.X), X eR" (28)
Hence
As —A < Qs(u) — 2
=94 (/ (fW)|Vu| + udiv Rdx) — k/ f(ﬁ)udHN_1> ~+ 0(3). (29)
2 a2

It remains to prove the opposite inequality. Letting vs = v,;, we obtain, using (24)—(26) and the strong convergence
us — u in L1(2), that
Jo {1 +8f(s) +0(8)} [Vus| + [o(1 +8div R + 0(8))usdx
Joo lusldHN=1 45 [ o f(DusdHN =1 + 0(8)
_ JoUVus| +usdx) +8 [o{f (vs)|Vus| + (div R)udx} + 0(8)
B [y usdHN=V 45 [ o fudHN=! + 0(8) '

Os(us) =

We can rewrite (27) as

/_|V125|—>/_|V12|, (30)
n 2

where iis (resp. it) denotes the extension of us (resp. u) to R” \ {2 by 0. Independently, we clearly have the weak
convergence of Vs to Vu. We can thus apply Reshetnyak’s theorem [20,17,1] to get that

/_g(x,va<x>>|wa|—>/_g<x,v<x>>|w|
0] 7

for any continuous function g : 2 x § — R, where S denotes the unit sphere of R”. In particular

/f(va)IVM5|—>/ FO)IVal.
0] 0]
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Hence
Os(us) = O(ug) + 6 {f (fW)|Vu| + udiv Rdx) — A/ f(?l)udHN_l} + 0(9).
£ 82

We now have

As — A > Qs(us) — Q(us)
8 (f (f(V)|Vu| + u div Rdx) — x/ f(ﬁ)udHN—1> + 0(8). (31)
02 a2

We deduce from (29) and (31) and the uniqueness of u that the map § — A is differentiable at § = 0 with
25(0) = /Q(f(v)Wul + udiv Rdx) — A /39 F@udHN L. (32)

As there always exists an eigenset A C {2, i.e. a set of finite perimeter that attains the infimum in (3), and since u is by
hypothesis the only normalized eigenfunction for A, we have u = |A N 32|~ ! x 4. It follows from geometric measure
theory that [V 4| = |[AN 32|~} Hllav,.fAl (see [1,8,22]). Recalling the definition (28) of f and using the Green formula
for sets of finite perimeter, we can now rewrite (32) as (11).
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