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Abstract

In this paper we find estimates for the optimal constant in the critical Sobolev trace inequality λ1(Ω)‖u‖L1(∂Ω) ≤ ‖u‖W 1,1(Ω)
that are independent of Ω . These estimates generalize those of [J. Fernandez Bonder, N. Saintier, Estimates for the Sobolev trace
constant with critical exponent and applications, Ann. Mat. Pura. Aplicata (in press)] concerning the p-Laplacian to the case p = 1.

We apply our results to prove the existence of an extremal for this embedding. We then study an optimal design problem related
to λ1, and eventually compute the shape derivative of the functional Ω → λ1(Ω).
c© 2007 Elsevier Ltd. All rights reserved.
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Let Ω be a bounded smooth domain of RN . It is well known that the trace embedding from W 1,1(Ω) into L1(∂Ω)
is continuous, where W 1,1(Ω) is the usual Sobolev space of functions u ∈ L1(Ω) such that ∇u ∈ L1(Ω). The best
constant for this embedding is then defined by

λ1(Ω) = inf
u∈W 1,1(Ω)\W 1,1

0 (Ω)

∫
Ω |∇u|dx +

∫
Ω |u|dx∫

∂Ω |u|dH N−1 , (1)

where W 1,1
0 (Ω) denotes the closure for the W 1,1-norm of the space of smooth functions with compact support in Ω ,

and H N−1 is the (N − 1)-dimensional Hausdorff measure. The purpose of this paper is to obtain estimates of λ1(Ω)
under geometric assumptions on ∂Ω , and to apply them to some shape optimization problems related to λ1(Ω).

It turns out to be more convenient when dealing with λ1(Ω) to rewrite (1) as a minimization problem in the space
BV (Ω) of functions of bounded variation (see [1,8,22]) in the following way:

λ1(Ω) = inf
u∈BV (Ω),u 6≡0 on ∂Ω

∫
Ω |∇u| +

∫
Ω |u|dx∫

∂Ω |u|dH N−1 . (2)
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The equivalence between (1) and (2) follows from the fact that given u ∈ BV (Ω), there exist un ∈ C∞(Ω) such that
un = u on ∂Ω and the un’s approximate u in the sense that un → u in L1(Ω) and

∫
Ω |∇un|dx →

∫
Ω |∇u| (see [5,

12]).
We can also express λ1(Ω) in a more geometric way as an isoperimetric type problem. We recall that a set A ⊂ Ω̄

is said to be of finite perimeter if its characteristic function χA belongs to BV (Rn). It then follows from the coarea
formula that

λ1(Ω) = inf
A⊂Ω̄ ,χA∈BV (Rn)

|∂A ∩ Ω | + |A|

|A ∩ ∂Ω |
, (3)

where |∂A ∩ Ω | and |A ∩ ∂Ω | stand for Hn−1(∂A ∩ Ω) and Hn−1(A ∩ ∂Ω) respectively. This infimum is always
attained by some set of finite perimeter A ⊂ Ω̄ that we call an eigenset. We refer the reader to [15] for a detailed proof
of this result.

We end this presentation of λ1(Ω) by recalling its value in the case where Ω = B0(R) is a ball or an annulus
Ω = B0(R) \ B̄0(r). As remarked in [2, Remark 1], it follows from [19] that

λ1(Ω) =


|Ω |

|∂Ω |
if

|Ω |

|∂Ω |
≤ 1

1 otherwise.
(4)

Moreover, if |Ω |/|∂Ω | ≤ 1, then u = |∂Ω |
−1χΩ is a minimizer, and the only normalized one if |Ω |/|∂Ω | = 1,

whereas if |Ω |/|∂Ω | ≥ 1, there is no extremal for λ1(Ω).
We first consider the problem of the existence of an extremal for λ1(Ω). Since the immersion W 1,1(Ω) ↪→ L1(∂Ω)

is not compact, the existence of minimizers for λ1(Ω) does not follow by standard methods. Indeed this problem has
already been considered in [2,5] where it is proved that λ1(Ω) is attained as soon as

λ1(Ω) < 1. (5)

We will provide an alternative proof of this result. Notice that according to [2,5], the large inequality in (5) always
holds. We refer the reader to [2] for the derivation of the Euler equation satisfied by a minimizer. According to [19],
λ = 1 is the best first constant in the embedding W 1,1(Ω) ↪→ L1(∂Ω) in the sense that for any ε > 0 there exists
Bε > 0 such that for any u ∈ BV (Ω),∫

∂Ω
|u|dH N−1

≤ (1 + ε)

∫
Ω

|∇u| + Bε

∫
Ω

|u|dx, (6)

and 1 is the lowest constant such that such an inequality holds for any ε > 0 and any u ∈ BV (Ω). The inequality (5)
is then the usual condition ensuring that λ1(Ω) is attained when dealing with a critical problem (see e.g. [3,7]).

Our first result provides a local geometric condition on Ω for (5) to hold. Before stating it, we need a definition. We
say that a point x ∈ ∂Ω is a “good point” if the curvature of ∂Ω at x is big enough, or more precisely if the principal
curvatures λ1, . . . , λN−1 of ∂Ω at x are all positive and satisfy H =

∑N−1
i=1 λi > 1, and if the graph of ∂Ω around x

is close to the parabola y → (1/2)
∑
λi y2

i when considered in a local coordinate system such that x = 0 and the unit
outward normal derivative at 0 of ∂Ω is (0, . . . , 0, 1) (see (12) for a precise statement).

The result is the following:

Theorem 1. If there exists a “good point” x ∈ ∂Ω , then (5) holds.

Similarly, we can also prove that (5) holds when a part of ∂Ω is close to a convex cone of vertex x ∈ ∂Ω and angle in
(0, π/2), that is a non-flat cone, since in that case the “curvature” of ∂Ω at x is infinite.

It is well known that for p > 1, the trace embedding W 1,p(Ω) ↪→ L p(∂Ω) is continuous and compact. In particular
the best constant λp(Ω) for this embedding, namely

λp(Ω) = inf
u∈W 1,p(Ω)\W 1,p

0 (Ω)

∫
Ω |∇u|

p
+ |u|

pdx∫
∂Ω |u|pdH N−1 ,
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is attained by some positive u p normalized by
∫
∂Ω u p

pdH N−1
= 1. To show the existence of an extremal for λ1(Ω),

the authors of [2] approached λ1(Ω) via λp(Ω). They proved that

λp(Ω) → λ1(Ω) as p → 1, (7)

and also that

Theorem 2. If λ1(Ω) < 1, there exists a nonnegative function u ∈ BV (Ω) normalized by
∫
∂Ω |u|dH N−1

= 1, which
attains the infimum in the definition of λ1(Ω), and such that

u p → u in L1(∂Ω) and
∫
Ω

|∇u p|
pdx →

∫
Ω

|∇u|

as p → 1.

We will give a short proof of this result, different from the one provided in [2,5].
As an immediate corollary, we have that

Corollary 1. If ∂Ω has a “good point”, then λ1(Ω) is attained.

As an application of Theorem 1, we study a shape optimization problem related to λ1(Ω). Given α ∈ (0, |Ω |),
where |Ω | denotes the volume of Ω , and a measurable subset A ⊂ Ω of volume α, we first consider the minimization
problems

λ1,A = inf{
u ∈ BV (Ω), u 6≡ 0 on ∂Ω
u = 0 in A

∫
Ω |∇u| + |u|dx∫
∂Ω |u|dH N−1 ,

and

λp,A = inf{
u ∈ W 1,p(Ω) \ W 1,p

0 (Ω)
u = 0 in A

∫
Ω |∇u|

p
+ |u|

pdx∫
∂Ω |u|pdH N−1 .

It is easily seen that λp,A, p > 1, is attained. As regards λ1,A, we have, in the same spirit as what we had for λ1(Ω),
that

Theorem 3. If

λ1,A < 1,

there exists an extremal for λ1,A. Moreover this inequality holds as soon as there exists a good point x ∈ ∂Ω such
that A ∩ Bx (r) = ∅ for some r > 0.

Remark that λp,A, p ≥ 1, does not change if we modify A on a set of Lebesgue measure zero. To give a meaning

to λp,A, p > 1, when |A| = 0, the authors of [10] modified λp,A by considering W 1,p
A (Ω) := C∞

c (Ω̄ \ A) in place
of W 1,p(Ω). In the case p = 1, we introduce in a similar way in place of BV (Ω) the set BVA(Ω) of the functions
u ∈ BV (Ω) that can be approximated by a sequence uε ∈ C∞

c (Ω̄ \ A) in the sense that uε → u in L1(Ω) and∫
Ω |∇uε | →

∫
Ω |∇u|. We can then prove as in [8] that BVA(Ω) = BV (Ω) if and only if cap1(A) = 0, where

cap1(A) denotes the 1-capacity of A defined by

cap1(A) = inf
{∫
Rn

|∇u|, u ∈ BV (Rn), A ⊂ int{u ≥ 1}

}
.

In the case where A is compact, the coarea formula implies that cap1(A) = inf |∂ω| where the infimum is taken over
all the smooth open subsets ω ⊂ Rn containing A (see [18]). We consider the minimization problem

λ′

1,A = inf
u∈BVA(Ω), u 6≡0 on ∂Ω

∫
Ω |∇u| + |u|dx∫
∂Ω |u|dH N−1 .
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Then λ1,A ≤ λ′

1,A with equality when cap1(A) = 0. If cap1(A) > 0, both cases λ1,A = λ′

1,A and λ1,A < λ′

1,A can

occur. For example if a part of the boundary of Ω ⊂ R2 has curvature big enough (e.g. like a smooth version of the
set Qδ,η defined below next to Theorem 6), then λ1(Ω) will be attained by some χC where C ( Ω . Then if we put a
small curve A in the interior of Ω \ C , χC ∈ BVA(Ω) and thus λ∅ = λ1,A = λ′

1,A. In contrast, if Ω ⊂ R2 is a ball
such that |∂Ω | = |Ω |, then we know that λ1(Ω) is attained only by the µχΩ , µ ∈ R. Then if A is a small segment
inside Ω , λ1,A < λ′

1,A.
We now want to minimize λp,A, p ≥ 1, when A runs over all the measurable subsets of Ω of volume α, i.e. we

look at the following shape optimization problem:

λp(α) = inf
A⊂Ω ,|A|=α

λp,A

for p ≥ 1 and α ∈ (0, |Ω |).
The optimization problem λp(α), p > 1, has been considered recently. The existence of an optimal set has

been established in [10], and its regularity investigated in [11] for p = 2. The optimization problem λp(α) with
a critical exponent has been considered in [9]. Such problems of optimal design appear in several branches of applied
mathematics, especially for the case p = 2, for example in problems of minimization of the energy stored in the
design under a prescribed loading. We refer the reader to [4] for more details.

We prove the following relation between λp(α) and λ1(α):

Theorem 4. We have

lim sup
p→1

λp(α) ≤ λ1(α). (8)

Moreover, if there exists a good point x ∈ ∂Ω , then

lim
p→1

λp(α) = λ1(α). (9)

The proof of this theorem gives the existence of an extremal u ∈ BV (Ω) for λ1(α) but, since we can only prove that
|{u = 0}| ≥ α and not |{u = 0}| = α, we cannot assert the existence of an optimal hole A such that λ1(α) = λ1,A.
However if we consider the following modified optimal design problem:

λ̃1(α) = inf{
u ∈ BV (Ω), u 6≡ 0 on ∂Ω
|{u = 0}| = α

∫
Ω |∇u| + |u|dx∫
∂Ω |u|dH N−1 , (10)

we can prove that

Theorem 5. If there exists a good point x ∈ ∂Ω , then λ̃1(α) is attained by some u. In particular {u = 0} is an optimal
hole for λ̃1(α).

It follows from [10] that λp(α) = λ̃p(α), p > 1, where λ̃p(α) is defined by

λ̃p(α) = inf{
u ∈ W 1,p(Ω) \ W 1,p

0 (Ω)
|{u = 0}| = α

∫
Ω |∇u|

p
+ |u|

pdx∫
∂Ω |u|pdH N−1 ,

but for the same reason as before, we cannot establish the convergence of λ̃p(α) to λ̃1(α) as p → 1.
Our last result concerning λ1 is the computation of the first variation, the so-called shape derivative, of the

functional Ω → λ1(Ω). Let R : Rn
→ Rn be a C1 vector-field, and Ωδ = Tδ(Ω), where Tδ is the C1-diffeomorphism

defined for δ small by

Tδ(x) = x + δR(x).

We will prove that the map δ → λ1(Ωδ) is continuous at δ = 0, and also differentiable at δ = 0 under an additional
uniqueness assumption holding for example when Ω is a ball.
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Remark that if we allow perturbations of the domains that are less regular, we may not have continuity of λ1(Ωδ)
as the following example shows. Let Q = [0, 1]

N be the unit cube of RN , and let Qδ,η = Q ∪ Aδ,η with

Aδ,η = [1, 1 + η] × [0, δ] × [0, 1]
N−2, δ, η > 0.

Then taking χA as a test-function for estimating λ1(Qδ), we get

λ1(Qδ) ≤
δ + ηδ

Cη
→ 0

as δ → 0 if η � δ. This shows that, even if |Qδ∆Q| → 0 or Qδ → Q in Hausdorff distance, we do not have
continuity of λ1(Qδ). Indeed λ1(Qδ) → 0 6= λ1(Q).

Shape analysis is the subject of an intense research activity. We refer the reader to for example [14] for an
introduction to this field. To the best of the author’s knowledge, the shape analysis of a problem involving the L1-norm
of the gradient has only been considered up to know in [13,21] where the authors deal with the best constant for the
embedding of W 1,1(Ω) into L1(Ω).

Our result is the following:

Theorem 6. We have

λ1(Ωδ) → λ1(Ω)

as δ → 0. Moreover, if we assume that λ1(Ω) < 1 and that there exists a unique nonnegative extremal u ∈ BV (Ω)
for λ1(Ω) normalized by

∫
∂Ω udH N−1

= 1, then u = |A ∩ ∂Ω |
−1χA for some set of finite perimeter A ⊂ Ω̄ , and the

map δ → λ1(Ωδ) is differentiable at δ = 0 with

d
dδ
λ1(Ωδ)|δ=0 =

∫
Ω̄

{ f (ν)χ∂∗ A∩Ω − λ1(Ω) f (En)χA∩∂Ω − (R, ν)χ∂∗ A}
dH N−1

|A ∩ ∂Ω |
, (11)

where f (X) = div R − (X; DR.X), X ∈ Rn , ν is the Radon–Nikodym derivative of ∇u with respect to |∇u|, En is the
unit outward normal to ∂Ω , and ∂∗ A is the reduced boundary of A (see [1,8,22]).

In the particular case where Ω is such that λ1(Ω) < 1 and Ω is its own unique eigenset (i.e. A = Ω̄ ), formula (11)
writes as

d
dδ
λ1(Ωδ)|δ=0 =

∫
∂Ω

{(R, En)− λ1(Ω)(div R − (En; DR.En))}
dH N−1

|∂Ω |
.

Denoting by divg the divergence operator of the manifold (∂Ω , g), where g is the metric induced by the Euclidean
metric on ∂Ω , by H the mean curvature of ∂Ω (i.e. the sum of the principal curvatures of ∂Ω ), and by R∂Ω the
tangential part of R, we have (see [12]):

div R − (En; DR.En) = divg R∂Ω + H(R, En)

We thus get according to Green’ formula that

d
dδ
λ1(Ωδ)|δ=0 =

∫
∂Ω
(1 − λ1(Ω)H)(R, En)

dH N−1

|∂Ω |
.

The paper is organized as follows. We prove Theorems 1–5 in the following section and Theorem 6 in the last one.

1. Proof of Theorems 1–4

1.1. Proof of Theorem 1

Let x0 ∈ ∂Ω be a “good point”. By taking an appropriate coordinate system, we can assume that x0 = 0 and that
there exists r > 0 such that

Br ∩ Ω = {(y, t) ∈ Br , t > ρ(y)}

Br ∩ ∂Ω = {(y, t) ∈ Br , t = ρ(y)}



Author's personal copy

2484 N. Saintier / Nonlinear Analysis 69 (2008) 2479–2491

where y = (y1, . . . , yN−1) ∈ RN−1, Br is the Euclidean ball centered at the origin and of radius r , and

ρ(y) =
1
2
|y|

2
λ(1 + O(|y|

α))

for some α > 0, with

|y|
2
λ =

N−1∑
i=1

λi y2
i ,

where the λi ’s are the principal curvatures of ∂Ω at 0. We assume that α is such that as ε → 0,

|{y ∈ RN−1, ρ(y) ≤ ε2/2}∆{y ∈ RN−1, |y|λ ≤ ε}| = o(εN+1), (12)

where A∆B = (A \ B) ∪ (B \ A) denotes the symmetric difference of the sets A, B ⊂ RN−1 and |A| the volume of
A. A sufficient condition for (12) to hold is α > 2.

We consider the test-functions

uε(y, t) = χΩ∩{0≤t≤ε2/2}(y, t).

Assume for the moment that the following asymptotic developments hold:∫
Ω

|∇uε | = bλN−1ε
N−1

+ o(εN+1), (13)

∫
Ω

|uε |dydt =
ω
ξ
N−2

2(N + 1)(N − 1)
√∏

λi
εN+1

+ o(εN+1), (14)

and ∫
∂Ω

|uε |dH N−1
= εN−1bλN−1 +

ω
ξ
N−2

∑
λi

2(N − 1)(N + 1)
√∏

λi
εN+1

+ o(εN+1), (15)

where bλN−1 = |{y ∈ RN−1, |y|λ ≤ 1}| and ωξN−2 = |{y ∈ RN−1,
∑

y2
i = 1}|. It then follows that

λ1 ≤

∫
Ω |∇uε | +

∫
Ω |uε |dx∫

∂Ω |uε |dH N−1

= 1 +
ω
ξ
N−2

2(N − 1)(N + 1)bλN−1

√∏
λi

{
1 −

∑
λi

}
ε2

+ o(ε2),

from which we deduce Theorem 1.
We now prove (13)–(15). In view of (12),∫

Ω
|∇uε | = |{ρ(y) ≤ ε2/2}| = |{|y|λ ≤ ε}| + o(εN+1)

= εN−1bλN−1 + o(εN+1)

which proves (13). We now prove (14). We first note that∫
Ω

|uε |dydt =

∫
{ρ(y)≤ε2/2}

(∫ ε2/2

ρ(y)
dt

)
dy

=
ε2

2
|{|y|λ ≤ ε}| −

∫
{|y|λ≤ε}

1
2
|y|

2
λ(1 + O(|y|

α))dy + o(εN+1)

=
bλN−1

2
εN+1

−
εN+1

2

∫
{|y|λ≤1}

|y|
2
λdy + o(εN+1).
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Denoting by bξN−1 (resp. ωξN−2) the volume of the unit ball (resp. the unit sphere) of RN−1 for the usual Euclidean
metric ξ , we have

bλN−1 =
bξN−1√∏

λi
=

ω
ξ
N−2

(N − 1)
√∏

λi
,

and, by the coarea formula,∫
{|y|λ≤1}

|y|
2
λdy =

1√∏
λi

∫ 1

0

(∫
{|y|ξ=t}

|y|
2
ξdH N−2

)
dt

=
ω
ξ
N−2

(N + 1)
√∏

λi
.

Hence∫
Ω

|uε |dydt =
ω
ξ
N−2

2(N + 1)(N − 1)
√∏

λi
εN+1

+ o(εN+1)

which is (14). Eventually, to prove (15), we write that∫
∂Ω

|uε |dH N−1
=

∫
{ρ(y)≤ε2/2}

√
1 + |∇ρ|2dy

=

∫
{|y|λ≤ε}

√
1 + |∇ρ|2dy + o(εN+1)

=

∫
{|y|λ≤ε}

(
1 +

1
2

∑
λ2

i y2
i + o(|y|

2
λ)

)
dy + o(εN+1)

= εN−1bλN−1 +
εN+1

2

∫
{|y|λ≤1}

∑
λ2

i y2
i dy + o(εN+1)

with, using the symmetry of the sphere and then the coarea formula,∫
{|y|λ≤1}

∑
λ2

i y2
i dy =

∑
λi√∏
λi

∫
{|y|ξ≤1}

y2
i dy

=

∑
λi

(N − 1)
√∏

λi

∫
{|y|ξ≤1}

|y|
2
ξdy

=
ω
ξ
N−2

∑
λi

(N − 1)(N + 1)
√∏

λi
.

Hence∫
∂Ω

|uε |dH N−1
= εN−1bλN−1 +

ω
ξ
N−2

∑
λi

2(N − 1)(N + 1)
√∏

λi
εN+1

+ o(εN+1)

which is (15).
We now assume that, at a point x ∈ ∂Ω , Ω is close to the cone Cω = {λω, λ ≥ 0}, where ω is a subset of the unit

sphere of RN , in the sense that

|ε−1(Ω − x) ∩ B0(1)| ∼ |Cω ∩ B0(1)|,

|ε−1∂(Ω − x) ∩ B0(1)| ∼ |∂Cω ∩ B0(1)|,

|ε−1(Ω − x) ∩ ∂B0(1)| ∼ |Cω ∩ ∂B0(1)|
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as ε → 0. Using uε = χΩ∩Bx (ε) as a test-function, we have∫
Ω

uεdx = |Ω ∩ Bx (ε)| ∼ εN
|Cω ∩ B0(1)|,∫

∂Ω
uεdσ = |∂Ω ∩ Bx (ε)| ∼ εN−1

|∂Cω ∩ B0(1)|,∫
∂Ω

|∇uε | = |Ω ∩ ∂Bx (ε)| ∼ εN−1
|Cω ∩ ∂B0(1)| = εn−1

|ω|,

with

|∂Cω ∩ B0(1)| =

∫ 1

0
|∂(rω)|dr =

|∂ω|

N − 1
,

and thus

λ1 ≤
|ω|

|∂Cω ∩ B0(1)|
+ O(ε) =

(N − 1)|ω|

|∂ω|
+ O(ε).

Hence if (N −1)|ω| < |∂ω|, we get (5). In the particular case where ω is a spherical cap, i.e. the intersection of ∂B0(1)
with a half-space H+ defined by an affine hyperplane H , in such a way that Cω is convex of angle α ∈ (0, π/2], we
can get in a similar way that

λ1 .
(N − 1)|H ∩ B0(1)|

|H ∩ ∂B0(1)|
=
(N − 1) sinN−1(α)bξN−1

sinN−2(α)ω
ξ
N−2

= sin(α).

Hence if ε−1(Ω − x) is asymptotically close to the cone Cω with angle α ∈ (0, π/2), (5) holds.

1.2. Proof of Theorem 2

We adapt to our case the argument of [6]. In view of (7), the sequence (λp)p>1 is bounded, from which it follows
that the sequence (‖u p‖W 1,p ) is bounded, and eventually that the sequence (u p) is bounded in BV (Ω). In particular,
there exists u ∈ BV (Ω) such that, up to a subsequence, u p → u strongly in Lq(Ω) for all q < N/(N − 1) and a.e.
In particular, u ≥ 0 a.e. According to [16] (see also [5]) and in view of (6), there exist a subset I ⊂ N, a sequence of
points (xi )i∈I ⊂ ∂Ω and sequences of positive reals (µi )i∈I , (νi )i∈I , and two measures µ and ν, with supp ν ⊂ ∂Ω ,
such that

|∇u p|
pdx ⇀ µ ≥ |∇u| +

∑
i∈I

νiδxi ,

|u p|
pdH N−1 ⇀ ν = |u|dH N−1

+

∑
i∈I

νiδxi .
(16)

Let σp = |∇u p|
p−2

∇u p. Given q ∈ [1,+∞), it is easily seen, using Hölder’s inequality, that (σp) is bounded in
Lq(Ω) for p small enough. Hence there exists σ ∈ ∩q≥1 Lq(Ω) such that σp → σ weakly in Lq(Ω) for every q > 1.
Notice that σ ∈ L∞(Ω) with ‖σ‖∞ ≤ 1. Indeed for any ψ ∈ C∞

c (Ω ,Rn), we have∣∣∣∣∫
Ω
σψdx

∣∣∣∣ = lim
p→1

∣∣∣∣∫
Ω
σpψdx

∣∣∣∣ ≤ lim
p→1

‖∇u p‖
p−1
p ‖ψ‖p =

∫
Ω

|ψ |dx .

Passing to the limit in the Euler equation for u p, namely∫
Ω
σp∇ψdx +

∫
Ω

u p−1
p ψdx = λp(Ω)

∫
∂Ω

u p−1
p ψdH N−1, ∀ψ ∈ W 1,p(Ω̄), (17)

we get, in view of (7), that{
−div σ + 1 = 0 in Ω
σ.En = λ1(Ω) on ∂Ω , (18)
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where En is the unit outward normal to ∂Ω . Let φ ∈ C∞(Ω̄). Passing to the limit in (17) with ψ = u pφ, using (7), we
obtain∫

Ω
φdµ+

∫
Ω

uσ∇φdx +

∫
Ω

uφdx = λ1(Ω)
∫
∂Ω
φdν. (19)

According to the definition of the measure σ∇u, defined weakly by integration by parts (see [6]), and in view of (18),
we have∫

Ω
uσ∇φdx =

∫
Ω

div (φuσ)dx −

∫
Ω
φu(div σ)dx −

∫
Ω
φ(σ∇u)

= λ1(Ω)
∫
∂Ω
φudH N−1

−

∫
Ω
φudx −

∫
Ω
φ(σ∇u). (20)

Plugging this in (19) and using the definitions of µ and ν, we eventually get∫
Ω
φ(|∇u| − σ∇u) ≤ (λ1 − 1)

∫
Ω
φ

(∑
i∈I

νiδxi

)
.

Since |σ∇u| ≤ ‖σ‖∞|∇u| ≤ |∇u| and λ1 < 1 by assumption, we deduce that νi = 0 for all i ∈ I . In particular∫
∂Ω udH N−1

= 1. Moreover, inserting (20) into (19), we see that µ = σ∇u ≤ |∇u|. Hence µ = |∇u|.

1.3. Proof of Theorem 3

The proof of the first part is analogous to the proof of Theorem 2. As regards the second part, just remark that since
the principal curvatures at good points x ∈ ∂Ω are positive, we have supp uε ⊂ Bx (r) for ε small, where uε is the
sequence of test-functions considered in the proof of Theorem 1. Hence the uε’s are also admissible test-functions for
λ1,A.

1.4. Proof of Theorem 4

We first prove (8). Given ε > 0, let D ⊂ Ω measurable, |D| = α, be such that

λ1(D) ≤ λ1(α)+ ε.

The same arguments as were used to prove (7) show that λp(D) → λ1(D) as p → 1 (see [2]). Hence

lim sup
p→1

λp(α) ≤ lim
p→1

λp(D) = λ1(D) ≤ λ1(α)+ ε.

Since ε is arbitrary, we deduce (8).
As regards (9), we first note that

λp(α) = inf
u∈W 1,p(Ω),|{u=0}|≥α

∫
Ω |∇u|

p
+ |u|

pdx∫
∂Ω |u|pdH N−1

and, in the same way,

λ1(α) = inf
u∈BV (Ω),|{u=0}|≥α

∫
Ω |∇u| +

∫
Ω |u|dx∫

∂Ω |u|dH N−1 .

For p > 1, it is known (see [10]) that the last infimum is attained by some non-negative u p normalized by∫
∂Ω |u p|

pdH N−1
= 1, and satisfying |{u p = 0}| = α. Independently, since there exists a good point x ∈ ∂Ω ,

we have

λ1(α) < 1. (21)
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Indeed, let D ⊂ Ω be measurable of volume α and consider D′
:= (D \ Bx (r)) ∪ D̄ for a small r > 0 and D̄ ⊂ Ω

being such that |D′
| = α and D̄ ⊂ Ω \ Bx (r). Then D′

∩ Bx (r) = ∅, and thus, according to Theorem 1,

λ1(α) ≤ λ1(D
′) < 1,

as we wanted to prove. Now, as in the proof of Theorem 1 and in view of (21), we have that, along a subsequence,
u p

p → u in L1(Ω) and a.e.∫
Ω

|∇u p|
pdx →

∫
Ω

|∇u|∫
∂Ω

udH N−1
= lim

p→1

∫
∂Ω

u p
pdH N−1

= 1

as p → 1, for some non-negative u ∈ BV (Ω). In particular |{u = 0}| ≥ α. Hence

λp(α) =

∫
Ω

|∇u p|
pdx +

∫
Ω

|u p|
pdx =

∫
Ω

|∇u| +

∫
Ω

|u|dx + o(1)

≥ λ1(α).

This proves (9).

1.5. Proof of Theorem 5

A straightforward modification of the proof of (3) allows us to rewrite (10) as

λ̃1(α) = inf{
C ⊂ Ω̄ , χC ∈ BV (Rn)
|Ω \ C | = α

|∂C ∩ Ω | + |C |

|C ∩ ∂Ω |
. (22)

Let (Cn) be a minimizing sequence for this problem. As in the proof of Theorem 4, the existence of a good point
x ∈ ∂Ω implies that

λ̃1(α) < 1. (23)

In particular, for n large enough,

|∂Cn ∩ Ω | + |Cn| ≤ 2|Cn ∩ ∂Ω | ≤ 2|∂Ω |,

from which we deduce that (χCn ) is bounded in BV (Ω). Hence there exists a set of finite perimeter C such that
χCn → χC in L1(Ω) and a.e. In particular |Ω \C | = α. Moreover, as in the proof of Theorem 6 below, we can deduce
from (23) that

∫
Ω |∇χCn | →

∫
Ω |∇χCn |, i.e. |∂Cn ∩ Ω | → |∂C ∩ Ω |, and

∫
∂Ω |

χCn dH N−1
→

∫
∂Ω |

χC dH N−1,
i.e. |Cn ∩ ∂Ω | → |Cn ∩ ∂Ω |. Hence C attains the infimum in (22), which proves Theorem 5.

2. Proof of Theorem 6

To simplify the notation, we let λ = λ1(Ω) and λδ = λ1(Ωδ).
According to the change of variable formula for functions of bounded variations [12], and the change of variable

formula for the boundary integral [14], we have that

λδ = inf
u∈BV (Ω),u 6≡0 on ∂Ω

Qδ(u)

with

Qδ(u) =

∫
Ω |(DTδ)−1ν||det DTδ||∇u| +

∫
Ω |u||det DTδ|dx∫

∂Ω |u| |
t (DTδ)−1En||det DTδ|dH N−1 ,
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where ν is the Radon–Nikodym derivative of ∇u with respect to |∇u|, and En is the unit outward normal to Ω . We also
let Q = Q0, namely

Q(u) =

∫
Ω |∇u| +

∫
Ω |u|dx∫

∂Ω |u|dH N−1 ,

so that

λδ = inf
u∈BV (Ω),u 6≡0 on ∂Ω

Q(u).

We first prove that for any u ∈ BV (Ω),

Qδ(u) = (1 + O(δ))Q(u)

where the O(δ) is uniform in u. The continuity of δ → λδ at δ = 0 then easily follows. Let u ∈ BV (Ω). Since
|ν| = 1|∇u|-a.e., we can assume that |ν| = 1 everywhere. Then

|(DTδ)
−1ν| = 1 − (ν, DR.ν)δ + o(δ), (24)

and in the same way,

|
t (DTδ)

−1
En| = 1 − (En, DR.En)δ + o(δ). (25)

We also have

|det DTδ| = det DTδ = 1 + δ(div R)+ o(δ), (26)

all the o(δ) being uniform in x ∈ Ω̄ . Since R ∈ C1(Ω̄), we get

Qδ(u) =
(1 + O(δ))

∫
Ω (|∇u| + |u|dx)

(1 + O(δ))
∫
∂Ω |u|dH N−1 = (1 + O(δ))Q(u),

as we wanted to prove. Theorem 6 then easily follows.
We now assume that λ < 1. Since then lim supδ→0 λδ < 1, it follows from Theorem 2 that there exists a nonnegative

extremal vδ ∈ BV (Ωδ) for λδ normalized by
∫
∂Ωδ

vδdH N−1
= 1. Let uδ = vδ ◦ Tδ ∈ BV (Ω). Then the sequence

(uδ) is bounded in BV (Ω). Indeed, according to (24) and (26), we have∫
Ω

|∇uδ| +

∫
Ω

uδdx =

∫
Ωδ

|(DT −1
δ )−1νvδ ||det DT −1

δ ||∇vδ| +

∫
Ωδ

vδ|det DT −1
δ |dx

= (1 + O(δ))
∫
Ωδ

|∇vδ| + vδdx = (1 + O(δ))λδ

= (1 + o(1))λ.

There thus exists a nonnegative u ∈ BV (Ω) such that uδ → u in L1(Ω). Moreover, as in the proof of Theorem 2,

|∇uδ| ⇀ µ ≥ |∇u| +

∑
i∈I

νiδxi ,

|uδ|dH N−1 ⇀ ν = |u|dH N−1
+

∑
i∈I

νiδxi .

We can now obtain

λ = lim
δ→0

λδ = lim
δ→0

Qδ(vδ) = lim
δ→0

(1 + O(δ))Q(uδ) ≥

∫
Ω |∇u| +

∑
i∈I
νi +

∫
Ω udx∫

∂Ω udH N−1 +
∑
i∈I
νi

≥

λ
∫
∂Ω udH N−1

+
∑
i∈I
νi∫

∂Ω udH N−1 +
∑
i∈I
νi
,
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i.e. λ
∑

i∈I νi ≥
∑

i∈I νi . Since λ < 1, we must have νi = 0 for all i ∈ I , so that

1 =

∫
∂Ω
vδdH N−1

=

∫
∂Ω

uδdH N−1
+ o(1) =

∫
∂Ω

udH N−1
+ o(1).

Using the inferior semi-continuity of the total variation, we can now write

λ = lim λδ = lim Qδ(vδ) = lim(1 + O(δ))Q(uδ) ≥

∫
Ω |∇u| +

∫
Ω udx∫

∂Ω udH N−1 ≥ λ.

Hence u is an eigenfunction for λ and∫
Ω

|∇uδ| →

∫
Ω

|∇u|,∫
∂Ω

uδdH N−1
→

∫
∂Ω

udH N−1.

(27)

We now prove the formula for the derivative (11). We first get using (24)–(26) that

Qδ(u) =

∫
Ω (1 + δ f (ν)+ o(δ)) |∇u| +

∫
Ω (1 + δ div R + o(δ))udx∫

∂Ω (1 + δ f (En)+ o(δ))u dH N−1

=
λ+ δ

(∫
Ω f (ν)|∇u| + u div Rdx

)
+ o(δ)

1 + δ
∫
∂Ω f (En)udH N−1 + o(δ)

= λ+ δ

(∫
Ω
( f (ν)|∇u| + u div Rdx)− λ

∫
∂Ω

f (En)udH N−1
)

+ o(δ),

where

f (X) = div R − (X, DR.X), X ∈ Rn . (28)

Hence

λδ − λ ≤ Qδ(u)− λ

= δ

(∫
Ω
( f (ν)|∇u| + u div Rdx)− λ

∫
∂Ω

f (En)udH N−1
)

+ o(δ). (29)

It remains to prove the opposite inequality. Letting νδ ≡ νuδ , we obtain, using (24)–(26) and the strong convergence
uδ → u in L1(Ω), that

Qδ(uδ) =

∫
Ω {1 + δ f (νδ)+ o(δ)} |∇uδ| +

∫
Ω (1 + δ div R + o(δ))uδdx∫

∂Ω |uδ|dH N−1 + δ
∫
∂Ω f (En)uδdH N−1 + o(δ)

=

∫
Ω (|∇uδ| + uδdx)+ δ

∫
Ω { f (νδ)|∇uδ| + (div R)udx} + o(δ)∫

∂Ω uδdH N−1 + δ
∫
∂Ω f (En)udH N−1 + o(δ)

.

We can rewrite (27) as∫
Ω̄

|∇ūδ| →

∫
Ω̄

|∇ū|, (30)

where ūδ (resp. ū) denotes the extension of uδ (resp. u) to Rn
\ Ω̄ by 0. Independently, we clearly have the weak

convergence of ∇ūδ to ∇ū. We can thus apply Reshetnyak’s theorem [20,17,1] to get that∫
Ω̄

g(x, νδ(x))|∇ūδ| →

∫
Ω̄

g(x, ν(x))|∇ū|

for any continuous function g : Ω̄ × S → R, where S denotes the unit sphere of Rn . In particular∫
Ω

f (νδ)|∇uδ| →

∫
Ω

f (ν)|∇u|.
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Hence

Qδ(uδ) = Q(uδ)+ δ

{∫
Ω
( f (ν)|∇u| + u div Rdx)− λ

∫
∂Ω

f (En)udH N−1
}

+ o(δ).

We now have

λδ − λ ≥ Qδ(uδ)− Q(uδ)

= δ

(∫
Ω
( f (ν)|∇u| + u div Rdx)− λ

∫
∂Ω

f (En)udH N−1
)

+ o(δ). (31)

We deduce from (29) and (31) and the uniqueness of u that the map δ → λδ is differentiable at δ = 0 with

λ′
δ(0) =

∫
Ω
( f (ν)|∇u| + u div Rdx)− λ

∫
∂Ω

f (En)udH N−1. (32)

As there always exists an eigenset A ⊂ Ω̄ , i.e. a set of finite perimeter that attains the infimum in (3), and since u is by
hypothesis the only normalized eigenfunction for λ, we have u = |A ∩ ∂Ω |

−1χA. It follows from geometric measure
theory that |∇χA| = |A ∩ ∂Ω |

−1 H N−1
|∂∗ A (see [1,8,22]). Recalling the definition (28) of f and using the Green formula

for sets of finite perimeter, we can now rewrite (32) as (11).
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