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Abstract: We present two finite-difference methods for approximating solutions to a structured
population model in the space of non-negative Radon Measures. The first method is a first-order
upwind-based scheme and the second is high-resolution method of second-order. We prove that the
two schemes converge to the solution in the Bounded-Lipschitz norm. Several numerical examples
demonstrating the order of convergence and behavior of the schemes around singularities are provided.
In particular, these numerical results show that for smooth solutions the upwind and high-resolution
methods provide a first-order and a second-order approximation, respectively. Furthermore, for
singular solutions the second-order high-resolution method is superior to the first-order method.
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1. Introduction

Transport equations have been rigorously studied for many years [1–3]. These equations are
particularly useful in modeling the dynamics of a population with some physiological structure such
as age or size [2, 4–6]. Classically, these models take place in a smooth or integrable setting [2, 7–9].
These frameworks help model populations using densities with respect to the structure (e.g., size, age)
variable. However, it is often useful to consider populations with concentrated masses. As proposed
in [5], these cases can be handled by considering the framework of measures, particularly, of Radon
measures. The space of Radon measures is of particular interest as it contains both distributions with
densities (i.e., absolutely continuous with respect to the Lebesgue measure) and those with
concentrated mass (i.e., Dirac measures). This allows for joint analysis of both discrete and
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continuous distributions in the structure (e.g., size, age) variable .
In this article, we are interested in the following structured population model:

∂tµ + ∂x(g(t, µ)µ) + d(t, µ)µ = 0, (t, x) ∈ (0,T ) × (0,∞)

g(t, µ)(0)Ddxµ(0) =

∫ ∞

0
β(t, µ)(y)dµ(y), t ∈ [0,T ]

µ(0) ∈ M+(R+)

(1.1)

where

µ : [0,T ] −→M+(R+),
g, d, β : [0,T ] ×M+(R+) −→ W1,∞(R+).

(1.2)

Here, given a Borel subset A ⊂ R+, µ(t)(A) represents the number of individuals at time t of structure
(e.g., size, age) x in A, and the functions g and d represent the growth and death rate of individuals at
time t of structure x, respectively. Likewise, the function β represents the reproduction rate of these
individuals. More precisely, at time t and distribution µ(t) of the structure, an individual with structure
x produces offspring at rate β(t, µ(t))(x). Thus, Ddxµ(0) denotes the Radon-Nikodym derivative of µ(t)
with respect to the Lebesgue measure, dx, at the point x = 0.

The first equation in the model (1.1) describes how the number of individuals with structure x,
µ(t)(x) informally, change in time t due to the combination of two effects: the transport term ∂x(g(t, µ)µ)
which moves the distribution µ at velocity g and the death rate which removes individuals from the
system at rate d. The second equation models the inflow of individuals at the boundary due to birth.
The third equation simply states the regularity of the initial condition.

The model functions, g, d, β, are assumed to be influenced by both time, t, and solution to the
population model, µ(t). In applications (e.g., see [6, 10, 11]), it is common to choose β, g and µ to
depend on a weighted mean of the population in the following form:

β(t, µ)(x) = B
(
t, x,

∫
R+ KB(y)dµ(y)

)
,

g(t, µ)(x) = G
(
t, x,

∫
R+ KG(y)dµ(y)

)
,

d(t, µ)(x) = D
(
t, x,

∫
R+ KD(y)dµ(y)

)
,

(1.3)

for given maps B,D,G : [0,T ] × R+ × R+ → R+ and KB,KG,KD : R+ → R+. Common physically
motivated model functions utilize Beverton–Holt type [12] or Ricker type [13] nonlinearities with
respect to the weighted mean of the population and of a Von Bertalanffy type [14] model with respect to
structure x. For example, utilizing Ricker type nonlinearity with a Von Bertalanffy model for size [10]
with individual maximum size xmax and r being a parameter related to the inherent growth rate at size
0 and low population levels, the function G may be chosen to be

G =

{
r(xmax − x) exp(−

∫
R+ KG(y)dµ(y)) x ≤ xmax

0. x > xmax.
(1.4)

Well-posedness of such a model was studied in [15] and later expanded to a more general model
in [6]. Numerical schemes based on Split-Up (SU) and the Escalator Boxcar Train (EBT) algorithms
were compared in [16], originally proposed in [17] and [18]. While the schemes in [17, 18] provide
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an accurate approximation of the solution, they are only shown numerically to have a convergence
rate of first order (i.e. the error is proportional to the mesh size) even when the solution is of smooth
density. Higher accuracy is desired in the study of inverse problems and optimal control problems
where solving the equation multiple times is required.

In this paper, we present a different approach than the above mentioned numerical schemes which
is based on finite difference methods. Such methods have been well studied both in a smooth setting
and in an integrable setting [8, 9, 19–21]. We follow the frame work laid out in the space of integrable
functions presented in [9, 21] and provide convergence results in the space of Radon measures. While
the schemes we present are in the spirit of those presented in [21], we would like to point out some
of the key differences of the current work with that presented in [21]. First, the model studied in this
paper is different than the model studied in [21] as here we do not consider the type of hierarchical
dependency (which is a more general form of dependency) on the structure considered in that work.
In particular, in [21] they consider a size-structured model on finite domain [0, 1] and they assume the
vital rates g, β, d depend on

Q(x, t) = α

∫ x

0
u(y, t)dy +

∫ 1

x
u(y, t)dx, 0 ≤ α < 1, (1.5)

where u represents the density of individuals of size x and time t. They formulate a model for the
density u(x, t) in the spirit of (1.1) on the space of integrable functions. Through finite-difference
approximation method they establish the well-posedness of a PDE that is governed by Q (not u) in the
space of integrable functions by utilizing the compact embedding of the space of bounded variation
functions in the space of integrable function to achieve existence of solutions and prove that the limit
satisfies an entropy condition to establish uniqueness. They also show that their first-order finite
difference approximation converges in the weak* topology to a (unique) limit u that satisfies (1.5) but
did not prove that u satisfies the size-structure model governed by u. In that work, the initial condition
regularity assumed for u is that of bounded variation and cohorts of individuals with a single point
structure x in the form of Dirac measures are not considered (clearly in the present work such initial
conditions are permitted). To our knowledge, the formulation of the model considered in [21] on the
space of finite signed measures is still an open question. Secondly, the first order scheme presented
in [21] is implicit while the scheme presented in this paper is explicit. Here, we extend the
convergence results to explicit schemes on the space of measures and to demonstrate the difference of
the schemes (explicit and implicit), we compare the computation times and errors in section 5.1
below. Lastly, while the authors in [21] provided numerical examples of a high-resolution
second-order method, no stability estimates or convergence results were given for this method. In this
paper, we establish convergence of the second order method to the solution of (1.1).

This paper is organized as follows: in Section 2, we present notation associated with the space of
Radon measures used in this paper and we recall a useful result. In Section 3, we state assumptions
needed for the model (1.1) to be well-posed which follow from the results in [15]. In Section 4, we
present two numerical schemes. In particular, in Section 4.1 we provide an explicit upwind scheme
and prove the scheme converges to the solution of (1.1) (Theorem 4.2). In Section 4.2, we provide a
high-resolution second-order scheme in the spirit of the method presented in [21], but formulated in
the space of Radon measures. We then prove convergence results in this space for the high-resolution
method (Theorem 4.3). In Section 5, we provide numerical examples comparing the explicit first
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order method developed in this paper, the high-resolution second order method presented here, and
the implicit first order scheme studied in [21]. We test our methods against examples covered in
[16, 21] (see, example 5.1). We also provide different examples of the flexibility of our scheme in
handling discontinuous and singular densities (see, examples 5.2 and 5.3). In Section 6, we provide an
application where competition for resources between individuals may influence the maximum size of
individuals. This example also has the benefit of demonstrating the regularity of the stationary-state
solution discussed in [22]. Finally, in Section 7 we provide some concluding remarks.

2. Notation and background

We employ the following notation for commonly used spaces: R+ = [0,∞), Ck(X; Y) denotes the
space of functions from X to Y that are differentiable up to order k, Cc(X; Y) denotes the space of
continuous functions from X to Y that have compact support, Cb(X; Y) denotes the space of bounded
continuous functions from X to Y ,M+(X) denotes the space of all finite non-negative Radon measures
on X, and W1,∞(X; Y) denotes the usual Sobolev space on X with codomain Y . When talking about
spaces of functions, if the codomain Y = R, we will omit Y from the notation above.

Unless otherwise specified, we equipped M+(R+) with the Bounded-Lipschitz Norm (BL-norm)
defined as

‖ν‖BL = sup
{ ∫
R+

φ dν : φ ∈ W1,∞(R+), ‖φ‖W1,∞ ≤ 1
}

where ‖φ‖W1,∞ = max{‖φ‖L∞ , ‖∂xφ‖L∞}. The BL-norm has also been referred to as the flat norm [23,24],
Dudley norm [25, 26], and Fortet-Mourier norm [27, 28]. Another norm commonly associated with
M+(R+) is the total variation norm (TV-norm) given by

‖ν‖TV = |ν|(R+) = sup
{∫
R+

f dν : f ∈ Cc(R+), ‖ f ‖∞ ≤ 1
}
.

It should be noted that while over nonnegative measures they are equivalent as norms, the induced
metrics from the BL-norm and TV-norm do not agree. In general, for ν, µ ∈ M+(R+),

‖ν − µ‖BL ≤ ‖ν − µ‖TV .

In other words, the BL-norm and TV-norm are different on the space of signed measures. For more
information on these norms, we refer the reader to [29] and the references therein.

We say a sequence of non-negative Radon measures, (µn), converges weakly if there is a
µ ∈ M+(R+) such that for every f ∈ Cb(R+),∫

R+

f d(µn − µ) −→ 0

as n −→ ∞. We say (µn) is tight if
lim

x−→∞
sup

n
µn([x,∞)) = 0.

In M+(R+), we additionally have that the BL-norm metricizes weak convergence. For more detail,
see [15, 30].

We make use of the following compactness result which follows from an application of the well-
known Riesz representation and Alaoglu Theorems:
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Theorem 2.1. For any compact set K ⊂ R+ and any C > 0, the set {µ ∈ M+(K) : ‖µ‖TV ≤ C} is
compact for weak convergence.

3. Model assumptions

We also assume that the model functions satisfy the following:

(A1) For any R > 0, there exists LR > 0 such that for all ‖µi‖TV ≤ R and ti ∈ [0,T ] (i = 1, 2) the
following hold

‖g(t1, µ1) − g(t2, µ2)‖∞ ≤ LR(|t1 − t2| + ‖µ1 − µ2‖BL),

‖d(t1, µ1) − d(t2, µ2)‖∞ ≤ LR(|t1 − t2| + ‖µ1 − µ2‖BL),

‖β(t1, µ1) − β(t2, µ2)‖∞ ≤ LR(|t1 − t2| + ‖µ1 − µ2‖BL),

(A2) There exists ζ > 0 such that

sup
t∈[0,T ]

sup
µ∈M+(R+)

‖g(t, µ)‖W1,∞ + ‖d(t, µ)‖W1,∞ + ‖β(t, µ)‖W1,∞ < ζ,

(A3) For all (t, µ) ∈ [0,T ] ×M+(R+),
g(t, µ)(0) > 0.

Remark 3.1. As noted in [15], the Lipschitz in time assumptions can be weakened to the functions
having a modulus of continuity with respect to time, ωR(|t1 − t2|).

Remark 3.2. The functions given in (1.3) satisfy assumptions (A1) and (A2) provided that B,G,D ∈
W1,∞([0,T ] × R+ × R+) and KB,KG,KD ∈ W1,∞(R+). Furthermore, Eq (1.4) provides a biologically
relevant example of a growth function which satisfies (A1) - (A3).

We define a solution to (1.1) as follows:

Definition 3.1. Given T ≥ 0, we say a function µ ∈ C([0,T ],M+(R+)) is a weak solution to (1.1) if for
all φ ∈ (C1 ∩W1,∞)([0,T ] × R+), the following holds:∫

R+

φ(T, x)dµ(T )(x) −
∫
R+

φ(0, x)dµ(0)(x) =∫ T

0

∫
R+

[
∂tφ(t, x) + g(t, µ(t))(x)∂xφ(t, x) − d(t, µ(t))(x)φ(t, x)

]
dµ(t)(x)dt (3.1)

+

∫ T

0

∫
R+

φ(t, 0)β(t, µ(t))(x)dµ(t)(x)dt

4. Discretization methods

In this section we present two methods for approximating the solutions of model (1.1). We first
present a first-order upwind-based scheme and then we present a second-order high-resolution scheme.
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For fixed ∆x and ∆t, we discretize R+ and [0,T ] with points x j = j∆x and tk = k∆t where j = 0, 1, . . .
and k = 0, 1, . . .K − 1 such that K∆t = T .

We assume that the initial measure µ(0) ∈ M+(R+) has a compact support in [0, L]. By standard
range of influence arguments, the solution at time T will have support contained in [0, X] where X =

L + ζT .

Remark 4.1. The assumption of a compactly supported initial condition is made for numerical
computation purposes. In general, this assumption is not needed since the initial condition belongs to
M+(R+), and thus is inherently tight. In this case, one would use the tight version of Theorem 2.1
which can be found in [15].

Remark 4.2. The schemes and proofs below hold for the applicable case where the variable x is
contained in a finite interval, [0, X], provided we additionally have g(t, µ)(X) = 0 for all (t, µ) ∈
[0,T ] ×M+(R+).

4.1. Upwind scheme

We approximate the initial measure by a linear combination of Dirac Delta masses. More precisely,

µ(0) ≈ µ0
∆x :=

∞∑
j=1

m0
jδx j ,

where
m0

j := µ(0)((x j−1, x j]).

Letting jL = b L
∆xc, we assume additionally that L is chosen large enough such that m0

j = 0 for all j ≥ jL

(it is possible since µ(0) is assumed to be compactly supported).
The main idea of the proposed method is to use a finite difference scheme based on Eq (1.1) to

generate coefficients for the following time steps, approximating µ(k∆t) with

µk
∆x =

∞∑
j=1

mk
jδx j .

We let gk
j = g(tk, µ

k
∆x)(x j), dk

j = d(tk, µ
k
∆x)(x j), and βk

j = β(tk, µ
k
∆x)(x j). We remark that due to the model

functions dependency of µ, their discretization at time k depend on every mk
j, j = 1, 2, 3, . . . . We present

two different explicit schemes. From here on, we additionally assume for all (t, µ) ∈ [0,T ] ×M+(R+)
and x ∈ (0, X),

g(t, µ)(x), d(t, µ)(x), β(t, µ)(x) ≥ 0. (4.1)

Remark 4.3. The nonnegativity assumption on g is enforced because we are using an upwind-type
scheme below. This assumption can be relaxed but in such a case one needs to apply a combination of
an upwind and downwind scheme depending on the sign of g (see for e.g., [31]).

In this section, we study the following explicit scheme:
mk+1

j − mk
j

∆t
+

gk
jm

k
j − gk

j−1mk
j−1

∆x
+ dk

jm
k
j = 0

gk
0

mk
0

∆x
=

∞∑
j=1

βk
jm

k
j

, (4.2)
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which can be rewritten in the form
mk+1

j = (1 −
∆t
∆x

gk
j − ∆tdk

j)m
k
j +

∆t
∆x

gk
j−1mk

j−1

gk
0mk

0 = ∆x
∞∑
j=1

βk
jm

k
j

(4.3)

for j = 1, 2, . . . and k = 1, 2, . . . ,K − 1. Notice that mk
0, which approximate the boundary value

Ddxµ(k∆t), depends on all the mk
j, j ≥ 1, and that mk+1

j , the approximation of µ(k∆t + ∆t)((x j−1, x j]), is
computed explicitely and directly from the knowledge of the result of the previous time step mk

0,m
k
1, ....

Throughout this section, we assume the following Courant-Friedrichs-Lewy (CFL) condition on our
mesh: for ζ defined by (A2),

ζ(∆t +
∆t
∆x

) ≤ 1. (4.4)

The method defined by (4.3) is a simple Upwind scheme which serves two purposes. First, it provides
an easily implemented method where numerical computations presented here suggest it is of first order
when the initial condition is absolutely continuous (see Section 5). Secondly, many of the proofs for
the higher order method are similar to the easier proofs presented in this section.

We begin with a simple, but useful result.

Lemma 4.1. Under the assumptions above we have, for every k, µk
∆x ∈ M

+(R+).

Proof. Since µk
∆x is a linear combination of Dirac measures with summable coefficients mk

j, it suffices
to show that for every k, mk

j ≥ 0 for all j. Notice that since µ(0) ∈ M+(R+), we have m0
j ≥ 0 for all

j = 1, 2, . . . and by the positivity assumptions on gk
0 and β, we have m0

0 ≥ 0.
The result then follows from mathematical induction using formulation (4.3) along with the CFL

condition (4.4) and the positivity assumptions (4.1). �

An immediate advantage of Lemma 4.1 is the following:

Corollary 4.1. The total variation ‖µk
∆x‖TV of the approximated solution is

‖µk
∆x‖TV =

∞∑
j=1

mk
j.

In the next lemma, we show that the approximations µk
∆x have compact support for every k. The

same argument can be used to show the approximations are tight for non compactly supported initial
conditions.

Lemma 4.2. For every k = 0, 1, . . . ,K, let Ck = [0, jL + k]. Then,

µk
∆x(R

+ \ Ck) = 0.

More precisely mk
j = 0 for all j ≥ jL + k.
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Proof. We will show that for every k there is an index jk such that
∑∞

j= jk mk
j ≤ 0. Since the mk

j are
non-negative, mk

j = 0 for all j ≥ jk. We accomplish this through induction. We claim for each k,

∞∑
j= jL+k

mk
j = 0.

By our assumption on L, the claim holds for k = 0. Assuming the claim is true for k, then from
(4.3), the CFL condition (4.4), “telescoping" sums, and the fact that mk

jL+k = 0 we have

∞∑
j= jL+k+1

mk+1
j =

∞∑
j= jL+k+1

(1 − ∆tdk
j)m

k
j +

∆t
∆x

(gk
j−1mk

j−1 − gk
jm

k
j)

≤

∞∑
j= jL+k+1

mk
j

= 0.

�

In view of this result, we restrict the approximation to a finite sum. That is

µk
∆x =

J∑
j=1

mk
jδx j

for some positive integer J > jL + K.

Lemma 4.3. Let R > 0 be such that ‖µ(0)‖TV ≤ R. Then there is a constant C∗ independent of ∆x and
∆t such that for every k = 0, 1, . . . ,K,

‖µk
∆x‖TV ≤ C∗.

Proof. From scheme (4.2) we have

‖µk+1
∆x ‖TV =

J∑
j=1

mk+1
j

=

J∑
j=1

((1 − ∆tdk
j)m

k
j +

∆t
∆x

(gk
j−1mk

j−1 − gk
jm

k
j). (4.5)

Notice the “telescoping" term in (4.5), the second equation in scheme (4.2), and the CFL condition
(4.4) imply

J∑
j=1

((1 − ∆tdk
j)m

k
j +

∆t
∆x

(gk
j−1mk

j−1 − gk
jm

k
j) ≤ ‖µ

k
∆x‖TV +

∆t
∆x

gk
0mk

0

≤ (1 + ζ∆t)‖µk
∆x‖TV .

Therefore,
‖µk

∆x‖TV ≤ ReTζ =: C∗.

�
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We next show the regularity of the scheme.

Lemma 4.4. There exists an L > 0 independent of ∆x and ∆t such that for l > p,

‖µl
∆x − µ

p
∆x‖BL ≤ L(l − p)∆t.

Proof. Let φ ∈ W1,∞(R+) with ‖φ‖W1,∞ ≤ 1. Letting φ j = φ(x j) then we have

(µl
∆x − µ

p
∆x, φ) =

J∑
j=1

φ j(ml
j − mp

j )

=

J∑
j=1

l−1∑
k=p

φ j(mk+1
j − mk

j)

=

J∑
j=1

l−1∑
k=p

φ j(
∆t
∆x

(gk
j−1mk

j−1 − gk
jm

k
j) − dk

jm
k
j∆t).

Using “summation-by-parts" and the second equation in (4.3),

J∑
j=1

l−1∑
k=p

φ j(
∆t
∆x

(gk
j−1mk

j−1 − gk
jm

k
j) − dk

jm
k
j∆t)

=

l−1∑
k=p

J∑
j=1

∆t
∆x

(φ j+1 − φ j)gk
jm

k
j + φ1β

k
jm

k
j∆t − dk

jm
k
jφ j∆t.

Using that |φ j| ≤ 1 and |φ j+1 − φ j| ≤ |x j+1 − x j| = ∆x, we obtain

(µl
∆x − µ

p
∆x, φ) ≤ ∆t

l−1∑
k=p

J∑
j=1

gk
jm

k
j + βk

jm
k
j + dk

jm
k
j ≤ 3ζ∆t

l−1∑
k=p

‖µk
∆x‖TV

≤ 3ζC∗(l − p)∆t

where we used Lemma 4.3. �

Our main goal is to use Ascoli-Arzela’s Theorem to guarantee the existence of a convergent sub-
sequence of our scheme. However, the theorem takes place on the set of continuous functions from
a compact Hausdorff space into a metric space (for more detail, see [32]) and we have only provided
discrete measures. We address this by defining a family of curves µ∆t

∆x : [0,T ] → M+(R+) linearly
interpolating the µk

∆x:

µ∆t
∆x(t) = µ0

∆xχ{t0}(t) +

K−1∑
k=0

[
(1 −

t − tk

∆t
)µk

∆x + (
t − tk

∆t
)µk+1

∆x

]
χ(tk ,tk+1](t)

where χE(t) denotes the characteristic function over the set E and where ∆t and ∆x satisfy (4.4). One
can check that µ∆t

∆x ∈ C([0,T ],M+([0, X])) and, with the assistance of Lemmas 4.3 and 4.4, the
following two lemmas hold:
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Lemma 4.5. Assume ‖µ(0)‖TV ≤ R. Then

‖µ∆t
∆x(t)‖TV ≤ C∗

for all t ∈ [0,T ]. Here the constant C∗ is the same from Lemma 4.3.

Lemma 4.6. There exist an L > 0 independent of ∆x and ∆t such that for all t1, t2 ∈ [0,T ],

‖µ∆t
∆x(t1) − µ∆t

∆x(t2)‖BL ≤ L|t1 − t2|.

With Theorem 2.1, we have for each t ∈ [0,T ], the set M(t) = {µ∆t
∆x(t)} ⊂ M

+([0, X]) is precompact
for weak convergence. Since [0, X] is compact, this implies M(t) is precompact for convergence in the
BL-norm as well. Owing to Ascoli-Arzela, we obtain the following Theorem.

Theorem 4.1. For any ∆t,∆x −→ 0, there exists a subsequence
(
µ∆ti

∆xi

)
i∈N

of
(
µ∆t

∆x

)
, the family of

measures defined above, which converges to some µ in C([0,T ],M+([0, X])), i.e.,
supt∈[0,T ] ‖µ

∆ti
∆xi

(t) − µ(t)‖BL → 0.

In fact we can prove that

Theorem 4.2. As ∆x,∆t → 0 the sequence µ∆t
∆x converges in C([0,T ],M+([0, X])) to the solution of

(1.1), i.e., supt∈[0,T ] ‖µ
∆t
∆x(t) − µ(t)‖BL → 0.

Proof. We essentially follow the proof presented in section 12.5 of [20], while enjoying the nice
properties of Dirac measures. Since each curve is determined by its values on the points (tk, x j), we
restrict ourselves to the numerical scheme (4.2). For the moment, take φ ∈ (C2 ∩W1,∞)([0,T ] × R+).
We may assume φ is compactly supported as Lemma 4.2 shows the measures µ∆t

∆x are also of compact
support. We multiply (4.2) by φk

j∆t = φ(tk, x j)∆t and sum over j = 1, 2, . . . , J and k = 0, 1, . . . ,K − 1
to arrive at

K−1∑
k=0

J∑
j=1

(
(mk+1

j − mk
j)φ

k
j +

∆t
∆x

(gk
jm

k
j − gk

j−1mk
j−1)φk

j

)
= −∆t

K−1∑
k=0

J∑
j=1

dk
jm

k
jφ

k
j. (4.6)

Starting with the right-hand side of (4.6), notice

∆t
K−1∑
k=0

J∑
j=1

dk
jm

k
jφ

k
j = ∆t

K−1∑
k=0

∫
R+

d(tk, µ
k
∆x)(x)φ(tk, x)dµk

∆x(x). (4.7)

For convenience when working with the left-hand side, we group the related terms and work with them
separately. Making use of “summation by parts" and that mk

J = 0 for all k we have

K−1∑
k=0

J∑
j=1

(mk+1
j − mk

j)φ
k
j =

J∑
j=1

φK−1mK
j − φ

0
jm

0
j +

K−1∑
k=1

(φk−1
j − φ

k
j)m

k
j


=

∫
R+

φ(T − ∆t, x)dµK
∆x(x) −

∫
R+

φ(0, x)dµ0
∆x(x)

− ∆t
K−1∑
k=1

∫
R+

φ(tk, x) − φ(tk − ∆t, x)
∆t

dµk
∆x(x) (4.8)
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and

∆t
∆x

K−1∑
k=0

J∑
j=1

(gk
jm

k
j − gk

j−1mk
j−1)φk

j = −
∆t
∆x

K−1∑
k=0

φk
1gk

0mk
0 +

J∑
j=1

(φk
j+1 − φ

k
j)g

k
jm

k
j


= −∆t

K−1∑
k=0

∫
R+

φ(tk, x + ∆x) − φ(tk, x)
∆x

g(tk, µ
k
∆x)(x)dµk

∆x(x)

− ∆t
K−1∑
k=0

φ(tk,∆x)
∫
R+

β(tk, µ
k
∆x)(x)dµk

∆x(x). (4.9)

Thus, by combining (4.7), (4.8), (4.9), and rearranging terms, Eq (4.6) becomes

∫
R+

φ(T − ∆t, x)dµK
∆x(x) −

∫
R+

φ(0, x)dµ0
∆x(x)

= ∆t

K−1∑
k=1

∫
R+

φ(tk, x) − φ(tk − ∆t, x)
∆t

dµk
∆x(x)

+

K−1∑
k=0

(∫
R+

φ(tk, x + ∆x) − φ(tk, x)
∆x

g(tk, µ
k
∆x)(x)dµk

∆x(x)

−

∫
R+

d(tk, µ
k
∆x)(x)φ(tk, x)dµk

∆x(x) +

∫
R+

φ(tk,∆x)β(tk, µ
k
∆x)(x)dµk

∆x(x)
)]
.

We will now simplify this expression. To this end we first note that

|φ(T − ∆t, x) − φ(T, x)| ≤ ‖∂tφ‖∞∆t.

Moreover
φ(tk, x) − φ(tk − ∆t, x)

∆t
= ∂tφ(tk − θ(x)∆t, x)

for some θ(x) ∈ (0, 1). Assuming that φ has compact support in [0,T ] × R+, we deduce

φ(tk, x) − φ(tk − ∆t, x)
∆t

= ∂tφ(tk, x) + o(1)

where o(1)→ 0 as ∆t → 0 uniformly in k and x. In the same way

φ(tk, x + ∆x) − φ(tk, x)
∆x

= ∂xφ(tk, x) + o(1)

where o(1)→ 0 as ∆x→ 0 uniformly in k and x. Moreover using Lemma 4.3 and recalling that K∆t =

T , we have ∆t
∑K−1

k=0

∫
R+ o(1)dµk

∆x(x) = o(1). By the above results and with adding and subtracting some
terms, we obtain∫

R+

φ(T, x)dµK
∆x(x) −

∫
R+

φ(0, x)dµ0
∆x(x)

= ∆t
K−1∑
k=0

(∫
R+

∂tφ(tk, x)dµk
∆x(x) +

∫
R+

∂xφ(tk, x)g(tk, µ
k
∆x)(x)dµk

∆x(x)

−

∫
R+

d(tk, µ
k
∆x)(x)φ(tk, x)dµk

∆x(x) +

∫
R+

φ(tk,∆x)β(tk, µ
k
∆x)(x)dµk

∆x(x)
)

+ o(1),

(4.10)
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where o(1) −→ 0 as ∆t,∆x −→ 0.
We now verify that for any k and any t ∈ [tk, tk+1] there holds∫

R+

∂xφ(t, x)g(t, µ∆t
∆x(t))(x)dµ∆t

∆x(t)(x) =

∫
R+

∂xφ(tk, x)g(tk, µ
k
∆x)(x)dµk

∆x(x) + o(1) (4.11)

where o(1) → 0 as ∆t,∆x → 0 uniformly in k, t, x. Indeed since ∂xφ(t, x) = ∂xφ(tk, x) + o(1) with
o(1)→ 0 as ∆t → 0 uniformly in t, x, we have∫

R+

∂xφ(t, x)g(t, µ∆t
∆x(t))(x)dµ∆t

∆x(t)(x) =

∫
R+

∂xφ(tk, x)g(t, µ∆t
∆x(t))(x)dµ∆t

∆x(t)(x) + o(1).

Moreover in view of assumption (A1) and Lemma 4.4, we see

‖g(tk, µ
k
∆x) − g(t, µ∆t

∆x(t))‖∞ ≤ LR(|tk − t| + ‖µk
∆x − µ

∆t
∆x(t)‖BL)

≤ LR(∆t + ‖µk
∆x − µ

k+1
∆x ‖BL)

≤ ∆t(LR +L)

and so ∫
R+

∂xφ(t, x)g(t, µ∆t
∆x(t))(x)dµ∆t

∆x(t)(x) =

∫
R+

∂xφ(tk, x)g(tk, µ
k
∆x)(x)dµ∆t

∆x(t)(x) + o(1).

Finally, using assumption (A2) and Lemma 4.4, we have∣∣∣∣ ∫
R+

∂xφ(tk, x)g(tk, µ
k
∆x)(x)dµ∆t

∆x(t)(x) −
∫
R+

∂xφ(tk, x)g(tk, µ
k
∆x)(x)dµk

∆x(x)
∣∣∣∣

≤ ‖µ∆t
∆x(t) − µ

k
∆x‖BL‖∂xφ(tk, ·)g(tk, µ

k
∆x)‖W1,∞ .

Since φ ∈ C2([0,T ] × R+), we have that ‖∂xφ(tk, ·)‖W1,∞ ≤ C, and so we obtain∣∣∣∣ ∫
R+

∂xφ(tk, x)g(tk, µ
k
∆x)(x)dµ∆t

∆x(t)(x) −
∫
R+

∂xφ(tk, x)g(tk, µ
k
∆x)(x)dµk

∆x(x)
∣∣∣∣

≤ C‖µk+1
∆x − µ

k
∆x‖BL

≤ CL∆t.

From the above calculations, we deduce (4.11).
Integrating (4.11) for t ∈ [tk, tk+1] and summing over k yields∫ T

0

∫
R+

∂xφ(t, x)g(t, µ∆t
∆x(t))(x)dµ∆t

∆x(t)(x)dt = ∆t
K−1∑
k=0

∫
R+

∂xφ(tk, x)g(tk, µ
k
∆x)(x)dµk

∆x(x) + o(1).

The other terms in the right-hand side of (4.10) can be handled in an analogous way. We then deduce
from (4.10) that∫

R+

φ(T, x)dµ∆t
∆x(T )(x) −

∫
R+

φ(0, x)dµ0
∆x(x)
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=

∫ T

0

(∫
R+

∂tφ(t, x) + ∂xφ(t, x)g(t, µ∆t
∆x(t))(x)dµ∆t

∆x(t)(x)

−

∫
R+

d(t, µ∆t
∆x(t))(x)φ(t, x)dµ∆t

∆x(t)(x) +

∫
R+

φ(t,∆x)β(t, µ∆t
∆x(t))(x)dµ∆t

∆x(t)(x)
)

dt + o(1).

Passing the limit as ∆t,∆x −→ 0 along a converging subsequence, we then obtain that Eq (3.1)
holds for any φ ∈ (C2 ∩W1,∞)([0,T ] × R+) with compact support. A standard density argument shows
that Eq (3.1) holds for any φ ∈ (C1 ∩W1,∞)([0,T ] × R+).

Borrowing uniqueness of the solution of Eq (3.1) from [15], we have in fact that the whole sequence
µ∆t

∆x converges to the solution of (1.1).
�

4.2. Second order high-resolution scheme

In this section, we aim to provide a high-order method. We will provide this approximation over a
finite domain as special care is needed around boundary points. We approximate the initial condition
as follows:

µ(0) ≈ µ0
∆x =

J∑
j=1

m0
jδx j

where, the coefficients m0
j are generated as in Section 4.1.

We generate the coefficients with a second-order high-resolution scheme similar to those studied
in [9, 21] 

mk+1
j = mk

j −
∆t
∆x

( f k
j+ 1

2
− f k

j− 1
2
) − ∆tdk

jm
k
j, j = 1, 2, . . . , J

gk
0mk

0 = ∆x
J∑

j=1

∗βk
jm

k
j

(4.12)

where the flux term is given by

f k
j+ 1

2
=

gk
jm

k
j +

1
2

(gk
j+1 − gk

j)m
k
j +

1
2

gk
j mm(∆+mk

j,∆−m
k
j) j = 2, 3, . . . , J − 2

gk
jm

k
j j = 0, 1, J − 1, J

(4.13)

and the sum on the boundary is given by

J∑
j=1

∗βk
jm

k
j =

3
2
βk

1mk
1 +

1
2
βk

Jmk
J +

J−1∑
j=2

βk
jm

k
j.

Here we denote by mm(a, b) the minmod function given by

mm(a, b) =
sgn(a) + sgn(b)

2
min(|a|, |b|)

and we denote by ∆+mk
j and ∆−mk

j the forwards and backwards difference in the variable x (index j),
respectively. We impose the following CFL condition on the scheme: for ζ defined in (A2),

ζ(∆t +
3∆t
2∆x

) ≤ 1. (4.14)
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In a similar fashion to the work cited before, it is useful to define the following coefficients:

Ak
j =



gk
j j = 1, J

1
2

(
gk

j+1 + gk
j + gk

j
mm(∆+mk

j ,∆−mk
j)

∆−mk
j

)
j = 2

1
2

(
gk

j+1 + gk
j + gk

j
mm(∆+mk

j ,∆−mk
j)

∆−mk
j

− gk
j−1

mm(∆−mk
j ,∆−mk

j−1)

∆−mk
j

)
j = 3, . . . , J − 2

1
2

(
2gk

j − gk
j−1

mm(∆−mk
j ,∆−mk

j−1)

∆−mk
j

)
j = J − 1

and

Bk
j =


∆−gk

j j = 1, J
1
2∆+gk

j j = 2
1
2 (∆+gk

j + ∆−gk
j) j = 3, . . . , J − 2

1
2∆−gk

j j = J − 1

.

Notice, |Ak
j | ≤

3∆t
2∆xζ and Ak

j − Bk
j ≥ 0 as

2(Ak
j − Bk

j) =



2gk
j−1 j = 1, J

gk
j

(
2 +

mm(∆+mk
j ,∆−mk

j)

∆−mk
j

)
j = 2

gk
j

(
1 +

mm(∆+mk
j ,∆−mk

j)

∆−mk
j

)
+ gk

j−1

(
1 −

mm(∆−mk
j ,∆−mk

j−1)

∆−mk
j

)
j = 3, . . . , J − 2

gn
j + gn

j−1

(
1 −

mm(∆−mn
j ,∆−mn

j−1)

∆−mn
j

)
j = J − 1

.

Scheme (4.12) can then be rewritten as
mk+1

j = (1 −
∆t
∆x

Ak
j − ∆tdk

j)m
k
j +

∆t
∆x

(Ak
j − Bk

j)m
k
j−1

gk
0mk

0 = ∆x
J∑

j=1

∗βk
jm

k
j .

. (4.15)

From this formulation and the CFL condition (4.14), the following Lemmas are immediate. The
proofs follow the arguments presented in the related Lemmas presented in Section 4.1.

Lemma 4.7. For every k = 0, 1, . . . ,K, µk
∆x ∈ M

+(R+).

Lemma 4.8. For every k = 0, 1, . . . ,K, let Ck = [0, jL + k]. Then

µk
∆x(R

+ \ Ck) = 0.

Following the ideas from the Section 4.1, we next prove that our approximations are uniformly
bounded and Lipschitz in time.

Lemma 4.9. Assume ‖µ(0)‖TV ≤ R. Then there is a constant C∗∗ independent of ∆x and ∆t such that
for every k = 0, 1, . . . ,K,

‖µk
∆x‖TV ≤ C∗∗.
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Proof. Here it is more useful to use formulation (4.12) of the high-resolution scheme. We have

‖µk+1
∆x ‖TV =

J∑
j=1

mk+1
j

=

J∑
j=1

((1 − ∆tdk
j)m

k
j +

∆t
∆x

( f k
j−1mk

j−1 − f k
j mk

j). (4.16)

As in Lemma 4.3, the “telescoping" term in (4.16), the second equation in scheme (4.12), and the CFL
condition (4.14) imply

J∑
j=1

(
(1 − ∆tdk

j)m
k
j +

∆t
∆x

( f k
j−1mk

j−1 − f k
j mk

j)
)
≤ ‖µk

∆x‖TV +
∆t
∆x

gk
0mk

0

= ‖µk
∆x‖TV + ∆t

J∑
j=1

∗βk
jm

k
j

≤ (1 +
3
2
ζ∆t)‖µk

∆x‖TV .

Therefore,
‖µk

∆x‖TV ≤ Re
3
2 Tζ .

�

Lemma 4.10. There exists an L∗ > 0 independent of ∆x and ∆t such that for l > p,

‖µl
∆x − µ

p
∆x‖BL ≤ L

∗(l − p)∆t.

Proof. Let φ ∈ W1,∞(R+) be with ‖φ‖W1,∞ ≤ 1 . It follows from the same arguments presented in Lemma
4.4 that

(µl
∆x − µ

p
∆x, φ) =

J∑
j=0

(ml
j − mp

j )φ(x j)

=

J∑
j=0

l−1∑
k=p

(mk+1
j − mk

j)φ(x j)

=

l−1∑
k=p

J∑
j=1

(
∆t
∆x

( f k
j− 1

2
− f k

j+ 1
2
)φ(x j) − dk

jm
k
jφ(x j)∆t

)

≤

l−1∑
k=p

 J∑
j=1

(
∆t
∆x

(φ(x j+1) − φ(x j)) f k
j+ 1

2
− dk

jm
k
jφ(x j)∆t

)
+

J∑
j=1

∗φ(x1)βk
jm

k
j∆t

 .
Notice from definition (4.13), ∣∣∣∣ f k

j+ 1
2

∣∣∣∣ ≤ 2ζC∗∗.
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Thus, we have
l−1∑
k=p

 J∑
j=1

(
∆t
∆x

(φ(x j+1) − φ(x j)) f k
j+ 1

2
− dk

jm
k
jφ(x j)∆t

)
+

J∑
j=1

∗φ(x1)βk
jm

k
j∆t


≤ 4.5ζC∗(l − p)∆t.

�

As with the upwind scheme, after interpolation, Theorem 2.1 and Ascoli-Arzela’s Theorem
guarantee the existence of a convergent subsequence of the scheme. Which leads us to the following

Theorem 4.3. As ∆x,∆t → 0 the sequence µ∆t
∆x converges in C([0,T ],M+([0, X])) to the unique

solution of (1.1), i.e., supt∈[0,T ] ‖µ
∆t
∆x(t) − µ(t)‖BL → 0.

Proof. We follow the same argument presented in the upwind scheme. Multiplying (4.12) by φk
j∆t =

φ(tk, x j)∆t where φ ∈ (C2
c ∩W1,∞)(R+) , we arrive at the following

K−1∑
k=0

J∑
j=1

(
(mk+1

j − mk
j)φ

k
j +

∆t
∆x

( f k
j+ 1

2
− f k

j− 1
2
)φk

j

)
= −∆t

K−1∑
k=0

∞∑
j=1

dk
jm

k
jφ

k
j. (4.17)

Notice, the only terms different in (4.17) from (4.6) in Section 4.1 are the ones involving the flux.
Therefore, we only need to address these terms and follow the argument presented in Theorem 4.2.
Using “summation by parts" we have

∆t
∆x

K−1∑
k=0

J∑
j=1

( f k
j+ 1

2
− f k

j− 1
2
)φk

j = ∆t
K−1∑
k=0

 J∑
j=0

−(φk
j+1 − φ

k
j)

∆x
f k

j+ 1
2

 − J∑
j=1

∗βk
jm

k
j

 . (4.18)

Notice that since g and the mk
j are bounded, the terms from (4.13),

1
2 (gk

j+1 − gk
j)m

k
j + 1

2gk
jmm(∆+mk

j,∆−m
k
j) −→ 0 as ∆x −→ 0. Thus, (4.18) reduces to Eq (4.9) in the

upwind scheme with the addition of an O(∆t) term which arises from the boundary. The proof follows
as in Theorem 4.2. �

At the moment, we have only provided a scheme that is second order in space only (except at the
boundary points). To make the scheme second order in time, we use the following second order in
time total variation diminishing Runge-Kutta time discretization studied in [33] which preserves all
convergence results.

Let
m(1)

j = mk
j −

∆t
∆x

( f k
j+ 1

2
− f k

j− 1
2
) − dk

jm
k
j∆t

with

g(1)
0 m(1)

0 = ∆x
J∑

j=1

∗βk
jm

k
j

and compute

mk+1
j =

1
2

(mk
j + m(1)

j −
∆t
∆x

( f (1)
j+ 1

2
− f (1)

j− 1
2
) − dk

jm
(1)
j ∆t)

with

gk+1
0 mk+1

0 = ∆x
J∑

j=1

∗βk+1
j mk+1

j .
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5. Numerical examples

In this section, we test our schemes against a variety of problems. We compare the performance
of the explicit first order method developed in this paper, the high-resolution second order method
presented here, and the implicit first order scheme studied in [21]. We do this considering three specific
problems with known solution varying the regularity of the inital condition. More specifically, we first
consider a problems whose solution is a smooth function, then a problem whose solution is an irregular
L1 function, and eventually a problem whose solution is highly singular being the sum of two Dirac
masses. For the examples whose solutions are absolutely continuous, we present the error and the
order of the three methods (first order implicit, first order explicit and second order) and also record
the execution times.

However, since computing the flat metric exactly is not a simple task, we use the same metric
presented in [34] to approximate the BL distance. The metric is given by

ρ(µ, ν) = min{‖µ‖TV , ‖ν‖TV}W1(
µ

‖µ‖TV
,

ν

‖ν‖TV
) + | ‖µ‖TV − ‖ν‖TV | (5.1)

where W1 is the 1-Wasserstein distance calculated with the algorithm presented in [34]. We
approximate the order of accuracy, q, with the standard calculation:

q = log2

 ρ(µ∆t
∆x(T ), µ(T ))

ρ(µ0.5∆t
0.5∆x(T ), µ(T ))


where µ represents the exact solution of the examples considered. As proved in [34], when the support
of µ and ν are contained in a compact set, there exists a constant C such that

Cρ(µ, ν) ≤ ‖µ − ν‖BL ≤ ρ(µ, ν).

Thus, the order of accuracy is maintained between the two metrics.
For the second order scheme, local truncation error analysis of the flux, f k

j+ 1
2
, suggests it is more

accurate to adjust the mesh size for the interval (x1, x2] from ∆x to 3
2∆x and the mesh size for the

interval (xJ−2, xJ−1] from ∆x to 1
2∆x without changing the values of x j (see, e.g., [8]). We implement

these changes in our numerical computations below for the second order method. These changes do
not affect the convergence results shown in Section 4.2.

5.1. Smooth density

Here we consider a problem where the initial measure is generated by a smooth density function.
The purpose of this example is to show that the scheme can achieve second order accuracy under
sufficiently nice conditions. We set

g(x) = 2 − 2 exp(x − 1), d(x) = 1, β(x) = 2, and µ(0) = exp(−x)dx (5.2)

where x ∈ [0, 1]. One can check that the solution to this problem is given by µ(t) = exp(t − x)dx. In
Table 1, we present the error of our method from approximating the solution at time T = 1. We show
in Figure 1 the running time of our algorithms.
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Table 1. BL-errors, order of accuracy, and computation times of the methods for the example
given in (5.2). Here Nx and Nt represent the number of points used in x and t, respectively.

Nx Nt Upwind (Explicit) Upwind (Implicit)
BL-Error Order Time (secs) BL-Error Order Time (secs)

50 100 2.4918e-02 0.0012787 1.2735e-02 0.1136
100 200 6.2740e-03 0.9624 0.0048793 6.4026e-03 0.9921 0.38302
200 400 3.1779e-03 0.9813 0.014612 3.2102e-03 0.9960 1.8511
400 800 1.5992e-03 0.9907 0.047931 1.6073e-03 0.9980 8.6158
800 1600 8.0219e-04 0.9954 0.19472 8.0421e-04 0.9990 45.239

1600 3200 4.0174e-04 0.9977 0.68946 4.0225e-04 0.9995 270.36
3200 6400 2.0103e-04 0.9988 2.7294 2.0116e-04 0.9997 1713.3

Nx Nt Higher Resolution
BL-Error Order Time (secs)

50 100 1.2366e-03 0.027463
100 200 3.1716e-04 1.9631 0.11203
200 400 8.0302e-05 1.9817 0.44452
400 800 2.0202e-05 1.9909 2.1523
800 1600 5.0664e-06 1.9955 11.342

1600 3200 1.2685e-06 1.9978 68.524
3200 6400 3.1737e-07 1.9989 800.51

Figure 1. The data from Table 1 for the explicit upwind (red ‘− ◦ −’), implicit upwind
(purple ‘∗’), and high-resolution (blue ‘−�−’) schemes in a log-log plot.

As we observe in Table 1, the explicit upwind scheme is considerably faster than the implicit upwind
scheme developed in [21] when the mesh size satisfies the CFL condition 4.4. For example, to achieve
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an error of 4.1 × 10−4, the explicit upwind scheme takes about 0.7 seconds while the implicit upwind
scheme takes about 270 seconds. Meanwhile, the higher-resolution scheme out preforms both methods,
achieving an error of about 3.2 × 10−4 in around 0.11 seconds.

Following [6], we test the influence of nonlocal terms in the model function with the example

g(x) = exp(−x), d(x) = 1 + exp(−x) +
exp(−x) sin(x)

2 + cos(x)
,

β(t, µ)(x) =
3

2 + cos(x)
·

0.5 + (1 + 0.5 sin(1)) exp(−t)
0.5 + ‖µ‖TV

(5.3)

where µ(0) = (1 + 0.5 cos(x))dx and x ∈ [0, 1]. The exact solution is given by µ(t) = exp(−t)(1 +

0.5 cos(x))dx. We present the BL-error and computation time of both methods in Table 2. Once again
we observe that the Upwind scheme has order 1 and that the high-resolution scheme has order 2. As
before, in Figure 2 we plot the error of the methods against computation time.

Table 2. BL-errors, order of accuracy, and computation times of the methods for the example
given in (5.3).

Nx Nt Upwind (Explicit) Upwind (Implicit)
BL-Error Order Time (secs) BL-Error Order Time (secs)

16 32 3.1725e-03 0.0006421 1.5645e-02 0.01012
32 64 1.5546e-03 1.0291 0.0008494 7.8688e-03 0.9915 0.046235
64 128 7.6945e-04 1.0146 0.001992 3.9463e-03 0.9956 0.16474

128 256 3.8278e-04 1.0073 0.006419 1.9762e-03 0.9978 0.74954
256 512 1.9091e-04 1.0036 0.01747 9.8885e-04 0.9989 2.9112
512 1024 9.5334e-05 1.0018 0.06324 4.9462e-04 0.9994 15.561

1024 2048 4.7637e-05 1.0009 0.2304 2.4736e-04 0.9997 89.455
2048 4096 2.3811e-05 1.0005 0.8198 1.2369e-04 0.9998 528.52
4096 8192 1.1904e-05 1.0002 3.4186 6.1848e-05 0.9999 3408.8

Nx Nt Higher Resolution
BL-Error Order Time (secs)

16 32 1.1629e-03 0.004829
32 64 2.8012e-04 2.0536 0.01511
64 128 6.8659e-05 2.0285 0.05618

128 256 1.7004e-05 2.0136 0.2593
256 512 4.2314e-06 2.0066 1.1210
512 1024 1.0555e-06 2.0033 5.5440

1024 2048 2.6357e-07 2.0016 32.364
2048 4096 6.5855e-08 2.0008 225.43
4096 8192 1.6459e-08 2.0004 2107.7
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Figure 2. The data from Table 2 for the explicit upwind (red ‘− ◦ −’), implicit upwind
(purple ‘∗’), and high-resolution (blue ‘−�−’) schemes in a log-log plot.

5.2. L1 densities

In this section, we demonstrate the accuracy of both methods for discontinuous densities. It has
been shown that the upwind scheme is of order 1

2 in the L1 norm [35]. In the setting of probability
measures, the upwind scheme was shown to be of order 1 in the Wasserstein metric [36]. Below, we
present evidence that this holds true for the BL-norm in the setting of Radon measures. We use the
model functions

g(x) = 1, d(x) = 0, β(x) = 0, and µ(0) = χ[0.5,1](x)dx (5.4)

whose solution is µ(t) = χ[0.5+t,1+t](x)dx, and test the accuracy of the methods in Table 3. Since d = 0
and β = 0 we are dealing with a conservative equation in the sense that the total mass is preserved
in time. So in that case the distance ρ defined in (5.1) is equivalent to W1. In view of the results
in [36], we thus expect the upwind schemes to have order 1, which is consistent with the results
displayed in Table 3. This is in contrast to the 1

2 order achieved by the upwind scheme in the space
of integrable functions [35]. As expected the high resolution scheme still out performs both upwind
schemes. However, the numerical results suggests that the high resolution scheme does not achieve a
second order in this case. Instead, these results suggest that the order of convergence is around 4

3 .

5.3. Singular measures

A common phenomena with second order methods when discontinuities and singularities are
expected is dispersion [20]. Since our method is based on flux limiter techniques, it behaves well
when the density functions are discontinuous or singular. To demonstrate this, we present the
following simple example:

g(x) = 1, d(x) = 0, β(x) = 0, and µ(0) = δx=0.5 + δx=1.5 (5.5)
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Table 3. Error and order of convergence of the methods for the L1-density example (5.4).

Nx Nt Upwind (Explicit) Upwind (Implicit)
BL-Error Order Time (secs) BL-Error Order Time (secs)

20 100 0.103441 0.0004651 0.11077 0.026303
40 200 0.053220 0.95879 0.0011943 0.060202 0.87968 0.10415
80 400 0.027748 0.93957 0.0041066 0.032112 0.90668 0.50009

160 800 0.014273 0.95912 0.014980 0.016677 0.94526 1.7355
320 1600 0.007185 0.99030 0.068571 0.0084295 0.98435 7.4409
640 3200 0.003594 0.99942 0.25547 0.0042187 0.99864 34.881

1280 6400 0.001797 0.99996 1.0349 0.0021094 0.99998 173.89

Nx Nt Higher Resolution
BL-Error Order Time (secs)

20 100 0.0481240 0.067755
40 200 0.0188472 1.3524 0.22909
80 400 0.0076368 1.3033 0.94493

160 800 0.0031026 1.2995 3.9822
320 1600 0.0012555 1.3052 17.601
640 3200 0.0005062 1.3104 85.166

1280 6400 0.0002035 1.3147 446.67

which has exact solution µ(t) = δx=t+0.5 + δx=t+1.5. We present the approximate solutions below by
measuring intervals of length 0.04 (the aggregation intervals). Since in the previous examples the
implicit upwind method had similar errors as the explicit upwind (albeit being much slower
computationally), we omit showing the implicit upwind scheme results for this example for clarity of
the figures. In Figure 3, we show how the two schemes behave in the presence of singular measures.

The error and order of the method for this problem is presented below. From the data in Table 4,
we observe a drop in order in both methods. This seems to correlate with the drop of order discussed
in [35] where it was proven that the optimal L1-order for the explicit upwind scheme is 1

2 for non-
smooth initial conditions in L1. Analogously, the numerical results in Table 4 also suggest order 1

2 for
the upwind scheme when the initial condition is not an absolutely continuous measure. Finally, from
these results we observe that the higher-resolution scheme still outpreforms the upwind scheme with
an order of approximately 2

3 .

6. Application

In this section, we present examples of an interesting phenomenon that can be handled by our
numerical scheme. In particular, it is well known that availability of resources in the environment may
impact the maximum size of the individual due to competition [37,38]. We utilize the model (1.1) and
our high-resolution second order numerical scheme (4.12) to understand the dynamics of the population
and the maximum size of the individual under such a scenario.
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Figure 3. The approximated solution at T = 1 generated by the upwind (blue ‘◦’) and
higher-resolution (red ‘×’) methods aggregated over intervals of length 0.04.

Table 4. The BL-error and order of accuracy for the upwind and high-resolution schemes at
T = 1 for the singular measure example (5.5).

Nx Nt Upwind (Explicit) Higher Resolution
BL-Error Order Time (secs) BL-Error Order Time (secs)

200 100 0.159180 0.0025393 0.119510 0.090418
400 200 0.112701 0.49820 0.010537 0.076680 0.64017 0.24567
800 400 0.079739 0.49910 0.042247 0.048987 0.64645 0.91407

1600 800 0.056401 0.49955 0.17298 0.031195 0.65110 3.8300
3200 1600 0.039888 0.49977 0.70837 0.019815 0.65467 15.058
6400 3200 0.028207 0.49989 2.9776 0.012564 0.65738 64.473

6.1. Population grouping

For this example, the birth and death functions depend solely on the total size of the population. The
purpose of this is to simulate an environment which dictates a maximum size for individuals due to
limiting resources. To this effect, we choose an environment that grows harsher as the population size
increases. In this particular example, we observe the population building up at a critical size over long
time. This critical size plays the role of a new maximum size different from the initial data. Letting
P(t) = ‖µ(t)‖TV , we take

g(P)(x) =

1 − x f (P), x f (P) ≤ 1
0, otherwise

, f (P) =


1, P ≤ 3
(P − 3) + 1, 3 < P < 7
5, P ≥ 7

,

d(P) =

1, P ≤ 5
2(P − 5) + 1, P > 5

, and β(P) =


2, P ≤ 5
−1

2 (P − 5) + 2, 5 < P < 9
0, P ≥ 9

,
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with µ(0) = e−xdx for x ∈ [0, 1]. In Figure 4, we mesh the measure over the time interval [0,10]
aggregated at each step over intervals of length 0.01. Notice that β(P) = d(P) precisely when P = 5.4.
These choices of model parameters allows for a logistic-type dynamics for the population and hence
population growth is inhibited for large populations due to limiting resources. In fact, since the birth
and death rates depend only on the total population, we can observe the change of the total population
according to the following differential equation:

d
dt

P(t) = (β(P(t)) − d(P(t)))P(t). (6.1)

Therefore, through a standard phase plane argument, one can show that any solution with P(0) =

‖µ(0)‖TV > 0 converges to the equilibrium P∗ = 5.4.

Figure 4. The approximate solution generated by the second-order high-resolution scheme
over time interval [0,10] with aggregation interval lengths 0.01. Observe the direction of the
size (x) axis is reversed to show the formation of the new maximum size.

This phenomenon is demonstrated by the mesh in Figure 4. Over time, the population builds up
at a particular size. This critical size can be calculated using the model functions and the equilibrium
P∗ = 5.4 to be x∗ = 5

17 . This build up causes the formation of a shock and thus the classical smooth
framework is insufficient. However, this case is easily handled in the setting of L1 densities and Radon
measures.

From results proven in [22], taking the mortality function, d, strictly positive guarantees the
stationary state, µ∞, is absolutely continuous with respect to the Lebesgue measure regardless of the
regularity of µ(0). As t → +∞ we expect this stationary state to have the equilibrium mass of
Eq (6.1), that is

∫ 1

0
d µ∞ = P∗ = 27/5. Then g(P∗)(x) = 0 for x ≥ x∗ where x∗ is such that x∗ f (P∗) = 1

i.e., x∗ = 5/17 ' 0.29. Thus the mass in [x∗, 1] as t → +∞ is flowing at a diminishing rate and at the
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same time is disappearing due to death. This implies µ∞((x∗, 1]) = 0 . We can then calculate the
stationary state by looking for a solution in the form µ∞ = u∞(x)dx for x ∈ [0, x∗] and 0 otherwise.

Using Eq (6.1), we have µ∞ satisfies

∂x(g(P∗)(x)µ∞) + d(P∗)µ∞ = 0.

Since g(P∗)(0) = 1 the boundary condition reveals the initial condition

u∞(0) = g(P∗)(0)u∞(0) =

∫ 1

0
β(P∗) dµ∞ = β(P∗)P∗.

Taking a smooth φ with compact support in (0, x∗) we have

0 = d(P∗)
∫ x∗

0
φu∞ dx −

∫ x∗

0
g(P∗)(x)u∞(x)φ′(x) dx

=

∫ x∗

0
φ(x)

(
(d(P∗) − f (P∗))u∞(x) + g(P∗)(x)u′∞(x)

)
dx

where we integrated by parts and used that g(P∗)′(x) = − f (P∗). Since this holds for any φ we see that
u∞ solves the differential equation

(d(P∗) − f (P∗))u∞(x) + g(P∗)(x)u′∞(x) = 0

whose solution is

u∞(x) = C(1 − f (P∗)x)
d(P∗)− f (P∗)

f (P∗) (6.2)

with C = u∞(0) = β(P∗)P∗. For convenience, here P∗ = 5.4, x∗ = 5/17, d(P∗) = β(P∗) = 9/5,
f (P∗) = 17/5, β(P∗)P∗ = 9.72, d(P∗)− f (P∗)

f (P∗) = −8/17. For comparison, in Figure 5 we have plotted the
formula above against the density from the high-resolution scheme approximation.

6.2. Singular initial condition

In this section, we demonstrate the phenomenon recently proven in [22] and discussed in the
previous example. We take the same model functions as before, but with singular initial condition
given by µ(0) = δ0.1 + δ0.5 + δ0.75, and we present the solution of the second-order finite-difference
scheme in Figure 6. We observe the stationary solution is identical to the previous case; likewise, the
formula of u∞(x) is independent of the initial condition. This demonstrates that the non-local nature of
the model (1.1) has a "smoothing" effect on the regularity of the solution. Furthermore, this example
shows that cohorts beyond the (long-term) maximum size, determined by the environment to be 5/17,
eventually vanish and all remaining individuals are those with sizes below the maximum size.

Mathematical Biosciences and Engineering Volume 17, Issue 1, 747–775.



771

Figure 5. The density of the approximate solution generated by the second-order high-
resolution scheme at time T=10 (blue solid line) plotted against the density of the stationary
solution (red dashed line) given by formula (6.2).

Figure 6. The approximate solution generated by the second-order high-resolution scheme
over time interval [0,10] aggregated at each step over intervals of length 0.01. Observe the
direction of the size (x) axis is reversed to show the formation of the new maximum size.
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7. Conclusion

In summary, the setting of Radon measures has many benefits to the study of structured population
models. One major benefit is the mathematical study of the evolution of cohorts in the form of Dirac
measures. Cohorts are a common tool used in biology to model populations of concentrated size.
This type of distribution is not readily handled in the setting of smooth or L1 functions, but is naturally
integrated in the setting of Radon measures. When some additional structure such as selection-mutation
or hierarchical competition it has been observed that measure solutions form even when the initial
condition is smooth. In the case of selection-mutation, measure solutions have been shown to form in
infinite time [4, 39]. In the case of hierarchical competition, it has been shown that measure solutions
will form in finite time [21, 40]. These examples show a need for the study of population models in
measure spaces.

In this paper, we have provided two schemes which approximate the solution to model (1.1) in
the BL-norm. We have provided several numerical examples of these methods demonstrating their
accuracy with different regularity on the initial conditions. The high-resolution scheme is shown to be
of higher order than the upwind scheme throughout these regularity conditions. High-order and fast
methods are critical for parameter estimation problems which involve minimizing a cost functional that
requires solving the model (1.1) many times until a minimizer is realized. We remark that our proof of
convergence also provides an alternative proof of the existence of solutions to the model (1.1) to those
presented in [6, 15].

We have also provided an example of an interesting biological phenomenon where the
environment determines a maximum size for the population due to competition for limited resources.
These examples are also interesting from a mathematical perspective as they show a change in
regularity in both a "roughening" and "smoothing" manner to the initial distribution. These examples
demonstrate the asymptotic behavior and regularity of the stationary solution studied in [22].

Future work includes rigorously proving the order of accuracy of these methods as well as extending
these methods for other biologically relevant models discussed in [4]. Specifically, this scheme can be
extended and used to study sensitivity analysis as in [41–43].
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