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Abstract

We study random perturbations of a reaction–diffusion equation with a unique stable equilibrium and
solutions that blow-up in finite time. If the strength of the perturbation ε > 0 is small and the initial data
is in the domain of attraction of the stable equilibrium, the system exhibits metastable behavior: its time
averages remain stable around this equilibrium until an abrupt and unpredictable transition occurs which
leads to explosion in a finite time (but exponentially large in ε−2). Moreover, for initial data in the domain
of explosion we show that the explosion times converge to the one of the deterministic solution.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

We consider, for ε > 0, the stochastic process U u,ε which formally satisfies the stochastic
partial differential equation⎧⎨⎩ ∂tU u,ε

= ∂2
xxU u,ε

+ g(U u,ε) + εẆ t > 0, 0 < x < 1
U u,ε(t, 0) = U u,ε(t, 1) = 0 t > 0
U u,ε(0, x) = u(x)

(1.1)
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where g : R → R is given by g(u) := u|u|
p−1 for fixed p > 1, Ẇ is space-time white noise and

u is a continuous function satisfying u(0) = u(1) = 0.
This process can be thought of as a random perturbation of the dynamical system U u given

by the solution of (1.1) with ε = 0, i.e. U u satisfies the partial differential equation⎧⎪⎪⎨⎪⎪⎩
∂tU u

= ∂2
xxU u

+ g(U u) t > 0, 0 < x < 1
U u(t, 0) = 0 t > 0
U u(t, 1) = 0 t > 0
U u(0, x) = u(x) 0 < x < 1.

(1.2)

Eq. (1.2) is of reaction–diffusion type, a broad class of evolution equations which naturally arise
in the study of phenomena as diverse as diffusion of a fluid through a porous material, transport in
a semiconductor, coupled chemical reactions with spatial diffusion, population genetics, among
others. In all these cases, the equation represents an approximate model of the phenomenon and
thus it is of interest to understand how its description might change if subject to small random
perturbations.

An important feature of (1.2) is that it admits solutions which are only local in time and blow
up in a finite time. Indeed, the system has a unique stable equilibrium, the null function 0, and
a countable family of unstable equilibria, all of which are saddle points. The stable equilibrium
possesses a domain of attraction D0 satisfying that if u ∈ D0 then the solution U u of (1.2) with
initial datum u is globally defined and converges to 0 as time tends to infinity. Similarly, each
unstable equilibrium has its own stable manifold, the union of which constitutes the boundary
of D0. Finally, for u ∈ De := D0

c
the system blows up in finite time, i.e. there exists a time

0 < τ u < +∞ such that the solution U u is defined for all t ∈ [0, τ u) but satisfies

lim
t↗τu

∥U u(t, ·)∥∞ = +∞.

The behavior of the system is, in some aspects, similar to the double-well potential model studied
in [1,12]. Indeed, (1.2) can be reformulated as

∂tU u
= −

∂S
∂ϕ

(U u)

where S is the potential formally given by

S(v) =

∫ 1

0

[
1
2

(
dv
dx

)2

+ G(v)

]
dx,

where we take G(v) := −
|v|p+1

p+1 as opposed to the term G(v) =
ν
4v

4
−

µ

2 v
2 appearing in the

double-well potential model. In our system, instead of having two wells, each being the domain
of attraction of the two stable equilibria of the system, we have only one which corresponds
to D0. Since our potential tends to −∞ along every direction, we can imagine the second well
in our case as being infinity and thus there is no return from there once the system reaches its
bottom. Moreover, since the potential behaves like −s p+1 in every direction, if the system falls
into this “infinite well” it will reach its bottom (infinity) in a finite time (blow-up).

Upon adding a small noise to (1.2), one wonders if there are any qualitative differences in
behavior between the deterministic system (1.2) and its stochastic perturbation (1.1). For short
times both systems should behave similarly, since in this case the noise term will be typically
of much smaller order than the remaining terms in the right hand side of (1.1). However, due
to the independent and normally distributed increments of the perturbation, when given enough
time the noise term will eventually reach sufficiently large values so as to induce a significant
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change of behavior in (1.1). We are interested in understanding what changes might occur in
the blow-up phenomenon due to this situation and, more precisely, which are the asymptotic
properties as ε → 0 of the explosion time of (1.1) for the different initial data. Based on all of
the considerations above, we expect the following scenario:

i. Thermalization. For initial data in D0, the stochastic system is at first attracted towards this
equilibrium. Once near it, the terms in the right hand side of (1.2) become negligible and
so the process is then pushed away from the equilibrium by noise. Being away from 0, the
noise becomes overpowered by the remaining terms in the right hand side of (1.1) and this
allows for the previous pattern to repeat itself: a large number of attempts to escape from
the equilibrium, followed by a strong attraction towards it.

ii. Tunneling. Eventually, after many frustrated attempts, the process succeeds in escaping
D0 and reaches the domain of explosion, the set of initial data for which (1.2) blows up
in finite time. Since the probability of such an event is very small, we expect this escape
time to be exponentially large. Furthermore, due to the large number of attempts that are
necessary, we also expect this time to show little memory of the initial data.

iii. Final excursion. Once inside the domain of explosion, the stochastic system is forced to
explode by the dominating source term g.

This type of phenomenon is known as metastability: the system behaves for a long time as if
it were under equilibrium, but then performs an abrupt transition towards the real equilibrium
(in our case, towards infinity). The former description was proved rigorously for the (infinite-
dimensional) double-well potential model in [1,12], inspired by the work in [10] for its
finite-dimensional analogue. Their proofs rely heavily on large deviations estimates for U u,ε

established in [8] for the infinite-dimensional system and in [9] for the finite-dimensional setting.
In our case, we are only capable of proving the existence of local solutions of (1.1) and in
fact, explosions will occur for U u,ε. As a consequence, we will not be able to apply these same
estimates directly, as the validity of these estimates relies on a proper control of the growth of
solutions which does not hold in our setting. Localization techniques apply reasonably well to
deal with the process until it escapes any fixed bounded domain but they cannot be used to say
what happens from then onwards. Since we wish to focus specifically on trajectories that blow
up in finite time, it is clear that a new approach is needed for this last part, one which involves
a careful study of the blow-up phenomenon. Unfortunately, when dealing with perturbations
of differential equations with blow-up, understanding how the behavior of the blow-up time is
modified or even showing the persistence of the blow-up phenomenon itself is by no means
an easy task in most cases. There are no general results addressing this matter, not even for
nonrandom perturbations. This is why the usual approach to this kind of problems is to consider
particular models such as ours.

The article is organized as follows. In Section 2 we give some preliminary definitions,
introduce the local Freidlin–Wentzell estimates and afterwards present our main results. In
Section 3 we give a detailed description of the deterministic system (1.2). Section 4 focuses
on the explosion time of the stochastic system for initial data in the domain of explosion. The
construction of an auxiliary domain G is performed in Section 5 and the study of the escape from
G is carried out in Section 6. In Section 7 we establish metastable behavior for solutions with
initial data in the domain of attraction of the stable equilibrium. Finally, we include at the end an
Appendix with some auxiliary results to be used throughout our analysis.
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2. Definitions and results

2.1. The deterministic PDE

Our purpose in this section is to study Eq. (1.2). We assume that the source term g : R → R
is given by g(u) = u|u|

p−1 for fixed p > 1 and also that u belongs to the space CD([0, 1]) of
continuous functions on [0, 1] satisfying homogeneous Dirichlet boundary conditions, namely

CD([0, 1]) = {v ∈ C([0, 1]) : v(0) = v(1) = 0}.

The space CD([0, 1]) is endowed with the supremum norm, i.e.

∥v∥∞ = sup
x∈[0,1]

|v(x)|.

For any choice of r > 0 and v ∈ CD([0, 1]), we let Br (v) denote the closed ball in CD([0, 1]) of
center v and radius r . Whenever the center is the null function 0, we simply write Br . Eq. (1.2)
can be reformulated as

∂tU = −
∂S
∂ϕ

(U ) (2.1)

where the potential S is the functional on CD([0, 1]) given by

S(v) =

⎧⎪⎨⎪⎩
∫ 1

0

[
1
2

(
dv
dx

)2

−
|v|p+1

p + 1

]
dx if v ∈ H 1

0 ((0, 1))

+∞ otherwise.

Here H 1
0 ((0, 1)) denotes the Sobolev space of square-integrable functions defined on [0, 1] with

square-integrable weak derivative which vanish at the boundary {0, 1}. Recall that H 1
0 ((0, 1)) can

be embedded into CD([0, 1]) so that the potential is indeed well-defined. We refer the reader to
the Appendix for a review of some of the main properties of S which shall be required throughout
our work.

The formulation on (2.1) is interpreted as the validity of∫ 1

0
∂tU (t, x)ϕ(x)dx = lim

h→0

S(U + hϕ) − S(U )
h

for any ϕ ∈ C1([0, 1]) with ϕ(0) = ϕ(1) = 0. It is known that for any u ∈ CD([0, 1]) there
exists a unique solution U u to Eq. (1.2) defined on some maximal time interval [0, τ u) where
0 < τ u

≤ +∞ is called the explosion time of U u (see [17] for further details). In general, we
will say that this solution belongs to the space

CD([0, τ u) × [0, 1]) = {v ∈ C([0, τ u) × [0, 1]) : v(·, 0) = v(·, 1) ≡ 0}.

However, whenever we wish to make its initial datum u explicit we will do so by saying that the
solution belongs to the space

CDu ([0, τ u) × [0, 1]) = {v ∈ C([0, τ u) × [0, 1]) : v(0, ·) = u and v(·, 0) = v(·, 1) ≡ 0}.

The origin 0 ∈ CD([0, 1]) is the unique stable equilibrium of the system and it is in fact
asymptotically stable. It corresponds to the unique local minimum of the potential S. There is
also a family of unstable equilibria of the system corresponding to the remaining critical points
of the potential S, all of which are saddle points. Among these unstable equilibria there exists
only one of them which is nonnegative (see [4, p. 3] for details) which we denote by z. It can
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Fig. 1. Examples of unstable equilibria: z, z(2) and z(−3).

be shown that this equilibrium z is in fact strictly positive for x ∈ (0, 1), symmetric with respect
to the axis x =

1
2 (i.e. z(x) = z(1 − x) for all x ∈ [0, 1]) and that is both of minimal potential

and minimal norm among all the unstable equilibria. The remaining equilibria are obtained by
alternating scaled copies of both z and −z as Fig. 1 shows. We establish this fact rigorously in
Section 3.

2.2. Definition of solution for the SPDE

In general, equations like (1.1) do not admit strong solutions in the usual sense as they may
not be globally defined but instead defined up to an explosion time. In the following we formalize
the idea of explosion and properly define the concept of solutions of (1.1).

First, we fix a probability space (Ω ,F , P) on which we have defined a Brownian sheet

W = {W (t, x) : (t, x) ∈ R+
× [0, 1]},

i.e. a stochastic process satisfying the following properties:

i. W has continuous paths, i.e. (t, x) ↦→ W (t, x)(ω) is continuous for every ω ∈ Ω .
ii. W is a centered Gaussian process with covariance given by

Cov(W (t, x),W (s, y)) = (t ∧ s)(x ∧ y)

for every (t, x), (s, y) ∈ R+
× [0, 1].

Then, for every t ≥ 0 we define

Gt = σ (W (s, x) : 0 ≤ s ≤ t, x ∈ [0, 1])

and denote its augmentation by Ft .1 The family (Ft )t≥0 constitutes a filtration on (Ω ,F). A
solution up to an explosion time of Eq. (1.1) on (Ω ,F , P) with respect to the Brownian sheet
W and with initial datum u ∈ CD([0, 1]) is a stochastic process U u,ε

= {U u,ε(t, x) : (t, x) ∈

R+
× [0, 1]} satisfying the following properties:

i. U u,ε(0, ·) ≡ u
ii. U u,ε has continuous paths taking values in R := R ∪ {±∞}.

iii. U u,ε is adapted to the filtration (Ft )t≥0, i.e. for every t ≥ 0 the mapping

(ω, x) ↦→ U u,ε(t, x)(ω)

is Ft ⊗ B([0, 1])-measurable.

1 This means that Ft = σ (Gt ∪ N ) where N denotes the class of all P-null sets of G∞ = σ (Gt : t ∈ R+).
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iv. If Φ denotes the fundamental solution of the heat equation on the interval [0, 1] with
homogeneous Dirichlet boundary conditions, which is given by the formula

Φ(t, x, y) =
1

√
4π t

∑
n∈Z

[
exp

(
−

(2n + y − x)2

4t

)
− exp

(
−

(2n + y + x)2

4t

)]
,

and for n ∈ N we define the stopping time τ (n),u
ε := inf{t > 0 : ∥U u,ε(t, ·)∥∞ ≥ n} then

for every n ∈ N we have P-a.s.:

•
∫ 1

0

∫ t∧τ (n),u
ε

0 |Φ(t ∧ τ (n),u
ε − s, x, y)g(U u,ε(s, y))|dsdy < +∞ for all t ∈ R+

• U u,ε(t ∧ τ (n),u
ε , x) = I (n)

H (t, x) + I (n)
N (t, x) for all (t, x) ∈ R+

× [0, 1], where

I (n)
H (t, x) =

∫ 1

0
Φ(t ∧ τ (n),u

ε , x, y)u(y)dy

and

I (n)
N (t, x) =

∫ t∧τ (n),u
ε

0

∫ 1

0
Φ(t ∧ τ (n),u

ε − s, x, y)

×
(
g(U u,ε(s, y))dyds + εdW (s, y)

)
. (2.2)

The stochastic integral in the right-hand side of (2.2) is to be understood in the sense of
Walsh [20]. We call the random variable τ u

ε := limn→+∞τ
(n),u
ε the explosion time of U u,ε. Notice

that the assumption of continuity of U u,ε over R implies that:

• τ u
ε = inf{t > 0 : ∥U u,ε(t, ·)∥∞ = +∞}

• ∥U u,ε((τ u
ε )−, ·)∥∞ = ∥U u,ε(τ u

ε , ·)∥∞ = +∞ on {τ u
ε < +∞}.

We stipulate that U u,ε(t, ·) ≡ U u,ε(τ u
ε , ·) for t ≥ τ whenever τ u

ε < +∞ but we do not assume
that limt→+∞U u,ε(t, ·) exists if τ u

ε = +∞. Furthermore, since any initial datum u ∈ CD([0, 1])
is bounded, we always have P(τ u

ε > 0) = 1. It can be shown that there exists a (pathwise)
unique solution U u,ε of (1.1) up to an explosion time and that it has the strong Markov property,
i.e. if τ̃ is a stopping time of U u,ε then, conditional on τ̃ < τ u

ε and U u,ε(τ̃ , ·) = v, the future
{U u,ε(t + τ̃ , ·) : 0 < t < τ u

ε − τ̃ } is independent of the past {U u,ε(s, ·) : 0 ≤ s ≤ τ̃ } and identical
in law to the solution of (1.1) with initial datum v. We refer to [13,20] for details.

2.3. Local Freidlin–Wentzell estimates

One of the main tools we use in the study of solutions of (1.1) is the local large deviations
principle we briefly describe next.

Given u ∈ CD([0, 1]) and T > 0, we consider the metric space of continuous functions

CDu ([0, T ] × [0, 1]) = {v ∈ C([0, T ] × [0, 1]) : v(0, ·) = u and v(·, 0) = v(·, 1) ≡ 0}

with the distance dT induced by the supremum norm, i.e. for v,w ∈ CDu ([0, T ] × [0, 1])

dT (v,w) := sup
(t,x)∈[0,T ]×[0,1]

|v(t, x) − w(t, x)|,

and define the rate function I u
T : CDu ([0, T ] × [0, 1]) → [0,+∞] by the formula

I u
T (ϕ) =

⎧⎪⎪⎨⎪⎪⎩
1
2

∫ T

0

∫ 1

0
|∂tϕ − ∂xxϕ − g(ϕ)|2dxdt if ϕ ∈ W 1,2

2 ([0, T ] × [0, 1]),

ϕ(0, ·) = u
+∞ otherwise.
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Here W 1,2
2 ([0, T ] × [0, 1]) is the closure of C∞([0, T ] × [0, 1]) with respect to the norm

∥ϕ∥W 1,2
2

=

(∫ T

0

∫ 1

0

[
|ϕ|

2
+ |∂tϕ|

2
+ |∂xϕ|

2
+ |∂xxϕ|

2] dxdt
) 1

2

,

i.e. the Sobolev space of square-integrable functions defined on [0, T ] × [0, 1] with one square-
integrable weak time derivative and two square-integrable weak space derivatives.

By following the lines of [1,8,19], it is possible to establish a large deviations principle for
solutions of (1.1) with rate function I as given above whenever the source term g is globally
Lipschitz (even though they do not work with a globally Lipschitz source, their analysis carries
over to this simpler context). Unfortunately, this is not the case for us. Nonetheless, by employing
localization arguments like the ones carried out in [11], one can obtain a weaker version of
this principle which only holds locally, i.e. while the process remains inside any fixed bounded
region. More precisely, we have the following result.

Theorem 2.1. If for each n ∈ N and u ∈ CD([0, 1]) we define

τ (n),u
:= inf{t > 0 : ∥U u(t, ·)∥∞ ≥ n} and T (n),u

ε := τ (n),u
ε ∧ τ (n),u

where τ (n),u
ε is defined as in Section 2.2, then the following estimates hold:

• Lower bound. For any δ, h > 0 and n ∈ N, there exists ε0 such that

P
(

dT ∧T (n),u
ε

(
U u,ε, ϕ

)
< δ

)
≥ e−

I u
T (ϕ)+h

ε2 (2.3)

for all 0 < ε < ε0, u ∈ CD([0, 1]) and ϕ ∈ CDu ([0, T ] × [0, 1]) with ∥ϕ∥∞ ≤ n.
• Upper bound. For any δ > 0 and n ∈ N, there exist ε0 > 0 and C > 0 such that

sup
u∈CD ([0,1])

P
(

dT ∧T (n),u
ε

(
U u,ε,U u) > δ

)
≤ e−

C
ε2 , (2.4)

for all 0 < ε < ε0.

The usual large deviations estimates for these type of systems usually feature a more refined
version of the upper bound than the one we give here (see [1], for example). However, the
estimate in (2.4) is enough for our purposes and so we do not pursue any generalizations of it
here. Also, notice that both estimates are somewhat uniform in the initial datum. This uniformity
is obtained as in [1] by using the fact that g is Lipschitz when restricted to bounded sets. We
refer to [1,8] for further details.

2.4. Main results

Our purpose is to study the asymptotic behavior as ε → 0 of U u,ε, the solution of (1.1), for
the different initial data u ∈ CD([0, 1]). We now state our results. For simplicity purposes, in
the following when computing probabilities of events we may drop the superscript u from the
usual notation and instead make the initial datum explicit by adding it as a subscript under the
probability sign. In this way, whenever we write Pu instead of P it means that in the event in
question all initial data are set to u.

In many occasions throughout the sequel we will be interested in obtaining estimates which
hold (in a suitable sense) uniformly in the initial condition. However, since CD([0, 1]) is an
infinite-dimensional space, uniformity over compact sets will not be very informative, while
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uniformity over closed bounded sets alone will in general be too much to expect. The following
definition introduces the precise class of subsets for which we will be able to obtain uniform
estimates.

Definition 2.1. Given D ⊆ CD([0, 1]), we will say that K ⊆ CD([0, 1]) is D-compactifiable if
K is bounded and there exists t0 > 0 such that infu∈Kτ

u > t0 and for each t ∈ (0, t0] the closure
of K(t) := {U u(t, ·) : u ∈ K} is a compact set contained in D.

It is straightforward to see that any compact set K is D-compactifiable for any D having K
in its interior. However, due to the regularizing property of the solutions to (1.2) studied in the
Appendix, there exist many D-compactifiable sets which are not compact. Indeed, in Lemma 5.3
below we will see that if D ⊆ CD([0, 1]) is open and K is a compact set contained in D then any
sufficiently small neighborhood of K is also D-compactifiable.

Now, our first result deals with the continuity of the explosion time for initial data in the
domain of explosion De. In this case one expects the stochastic and deterministic systems both
to exhibit a similar behavior for any ε > 0 sufficiently small, since then the noise will not be able
to grow fast enough so as to overpower the quickly exploding source term g. We show this to be
truly the case for u ∈ De such that U u remains bounded from one side.

Theorem 2.2. Let D∗
e be the set of initial data u ∈ De such that U u explodes only through one

side, i.e. U u remains bounded either from below or above until its explosion time τ u . Then given
δ > 0 and a D∗

e -compactifiable set K there exists a constant C > 0 such that

sup
u∈K

Pu(|τε − τ | > δ) ≤ e−
C
ε2 .

The main differences in behavior between the stochastic and deterministic systems appear
for initial data in D, where metastable behavior is observed. According to the characterization
of metastability for stochastic processes in [3,10], this behavior is given by two facts: the time
averages of the process remain stable until an abrupt transition occurs and a different value is
attained; furthermore, the time of this transition is unpredictable in the sense that, when suitably
rescaled, it should have an exponential distribution. We manage to establish this description
rigorously for our system whenever 1 < p < 5. This rigorous description is contained in the
remaining results.

Define the quantity ∆ := 2(S(z) − S(0)). Our second result states that for any u ∈ D0 the
asymptotic magnitude of τ u

ε is, up to logarithmic equivalence, of order e
∆
ε2 .

Theorem 2.3. Given δ > 0 and a D0-compactifiable set K, if 1 < p < 5 then we have

lim
ε→0

[
sup
u∈K

⏐⏐⏐⏐Pu

(
e
∆−δ

ε2 < τε < e
∆+δ

ε2

)
− 1

⏐⏐⏐⏐] = 0.

Theorem 2.3 suggests that, for initial data u ∈ D0, the typical route of U u,ε towards infinity
involves passing through one of the unstable equilibria of minimal energy, ±z. This seems
reasonable since, as we will see in Section 5, for 1 < p < 5 the barrier imposed by the potential
S is the lowest there. The following result establishes this fact rigorously.

Theorem 2.4. Given δ > 0 and a D0-compactifiable set K, if 1 < p < 5 then we have

lim
ε→0

[
sup
u∈K

⏐⏐Pu
(
τε(Dc

0) < τε, U ε(τε(Dc
0), ·) ∈ Bδ(±z)

)
− 1

⏐⏐] = 0,

where τ u
ε (Dc

0) := inf{t > 0 : U u,ε(t, ·) ̸∈ D0} and Bδ(±z) := Bδ(z) ∪ Bδ(−z).
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Our next result is concerned with the asymptotic loss of memory of τ u
ε . For ε > 0 define the

scaling coefficient

βε = inf{t ≥ 0 : P0(τε > t) ≤ e−1
}. (2.5)

Observe that Theorem 2.3 implies that the family (βε)ε>0 satisfies limε→0ε
2 logβε = ∆. This

next result states that for any u ∈ D0 the normalized explosion time τu
ε

βε
converges in distribution

to an exponential random variable of mean one.

Theorem 2.5. Given δ > 0 and a D0-compactifiable set K, if 1 < p < 5 then we have

lim
ε→0

[
sup
u∈K

⏐⏐Pu(τε > tβε) − e−t
⏐⏐] = 0

for any t > 0.

Finally, we show the stability of time averages of continuous functions evaluated along paths
of the process starting in D0, i.e. they remain close to the value of the function at 0. These time
averages are taken along intervals of length going to infinity and times may be taken as being
almost (in a suitable scale) the explosion time. This is telling us that, up until the explosion time,
the system spends most of its time in a small neighborhood of 0.

Theorem 2.6. There exists a sequence (Rε)ε>0 with limε→0 Rε = +∞ and limε→0
Rε
βε

= 0 such
that given δ > 0 for any D0-compactifiable set K we have

lim
ε→0

[
sup
u∈K

Pu

(
sup

0≤t≤τε−3Rε

⏐⏐⏐⏐ 1
Rε

∫ t+Rε

t
f (U ε(s, ·))ds − f (0)

⏐⏐⏐⏐ > δ

)]
= 0

for any bounded continuous function f : CD([0, 1]) → R.

Theorem 2.2 is proved in Section 4, the remaining results are proved in Sections 6 and 7.
Perhaps the proof of Theorem 2.2 is where one finds major differences with other works in
the literature dealing with similar problems, namely [10,12]. This is due to the fact that for
this part we cannot use large deviations estimates as on those articles. The remaining results
were established in [1,12] for the tunneling time in an infinite-dimensional double-well potential
model, i.e. the time the system takes to go from one well to the bottom of the other one. Our
proofs are similar to the ones found in these references, although we have the additional difficulty
of dealing with solutions which are not globally defined.

3. Phase diagram of the deterministic system

In this section we review the behavior of solutions to (1.2) for the different initial data in
CD([0, 1]). We begin by characterizing the unstable equilibria of the system.

Proposition 3.1. A function w ∈ CD([0, 1]) is an equilibrium of the system if and only if there
exists n ∈ Z such that w = z(n), where for each n ∈ N we define z(n)

∈ CD([0, 1]) by the formula

z(n)(x) =

⎧⎪⎨⎪⎩
n

2
p−1 z(nx − [nx]) if [nx] is even

−n
2

p−1 z(nx − [nx]) if [nx] is odd
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and also define z(−n)
:= −z(n) and z(0)

:= 0. Furthermore, for each n ∈ Z we have

∥z(n)
∥∞ = |n|

2
p−1 ∥z∥∞ and S(z(n)) = |n|

2
(

p+1
p−1

)
S(z). (3.1)

Proof. Since the function z is smooth and strictly positive on (0, 1), it follows from (1.2) that
∂x z is decreasing in (0, 1) so that the limits ∂x z(0+) and ∂x z(1−) exist. Moreover, since z is
symmetric with respect to the x =

1
2 axis, we have in fact that ∂x z(0+) = −∂x z(1−). Similarly,

since z vanishes in the boundary of [0, 1], we also have ∂2
xx z(0+) = ∂2

xx z(1−) = 0. From these
observations, it is simple to verify that each z(n) is an equilibrium of the system (in particular,
twice differentiable) and satisfies (3.1). Therefore, we must only check that for any equilibrium
w ∈ CD([0, 1]) − {0} there exists n ∈ Z − {0} such that w ≡ z(n).

Thus, let w ∈ CD([0, 1]) − {0} be an equilibrium of (1.2) and define the sets

G+
= {x ∈ (0, 1) : w(x) > 0} and

G−
= {x ∈ (0, 1) : w(x) < 0}.

Since w ̸= 0 at least one of these sets must be nonempty. On the other hand, if only one of them
is nonempty then, since z is the unique nonnegative equilibrium different from 0, we must have
either w = z or w = −z. Therefore, we may assume that both G+ and G− are nonempty. Notice
that since G+ and G− are open sets we may write them as

G+
=

⋃
k∈N

I +

k and G−
=

⋃
k∈N

I −

k

where the unions are disjoint and each I ±

k is a (possibly empty) open interval.
We first show that each union must be finite. Take k ∈ N and suppose we can write I +

k =

(ak, bk) for some 0 ≤ ak < bk ≤ 1. It is easy to check that w̃k : [0, 1] → R given by

w̃k(x) := (bk − ak)
2

p−1w(ak + (bk − ak)x)

is a nonnegative equilibrium of the system different from 0 and thus it must be w̃k = z. This
implies that ∥w∥∞ ≥ (bk − ak)−

2
p−1 ∥w̃k∥∞ = (bk − ak)−

2
p−1 ∥z∥∞ from where we see that an

infinite number of nonempty I +

k would contradict the fact that w is bounded. Thus, we see that
G+ is a finite union of open intervals and by symmetry so is G−. The same argument also implies
that for each interval I ±

k = (ak, bk) the graph of w|I±

k
coincides with that of ±z but when scaled

by the factor (bk − ak)−
2

p−1 . More precisely, for all x ∈ [0, 1] we have

w(ak + (bk − ak)x) = ±(bk − ak)−
2

p−1 z(x). (3.2)

Now, Hopf’s Lemma [7, p. 330] implies that ∂x z(0+) > 0 and ∂x z(1−) < 0. Furthermore,
since z is symmetric with respect to x =

1
2 we have in fact that ∂x z(0+) = −∂x z(1−) > 0. In

light of (3.2) and the fact that w is everywhere differentiable, the former tells us that plus and
minus intervals must present themselves in alternating order, that their closures cover all of [0, 1]
and also that their lengths are all the same. Combining this with (3.2) we conclude the proof. □

As a consequence of Proposition 3.1 we obtain the following important corollary.

Corollary 3.2. The functions ±z minimize the potential S and the supremum norm among all
the unstable equilibria of (1.2). In particular, we have infu∈W S(u) = S(±z), where

W := {u ∈ CD([0, 1]) : τ u
= +∞ and lim

t→+∞
U u(t, ·) = z(n) for some n ∈ Z − {0}}

denotes the union of all stable manifolds corresponding to the different unstable equilibria.
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Proof. The first statement is clear from Proposition 3.1 while the second one is deduced from
the first since the mapping t ↦→ S(U u(t, ·)) is monotone decreasing and continuous for any
u ∈ H 1

0 ((0, 1)) (see Proposition A.7). □

Concerning the asymptotic behavior of solutions to (1.2), the following dichotomy was proved
by Cortázar and Elgueta in [4].

Proposition 3.3. Let U u denote the solution to (1.2) with initial datum u ∈ CD([0, 1]). Then one
of these two possibilities must hold:

i. τ u < +∞ and U u blows up as t ↗ τ u , i.e. limt↗τu ∥U u(t, ·)∥∞ = +∞

ii. τ u
= +∞ and U u converges to some stationary solution z(n) as t → +∞.

Proposition 3.3 allows us to split the space CD([0, 1]) of initial data into three parts

CD([0, 1]) = D0 ∪ W ∪ De (3.3)

where D0 denotes the domain of attraction of the origin 0, De is the domain of explosion of the
system, i.e. the set of all initial data for which the system explodes in finite time, and W denotes
the union of all stable manifolds associated to the unstable equilibria. It can be seen that both
D0 and De are open sets and that W is the common boundary separating them. The following
proposition gives a useful characterization of De.

Proposition 3.4 ([17, Theorem 17.6]). The domain of explosion De satisfies

De = {u ∈ CD([0, 1]) : S(U u(t, ·)) < 0 for some 0 ≤ t < τ u
}.

Furthermore, we have limt↗τu S(U u(t, ·)) = −∞.

From these results one can obtain a precise description of the domains D0 and De in the region
of nonnegative data. Cortázar and Elgueta proved the following result in [5].

Proposition 3.5.

i. Assume u ∈ CD([0, 1]) is nonnegative and such that U u is globally defined and converges
to z as t → +∞. Then for v ∈ CD([0, 1]) we have that:

• 0 ⪇ v ⪇ u H⇒ U v is globally defined and converges to 0 as t → +∞.
• u ⪇ v H⇒ U v explodes in finite time.

ii. For every nonnegative u ∈ CD([0, 1]) there exists λu
c > 0 such that for every λ > 0:

• 0 < λ < λu
c H⇒ Uλu is globally defined and converges to 0 as t → +∞.

• λ = λu
c H⇒ Uλu is globally defined and converges to z as t → +∞.

• λ > λu
c H⇒ Uλu explodes in finite time.

This last result yields the existence of an unstable manifold of the saddle point z which is
contained in the region of nonnegative initial data and which we shall denote by W z

u . It is 1-
dimensional, has nonempty intersection with both D0 and De and joins z with 0. By symmetry,
a similar description also holds for the opposite unstable equilibrium −z. Fig. 2 depicts the
decomposition in (3.3) together with the unstable manifolds W±z

u . By exploiting the structure of
the remaining unstable equilibria given by Proposition 3.1 one can verify for each of them the
analogue of (ii) in Proposition 3.5. We refer the reader to [18] for further details.
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Fig. 2. The phase diagram of Eq. (1.2).

4. Asymptotic behavior of τ u
ε for u ∈ De

In this section we investigate the continuity properties of the explosion time τ u
ε for initial

data in the domain of explosion De. We show that, under suitable conditions on the initial datum
u ∈ De, the random explosion time τ u

ε converges in probability to the deterministic explosion
time τ u as ε → 0. To be more precise, let us consider the sets of initial data in De which explode
only through +∞ or −∞, i.e.

D+

e =

{
u ∈ De : inf

(t,x)∈[0,τu )×[0,1]
U u(t, x) > −∞

}
and

D−

e =

{
u ∈ De : sup

(t,x)∈[0,τu )×[0,1]
U u(t, x) < +∞

}
.

Notice that D+
e and D−

e are disjoint and also that they satisfy the relation D−
e = −D+

e .
Furthermore, we shall see below that D+

e is an open set. Let us write D∗
e := D+

e ∪ D−
e . The

result we are to prove is the following.

Theorem 4.1. For any D∗
e -compactifiable set K and δ > 0 there exists a constant C > 0 such

that

sup
u∈K

Pu(|τε − τ | > δ) ≤ e−
C
ε2 .

We split the proof of Theorem 4.1 into two parts: proving first a lower bound and then an
upper bound for τε. The first one is a consequence of the continuity of solutions to (1.1) with
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respect to ε on intervals where the deterministic solution remains bounded. The precise estimate
is contained in the following proposition.

Proposition 4.1. Given any De-compactifiable set K and δ > 0, there exists a constant C > 0
such that

sup
u∈K

Pu(τε < τ − δ) ≤ e−
C
ε2 . (4.1)

Proof. First, let us observe that since K is De-compactifiable we may assume that τ u > δ for all
u ∈ K. Now, for each u ∈ De define the quantity

Mu := sup
0≤t≤max{0,τu−δ}

∥U u(t, ·)∥∞.

By the continuity of solutions we obtain that u ↦→ Mu is both upper semicontinuous and finite
on De so that, since for each u ∈ K we have

Mu ≤ sup
t∈[0,t0]

∥U u(t, ·)∥∞ + MUu (t0,·) ≤ sup
t∈[0,t0]

∥U u(t, ·)∥∞ + sup
v∈K(t0)

Mv

for all t0 < infu∈Kτ
u

− δ, by Proposition A.2 we conclude that M := supu∈KMu < +∞.
Similarly, since u ↦→ τ u is both continuous and finite on De (see Corollary 4.4 below for a proof
of this) we also obtain that T := supu∈Kτ

u < +∞. Hence, for u ∈ K we get

Pu(τ u
ε < τ u

− δ) ≤ P
(

d(τu−δ)∧T (Mu+1),u
ε

(
U u,ε,U u) > 1

2

)
≤ P

(
d(T −δ)∧T (M+1),u

ε

(
U u,ε,U u) > 1

2

)
.

By the estimate (2.4) we conclude (4.1). □

To establish the upper bound we consider for each u ∈ D+
e the process

Zu,ε
:= U u,ε

− V 0,ε

where U u,ε is the solution of (1.1) with initial datum u and V 0,ε is the solution of (1.1) with source
term g ≡ 0 and initial datum 0, constructed using the same Brownian sheet in both cases. Note
that V 0,0

≡ 0 and also that, since the source term 0 is globally Lipschitz, the family (V (0,ε))ε>0
satisfies a global large deviations principle, i.e. analogous to the one stated in Theorem 2.1 but
with T ∧ T (n),u

ε replaced by T everywhere. Also, observe that Zu,ε satisfies the random partial
differential equation⎧⎨⎩ ∂t Zu,ε

= ∂2
xx Zu,ε

+ g(Zu,ε
+ V 0,ε) t > 0, 0 < x < 1

Zu,ε(t, 0) = Zu,ε(t, 1) = 0 t > 0
Zu,ε(0, x) = u(x).

(4.2)

Furthermore, since V 0,ε is globally defined and remains bounded on finite time intervals, we
have that Zu,ε and U u,ε share the same explosion time. Hence, to obtain the desired upper bound
on τ u

ε we may study the behavior of Zu,ε. The advantage of this approach is that, in general, the
behavior of Zu,ε will be easier to understand than that of U u,ε. Indeed, each realization of Zu,ε

is the solution of a partial differential equation which one can handle with PDE techniques.
Now, a straightforward calculation using the mean value theorem shows that whenever

∥V 0,ε
∥∞ < 1 the process Zu,ε satisfies the inequality

∂t Zu,ε
≥ ∂2

xx Zu,ε
+ g(Zu,ε) − h|Zu,ε

|
p−1

− h (4.3)
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where h := p2p−1
∥V 0,ε

∥∞ > 0. Therefore, to establish the upper bound on τ u
ε we first consider

for h > 0 the solution Z (h),u to the equation⎧⎨⎩ ∂t Z (h),u
= ∂2

xx Z (h),u
+ g(Z (h),u) − h|Z (h),u

|
p−1

− h t > 0, 0 < x < 1
Z (h),u(t, 0) = Z (h),u(t, 1) = 0 t > 0
Z (h),u(0, x) = u(x)

(4.4)

and obtain a convenient upper bound for the explosion time of this new process valid for every h
sufficiently small. By showing then that for h suitably small the process Z (h),u explodes through
+∞, the fact that Zu,ε is a supersolution to (4.4) will yield the desired upper bound on the
explosion time of Zu,ε, provided that ∥V 0,ε

∥∞ remains small enough. For this last part is where
the assumption that u ∈ D+

e is necessary. Lemma 4.3 below contains the proper estimate on
τ (h),u , the explosion time of Z (h),u .

Definition 4.2. For h ≥ 0 we define the potential S(h) on CD([0, 1]) associated to (4.4) by the
formula

S(h)(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ 1

0

[
1
2

(
dv
dx

)2

−
|v|p+1

p + 1
+ h

g(v)
p

+ hv

]
dx if v ∈ H 1

0 ((0, 1))

+∞ otherwise.

Notice that S(0) coincides with our original potential S. Moreover, it is easy to check that for all
h ≥ 0 the potential S(h) satisfies all properties established for S in the Appendix.

Lemma 4.3. Given δ > 0 there exists M > 0 such that:

i. For every 0 ≤ h < 1, any u ∈ CD([0, 1]) with S(h)(u) ≤ −
M
2 verifies τ (h),u < δ

2 .
ii. Given K > 0 there exist constants ρM,K , hM,K > 0 depending only on M and K such that

any u ∈ CD([0, 1]) satisfying S(u) ≤ −M and ∥u∥∞ ≤ K verifies

sup
v∈BρM,K (u)

τ (h),v < δ

for all 0 ≤ h < hM,K .

Proof. Let us take δ > 0 and show first that (i) holds for an appropriate choice of M . For
fixed M > 0 and 0 ≤ h < 1, let u ∈ CD([0, 1]) be such that S(h)(u) ≤ −

M
2 and consider the

application φ(h),u
: [0, τ (h),u) → R+ given by the formula

φ(h),u(t) =

∫ 1

0

(
Z (h),u(t, x)

)2
dx .

It is simple to verify that φ(h),u is continuous and that for any t0 ∈ (0, τ (h),u) it satisfies

dφ(h),u

dt
(t0) ≥ −4S(h)(u(h)

t0 ) + 2
∫ 1

0

[(
p − 1
p + 1

)
|u(h)

t0 |
p+1

− h
(

p + 2
p

)
|u(h)

t0 |
p
− h|u(h)

t0 |

]
dx (4.5)
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where we write u(h)
t0 := Z (h),u(t0, ·) for convenience. Hölder’s inequality reduces (4.5) to

dφ(h),u

dt
(t0) ≥ −4S(h)(u(h)

t0 ) + 2
[(

p − 1
p + 1

)
∥u(h)

t0 ∥
p+1

L p+1

− h
(

p + 2
p

)
∥u(h)

t0 ∥
p

L p+1 − h∥u(h)
t0 ∥L p+1

]
. (4.6)

Observe that, by definition of S(h) and the fact that the map t ↦→ S(h)(u(h)
t ) is decreasing, we

obtain the inequalities

M
2

≤ −S(h)(u(h)
t0 ) ≤

1
p + 1

∥u(h)
t0 ∥

p+1

L p+1 + h∥u(h)
t0 ∥

p

L p+1 + h∥u(h)
t0 ∥L p+1

from which we deduce that by taking M sufficiently large one can force ∥u(h)
t0 ∥L p+1 to be large

enough so as to guarantee that(
p − 1
p + 1

)
∥u(h)

t0 ∥
p+1

L p+1 − h
(

p + 2
p

)
∥u(h)

t0 ∥
p

L p+1 − h∥u(h)
t0 ∥L p+1 ≥

1
2

(
p − 1
p + 1

)
∥u(h)

t0 ∥
p+1

L p+1

is satisfied for any 0 ≤ h < 1. Therefore, we see that if M is sufficiently large then for all
0 ≤ h < 1 the application φ(h),u satisfies

dφ(h),u

dt
(t0) ≥ 2M +

(
p − 1
p + 1

) (
φ(h),u(t0)

) p+1
2 (4.7)

for every t0 ∈ (0, τ (h),u), where to obtain (4.7) we have once again used Hölder’s inequality and
the fact that the map t ↦→ S(h)(u(h)

t ) is decreasing. Now, it is straightforward to show that the
solution y of the ordinary differential equation⎧⎨⎩ẏ = 2M +

(
p − 1
p + 1

)
y

p+1
2

y(0) ≥ 0

explodes before time

T =
δ

4
+

2
p+1

2 (p + 1)

(p − 1)2(Mδ)
p−1

2

.

Indeed, either y explodes before time δ
4 or ỹ := y(· +

δ
4 ) satisfies⎧⎪⎨⎪⎩

˙̃y ≥

(
p − 1
p + 1

)
ỹ

p+1
2

ỹ(0) ≥
Mδ
2
,

and ỹ can be seen to explode before time

T̃ =
2

p+1
2 (p + 1)

(p − 1)2(Mδ)
p−1

2

by performing the standard integration method. If M is taken sufficiently large then T can be
made strictly smaller than δ

2 which, by (4.7), implies that τ (h),u < δ
2 as desired.

Now let us show statement (ii). Given K > 0 let us take M > 0 as above and consider
u ∈ CD([0, 1]) satisfying S(u) ≤ −M and ∥u∥∞ ≤ K . Using Propositions A.9 and A.7 adapted
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to the system (4.4) we may find ρM,K > 0 sufficiently small so as to guarantee that for some
small 0 < tu < δ

2 any v ∈ BρM,K (u) satisfies

S(h)(Z (h),v(tu, ·)) ≤ S(h)(u) +
M
4

for all 0 ≤ h < 1. Notice that this is possible since the constants in Proposition A.9 adapted to
this context can be taken independent from h provided that h remains bounded. These constants
still depend on ∥u∥∞ though, so that the choice of ρM,K will inevitably depend on both M and K .
Next, let us take 0 < hM,K < 1 so as to guarantee that S(h)(u) ≤ −

3M
4 for every 0 ≤ h < hM,K .

Notice that, since S(h)(u) ≤ S(u) + h(K p
+ K ), it is possible to choose hM,K depending only on

M and K . Thus, for any v ∈ BρM,K (u) we obtain S(h)(Z (h),v(tu, ·)) ≤ −
M
2 which, by the choice

of M , implies that τ (h),v < tu +
δ
2 < δ. This concludes the proof. □

Let us observe that the system Z
(0),u

coincides with U u for every u ∈ CD([0, 1]). Thus, by
the previous lemma we obtain the following corollary.

Corollary 4.4. The application u ↦→ τ u is continuous on De.

Proof. Given u ∈ De and δ > 0 we show that there exists ρ > 0 such that for all v ∈ Bρ(u) we
have

− δ + τ u < τ v < τ u
+ δ.

To see this we first notice that by Proposition A.3 there exists ρ1 > 0 such that −δ + τ u < τ v

for any v ∈ Bρ1 (u). Moreover, by (i) in Lemma 4.3 we may take M, ρ̃2 > 0 such that τ ṽ < δ for
any ṽ ∈ Bρ̃2 (ũ) with ũ ∈ CD([0, 1]) verifying S(ũ) ≤ −M . For any such M , by Proposition 3.4
we may find some 0 < tM < tu such that S(U u(tM , ·)) ≤ −M and using Proposition A.3 we
may take ρ2 > 0 such that U v(tM , ·) ∈ Bρ̃2 (U u(tM , ·)) for any v ∈ Bρ2 (u). This implies that
τ v < tM + δ < τ u

+ δ for all v ∈ Bρ2 (u) and thus by taking ρ = min{ρ1, ρ2} we obtain the
result. □

The following two lemmas provide the necessary tools to obtain the uniformity in the upper
bound claimed in Theorem 4.1.

Lemma 4.5. Given M > 0 and u ∈ De let us define the quantities

T u
M = inf{t ∈ [0, τ u) : S(U u(t, ·)) < −M} and Ru

M = sup
0≤t≤T u

M

∥U u(t, ·)∥∞.

Then the applications u ↦→ T u
M and u ↦→ Ru

M are both upper semicontinuous on De.

Proof. We must see that the sets {TM < α} and {RM < α} are open in De for all α > 0. But
the fact that {TM < α} is open follows at once from Proposition A.9 and {RM < α} is open by
Proposition A.3. □

Lemma 4.6. For each u ∈ D+
e let us define the quantity

Iu
:= inf

(t,x)∈[0,τu )×[0,1]
U u(t, x).

Then the application u ↦→ Iu is lower semicontinuous on D+
e .
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Proof. Notice that Iu
≤ 0 for any u ∈ D+

e since U u(t, 0) = U u(t, 1) = 0 for all t ∈ [0, τ u).
Therefore, it will suffice to show that the sets {α < I} are open in D+

e for every α < 0. With
this purpose in mind, given α < 0 and u ∈ D+

e such that α < Iu , take β1, β2 < 0 such that
α < β1 < β2 < Iu and let y be the solution to the ordinary differential equation{

ẏ = −|y|
p

y(0) = β2.
(4.8)

Define tβ := inf{t ∈ [0, t y
max ) : y(t) < β1}, where t y

max denotes the explosion time of y. Notice
that by the lower semicontinuity of S for any M > 0 we have S(U u(T u

M , ·)) ≤ −M and thus, by
Lemma 4.3, we may choose M such that

sup
v∈Bρ (Uu (T u

M ,·))
τ v < tβ (4.9)

for some small ρ > 0. Moreover, if ρ < Iu
− β2 then every v ∈ Bρ(U u(T u

M , ·)) satisfies
infx∈[0,1]v(x) ≥ β2 so that U v is in fact a supersolution to Eq. (4.8). By (4.9) this implies that
v ∈ D+

e and Iv ≥ β1 > α. On the other hand, by Proposition A.3 we may take δ > 0 sufficiently
small so that for every w ∈ Bδ(u) we have T u

M < τw and

sup
t∈[0,T u

M ]
∥Uw(t, ·) − U u(t, ·)∥∞ < ρ.

Combined with the previous argument, this yields the inclusion Bδ(u) ⊆ D+
e ∩ {α < I}. In

particular, this shows that {α < I} is open and thus concludes the proof. □

Remark 4.7. The preceding proof shows, in particular, that the set D+
e is open.

The conclusion of the proof of Theorem 4.1 is contained in the next proposition.

Proposition 4.8. Given any D∗
e -compactifiable set K and δ > 0 there exists a constant C > 0

such that

sup
u∈K

Pu(τε > τ + δ) ≤ e−
C
ε2 . (4.10)

Proof. Since D−
e = −D+

e and U−u
= −U u for u ∈ CD([0, 1]), without loss of generality we

may assume that K is contained in D+
e . Let us begin by noticing that for any M > 0

TM := sup
u∈K

T u
M < +∞ and RM := sup

u∈K
Ru

M < +∞.

Indeed, by Proposition A.2 we may choose t0 ≥ 0 small so as to guarantee that the orbits
{U u(t, ·) : 0 ≤ t ≤ t0, u ∈ K} remain uniformly bounded and the family {U u(t0, ·) : u ∈ K} is
contained in a compact set K′

⊆ D+
e at a positive distance from ∂D+

e . But then we have

TM ≤ t0 + sup
u∈K′

T u
M and RM ≤ sup

0≤t≤t0,u∈K
∥U u(t, ·)∥∞ + sup

u∈K′

Ru
M

and both right hand sides are finite due to Lemma 4.5 and the fact that T u
M and RM are both finite

for each u ∈ De by Proposition 3.4. Similarly, by Lemma 4.6 we also have

IK := inf
u∈K

Iu > −∞.

Now, for each u ∈ K and ε > 0 by the Markov property we have for any ρ ∈ (0, 1)

Pu(τε > τ + δ) ≤ P(d
TM ∧T (RM +1),u

ε
(U u,ε,U u) > ρ) + sup

v∈Bρ (Uu (T u
M ,·))

Pv(τε > δ). (4.11)
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The first term on the right hand side is taken care of by (2.4) so that in order to show (4.10) it
only remains to deal with the second term by choosing M and ρ appropriately. The argument
given to deal with this term is similar to that of the proof of Lemma 4.6. Let y be the solution to
the ordinary differential equation⎧⎨⎩ẏ = −|y|

p
− |y|

p−1
− 1

y(0) = IK −
1
2
.

(4.12)

Define tI := inf{t ∈ [0, t y
max ) : y(t) < IK − 1}, where t y

max denotes the explosion time of y. By
Lemma 4.3, we may choose M such that

sup
v∈BρM (Uu (T u

M ,·))
τ (h),v < min{δ, tI} (4.13)

for all 0 ≤ h < hM , where ρM > 0 and hM > 0 are suitable constants. The key observation
here is that, since RM < +∞, we may choose these constants so as not to depend on u
but rather on M and RM themselves. Moreover, if ρM < 1

2 then every v ∈ BρM (U u(T u
M , ·))

satisfies infx∈[0,1]v(x) ≥ IK −
1
2 so that Z (h),v is in fact a supersolution to Eq. (4.12) for all

0 ≤ h < min{hM , 1}. By (4.13) the former implies that Z (h),v explodes through +∞ and that it
remains bounded from below by IK − 1 until its explosion time which, by (4.13), is smaller than
δ. In particular, we see that if ∥V 0,ε

∥∞ < min{1, hM
p2p−1 } then Z v,ε explodes before Z (h),v does,

so that we have that τε < δ under such conditions. Hence, we conclude that

sup
v∈BρM (Uu (T u

M ,·))
Pv(τε > δ) ≤ P

(
sup

t∈[0,δ]
∥V 0,ε(t, ·)∥∞ ≥ min

{
1,

hM

p2p−1

})
which, by the upper bound in the LDP for the family (V 0,ε)ε>0, gives the desired control on the
second term in the right hand side of (4.11). Thus, by taking ρ := ρM in (4.11), we obtain the
result. □

This last proposition in fact shows that for δ > 0 and a given D∗
e -compactifiable there exist

constants M,C > 0 such that

sup
u∈K

Pu(τε > T u
M + δ) ≤ e−

C
ε2 .

By using the fact that TM < +∞ for all M > 0 we obtain the following useful corollary.

Corollary 4.9. For any D∗
e -compactifiable set K and δ > 0 there exist constants τK,C > 0 such

that

sup
u∈K

Pu(τε > τK) ≤ e−
C
ε2 .

5. Construction of an auxiliary domain

To study the behavior of the explosion time for initial data in D0 it is convenient to introduce
an auxiliary bounded domain G ⊆ CD([0, 1]) containing a neighborhood Bc of the stable
equilibrium and such that for any initial data u ∈ Bc the escape time from this domain is
asymptotically equivalent to the explosion time. By doing so we can then reduce our original
problem to a simpler one: characterizing the escape from this domain. This becomes a simpler
problem because, since the escape only depends on the behavior of the system while it remains



Please cite this article in press as: P. Groisman, et al., Metastability for small random perturbations of a PDE with blow-up, Stochastic Processes and
their Applications (2017), http://dx.doi.org/10.1016/j.spa.2017.08.005.

P. Groisman et al. / Stochastic Processes and their Applications ( ) – 19

inside a bounded region, local large deviation estimates can be successfully applied to its study.
This approach is not new, it was originally proposed in [10] to study the finite-dimensional
double-well potential model. However, in our present setting the construction of this auxiliary
domain is much more involved and, as a matter of fact, a priori it is not even clear that such a
domain exists for every value of p > 1. The aim of this section is to construct such a domain for
1 < p < 5. The following lemma will play a key role in this. Its proof was communicated to us
by Philippe Souplet.

Lemma 5.1. If 1 < p < 5 then the set {u ∈ D0 : S(u) ≤ a} is compact in CD([0, 1]) for any
a > 0.

Proof. For a > 0 and v ∈ {u ∈ D0 : S(u) ≤ a} consider ψ : R≥0 → R≥0 given by

ψ(t) :=

∫ 1

0
(U v(t, x))2dx .

A direct computation shows that for every t0 > 0 the function ψ satisfies

dψ
dt

(t0) = −4S(U v(t0, ·)) + 2
(

p − 1
p + 1

)∫ 1

0
|U v(t0, x)|p+1dx .

By Proposition A.7 and Hölder’s inequality we then obtain

dψ
dt

(t0) ≥ −4a + 2
(

p − 1
p + 1

)
(ψ(t0))

p+1
2

which implies that ψ(0) ≤ B :=

[
2a
(

p+1
p−1

)] 2
p+1 since otherwise ψ (and therefore U v) would

explode in finite time. Now, by the Gagliardo–Nirenberg interpolation inequality (recall that v is
absolutely continuous since S(v) < +∞)

∥v∥2
∞

≤ CG N ∥v∥L2∥∂xv∥L2 ,

we obtain∫ 1

0
|v|p+1dx ≤ ∥v∥2

L2∥v∥
p−1
∞

≤ C
p−1

2
G N B

p+3
4 ∥∂xv∥

p−1
2

L2

≤ C
p−1

2
G N B

p+3
4

(
2a +

∫ 1

0
|v|p+1dx

) p−1
4

which for p < 5 implies the bound∫ 1

0
|v|p+1dx ≤ B ′

:= max

{
2a,

[
C

p−1
2

G N B
p+3

4 2
p−1

4

] 4
5−p
}
. (5.1)

Since S(v) ≤ a we see that (5.1) implies the bound ∥∂xv∥L2 ≤
√

2B ′. Thus, we conclude

∥v∥∞ ≤

(
C p−1

G N 2B B ′

) 1
4

which shows that {u ∈ D0 : S(u) ≤ a} is bounded in CD([0, 1]). On the other hand, by the
absolute continuity of v we have that for any x ≤ y ∈ [0, 1]

|v(y) − v(x)| ≤

∫ y

x
|∂xv| dr ≤ ∥∂xv∥L2

√
|x − y| ≤

√
2B ′|x − y|
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which shows {u ∈ D0 : S(u) ≤ a} is also equicontinuous. By the Arzela–Ascoli theorem, we
conclude that {u ∈ D0 : S(u) ≤ a} has compact closure. Finally, since this set is also closed by
the lower semicontinuity of S (see Proposition A.8), we conclude the result. □

Remark 5.2. The proof of Lemma 5.1 is the only instance throughout our work in which the
assumption p < 5 is used. As a matter of fact, we only require the weaker condition that there
exists α > 0 such that the set {u ∈ D0 : S(u) ≤ S(z) + α} is compact. However, determining the
validity of this condition for arbitrary p > 1 does not seem simple.

The following lemma will also play an important role in the construction.

Lemma 5.3. If D ⊆ CD([0, 1]) is open then for any compact set K ⊆ D there exists δ > 0 such
that the δ-neighborhood of K

Kδ := {u ∈ CD([0, 1]) : d(u,K) ≤ δ}

is D-compactifiable.

Proof. It follows from Propositions A.3 and A.5 that for any u ∈ D there exists some δu > 0
such that the ball Bδu (u) is D-compactifiable. Now, by the compactness of K we can select
u1, . . . , uk ∈ K such that

K ⊆

k⋃
i=1

B δui
2

(ui ).

It is then straightforward to check that for δ := mini=1,...,k
δui
2 we have

Kδ ⊆

k⋃
i=1

Bδui
(ui ).

Finally, since the finite union of D-compactifiable sets is again D-compactifiable, it follows that
Kδ is D-compactifiable since it is a subset of a D-compactifiable set. □

Before we can carry on with the next proposition, we need to introduce some definitions.

Definition 5.4. Given T > 0 and ϕ ∈ CD([0, T ] × [0, 1]) we define the rate I (ϕ) of ϕ by the
formula

I (ϕ) := I ϕ(0,·)
T (ϕ),

where I ϕ(0,·)
T is defined as in Section 2.3.

Definition 5.5. We say that a function ϕ ∈ CD([0, T ] × [0, 1]) is regular if both derivatives ∂tϕ

and ∂2
xxϕ exist and belong to CD([0, T ] × [0, 1]).

Proposition 5.6. Given T > 0, for any ϕ ∈ CD ∩W 1,2
2 ([0, T ]× [0, 1]) such that ∂2

xxϕ(0, ·) exists
and belongs to CD([0, 1]) we have that

I (ϕ) ≥ 2

[
sup

0≤T ′≤T

(
S(ϕ(T ′, ·)) − S(ϕ(0, ·))

)]
. (5.2)
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Proof. Assume first that ϕ is regular. Using that (x − y)2
= (x + y)2

− 4xy for x, y ∈ R, for
any 0 ≤ T ′

≤ T we obtain that

I (ϕ) =
1
2

∫ T

0

∫ 1

0
|∂tϕ − ∂2

xxϕ − g(ϕ)|
2
dxdt ≥

1
2

∫ T ′

0

∫ 1

0
|∂tϕ − ∂2

xxϕ − g(ϕ)|
2
dxdt

=
1
2

∫ T ′

0

∫ 1

0

[
|∂tϕ + ∂2

xxϕ + g(ϕ)|
2
− 4

(
∂2

xxϕ + g(ϕ)
)
∂tϕ
]

dxdt

=
1
2

∫ T ′

0

[(∫ 1

0
|∂tϕ + ∂2

xxϕ + g(ϕ)|
2
dx
)

+ 4
d S(ϕ(t, ·))

dt

]
≥ 2

(
S(ϕ(T ′, ·)) − S(ϕ(0, ·))

)
.

Taking supremum on T ′ yields the result in this particular case. Now, if ϕ is not necessarily
regular then by [8, Theorem 6.9] we may take a sequence (ϕn)n∈N of regular functions converging
to ϕ on CDϕ(0,·) ([0, T ] × [0, 1]) and such that limn→+∞ I (ϕn) = I (ϕ) is satisfied. The result
in the general case then follows from the validity of (5.2) for regular functions and the lower
semicontinuity of S. □

In order to properly interpret the content of Proposition 5.6 we need to introduce the concept
of quasipotential for our system. We do so in the following definitions.

Definition 5.7. Given u, v ∈ CD([0, 1]) a path from u to v is a continuous function ϕ ∈

CD([0, T ] × [0, 1]) for some T > 0 such that ϕ(0, ·) = u and ϕ(T, ·) = v.

Definition 5.8. Given u, v ∈ CD([0, 1]) we define the quasipotential V (u, v) from u to v by the
formula

V (u, v) = inf{I (ϕ) : ϕ path from u to v}.

Furthermore, given a subset B ⊆ CD([0, 1]) we define the quasipotential from u to B as

V (u, B) := inf{V (u, v) : v ∈ B}.

We refer the reader to the Appendix for a review of the properties of V we shall use.

In a limiting sense, made rigorous through the large deviations estimates in Section 2.3, the
quasipotential V (u, v) represents the energy cost for the stochastic system to travel from u to (an
arbitrarily small neighborhood of) v. Notice that Lemma 5.1 implies that limn→+∞V (0, ∂Bn ∩

D0) = +∞, which says that the energy cost for the stochastic system starting from 0 to
explode in a finite time while remaining inside D0 is infinite. Thus, should explosion occur,
it would involve the system stepping outside D0 and crossing W . In view of Proposition 5.6,
the crossing of W will typically take place through ±z since the energy cost for performing
such a feat is the lowest there. Therefore, if we wish the escape from G to capture the essential
characteristics of the explosion phenomenon in the stochastic system (at least when starting from
0) then it is important to guarantee that this escape involves passing through (an arbitrarily small
neighborhood of) ±z. Not only this, but we also require that once the system escapes this domain
then it explodes with overwhelming probability in a quick fashion, i.e. before some time τ ∗ which
does not depend on ε. More precisely, we wish to consider a bounded domain G ⊆ CD([0, 1])
verifying the following properties:
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Conditions 5.9.

i. There exists r0 > 0 such that B2r0 ⊆ D0 ∩ G.
ii. There exists c > 0 such that Bc ⊆ Br0 and for all v ∈ Bc the solution U v to (1.2) with

initial datum v is globally defined and converges to 0 without escaping Br0 .
iii. There exists a closed subset ∂±z of the boundary ∂G which satisfies

• V (0, ∂G − ∂±z) > V (0, ∂±z) = V (0,±z).
•• ∂±z is D∗

e -compactifiable.

In principle, we have seen that such a domain is useful to study the behavior of the explosion
time whenever the initial datum of the stochastic system is (close to) the origin. Nevertheless,
by the local estimate (2.4), when starting inside D0 the system will typically visit a small
neighborhood of the origin before crossing W and thus such a choice of G will also be suitable
to study the explosion time for arbitrary initial data in D0.

The construction of the domain G is done as follows. Since D0 is open we may choose r0 > 0
such that B3r0 is contained in D0. Furthermore, by the asymptotic stability of 0 we may choose
c > 0 verifying (ii) in Conditions 5.9. Now, given ζ1 > 0 by Lemma 5.1 we may take n0 ∈ N
such that n0 > 3r0 and the set {u ∈ D0 : S(u) ≤ S(z) + ζ1} is contained in the interior of the ball
Bn0−1. We then define the pre-domain G̃ as

G̃ := Bn0 ∩ D0. (5.3)

Notice that since both Bn0 and D0 are closed sets we have that

∂G̃ =
(
W ∩ Bn0

)
∪
(
∂Bn0 ∩ D0

)
which, by the particular choice of n0 and Proposition A.7, implies minu∈∂G̃ S(u) = S(z). By
Propositions 5.6 and A.8 we thus obtain V (0, ∂G̃) ≥ ∆. Next, if for u ∈ CD([0, 1]) we let u−

denote the negative part of u, i.e. u−
= max{−u, 0}, then since z−

= 0 we may find r̃z > 0 such
that −u−

∈ D0 for any u ∈ Br̃z (z). Finally, if for r > 0 we write Br (±z) := Br (z) ∪ Br (−z)
and take rz > 0 such that rz ≤ r̃z , B2rz (±z) is contained in the interior of Bn0 , z is the unique
equilibrium point of the system lying inside Brz (z) and Brz (z) ∩ Brz (−z) = ∅, then we define our
final domain G as

G = G̃ ∪ Brz (±z).

Let us now check that this domain satisfies all the required conditions. We begin by noticing
that (i) and (ii) in Conditions 5.9 are immediately satisfied by the choice of n0. Now, let us also
observe that for any r > 0

inf{S(u) : u ∈ ∂G̃ − Br (±z)} > S(z). (5.4)

Indeed, if this were not the case then there would exist a sequence (uk)k∈N ∈ ∂G̃ − Brz (±z) such
that limk→+∞S(uk) = S(z). Since infu∈∂Bn0 ∩D0 S(u) > S(z) holds by choice of n0, we can assume
that uk ∈ W−Br (±z) and S(uk) ≤ S(z)+ζ1 for all k ∈ N. Therefore, we conclude by Lemma 5.1
that there exists a subsequence (uk j ) j∈N which converges to some limit u∞ ∈ CD([0, 1]) as
j → +∞. Since the potential S is lower semicontinuous and W is both closed and invariant
under the deterministic flow, by Proposition A.7 we conclude that u∞ = ±z which contradicts
the fact that (uk j ) j∈N was at a positive distance from these equilibria. Hence, we obtain (5.4). In
particular, this implies that V (0, ∂G̃ − Br (±z)) > ∆ holds for any choice of r > 0. Let us then
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take ζ2 > 0 such that ∆ + ζ2 < V (0, ∂G̃ − B rz
2

(±z)) and define

∂̃ z
:= {u ∈ ∂Brz (z) ∩ De : V (0, u) ≤ ∆ + ζ2}.

The set ∂̃ z is nonempty, compact and contained in D+
e . Indeed, one can construct for each α > 0 a

path from 0 to Brz (z)∩De with rate function less than ∆+α, which immediately implies that ∂̃ z is
nonempty. This path is essentially obtained by going from 0 to z by describing the orbit given by
the unstable manifold W z

u in reverse order, then making a linear interpolation towards (1 + h)z
for some h ∈ (0, rz) sufficiently small and ultimately following the deterministic flow until it
reaches Brz (z) (notice that this will eventually happen since (1 + h)z ∈ De by Proposition 3.5
and De is invariant). We refer to [18, Lemma 4.3] for details on the construction. To see that it is
compact, we first notice that, being a subset of Brz (z), we have

sup
u∈∂̃z

∥u∥∞ ≤ ∥z∥∞ + rz < +∞ (5.5)

which shows that ∂̃ z is bounded. Furthermore, since

sup
u∈∂̃z

S(u) ≤ S(z) +
ζ2

2

by Proposition 5.6, using (5.5) and the lower semicontinuity of V (see Proposition A.10), one can
proceed as in the proof of Lemma 5.1 to show that ∂̃ z is equicontinuous and thus also compact.
Finally, to check that ∂̃ z is contained in D+

e we first show that ∂̃ z
∩ W = ∅. Indeed, if there

existed some u ∈ ∂̃ z
∩W then, since Brz (z) is contained in Bn0 , we would have that u ∈ W ∩ Bn0

and therefore, since u belongs to ∂Brz (z), that u ∈ ∂G̃ − B rz
2

(±z) by definition of ∂̃ z . This would
imply that V (0, ∂G̃ − B rz

2
(±z)) ≤ ∆ + ζ2 which contradicts the choice of ζ2, and therefore

∂̃ z
∩W must be empty. In particular, we obtain that ∂̃ z is contained in De. To see that it is in fact

contained in D+
e we note that, by the comparison principle and the choice of r̃z , we have

− ∞ < inf
(t,x)∈[0,τu )×[0,1]

U−u−

(t, x) ≤ inf
(t,x)∈[0,τu )×[0,1]

U u(t, x)

for all u ∈ ∂̃ z , so that the inclusion ∂̃ z
⊆ D+

e is now immediate.
It follows from all these facts about ∂̃ z and Lemma 5.3 that there exists some δ > 0 such that

the neighborhood ∂̃ z
δ is also D+

e -compactifiable, so that we may define

∂ z
:= ∂̃ z

δ ∩ ∂Brz (z)

and set ∂±z
:= ∂ z

∪ (−∂ z). Since one can easily check that

∂G = [∂G̃ − Brz (±z)] ∪ [∂Brz (±z) ∩ De]

we conclude that V (0, ∂G − ∂±z) ≥ ∆ + ζ2. On the other hand, by using Proposition 5.6
together with the existence of paths as described above, which go from 0 to ∂̃ z by passing
through z and have a rate function which can be made arbitrarily close to ∆, we get that
V (0, ∂ z) = V (0, ∂̃ z) = V (0,±z) = ∆ from which one obtains

V (0, ∂G − ∂±z) > V (0, ∂ z) = V (0,±z).

Finally, since −∂ z is D−
e -compactifiable by the symmetry of (1.2), we conclude that ∂±z is D∗

e -
compactifiable and so condition (iii) also holds. See Fig. 3.
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Fig. 3. The auxiliary domain G.

Remark 5.10. Let us notice that, by Corollary 4.9, (••) in Conditions 5.9 implies that there exist
constants τ ∗,C > 0 such that

sup
u∈∂±z

Pu(τε > τ ∗) ≤ e−
C
ε2

for all ε > 0 sufficiently small. Since (•) guarantees that the escape from G will typically take
place through ∂±z , this tells us that both τε and τε(∂G) are asymptotically equivalent, so that it
will suffice to study the escape from G in order to establish each of our results.

6. The escape from G

The problem of escaping a bounded domain with similar characteristics to the ones detailed
in Conditions 5.9 already appears in the literature. In [10,15], the authors study the escape from
a finite-dimensional domain containing a stable equilibrium and only one saddle point. Our
domain G bears the additional difficulties of being infinite-dimensional and also of possibly
containing other unstable equilibria besides ±z. On the other hand, in [1] the author deals with
an infinite-dimensional domain, but this domain has unstable equilibria only in its boundary and
does not contain any of them in its interior as opposed to what happens in our current situation.
Despite the fact that our domain does not quite fall into any of the cases studied before, all the
results of interest in our present setting can still be obtained by combining the ideas from these
previous works, eventually making some slight modifications along the way. We outline below
the main results regarding the escape from the domain G and refer the reader to [18] for details
on their proofs. Hereafter, c > 0 is taken as in Conditions 5.9. Also, for any given closed set
Γ ⊆ CD([0, 1]) we write

τ u
ε (Γ ) := inf{t > 0 : U u,ε(t, ·) ∈ Γ }.

Our first result deals with the asymptotic order of magnitude of the exit time from G.
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Theorem 6.1. Given δ > 0 we have

lim
ε→0

[
sup
u∈Bc

⏐⏐⏐⏐Pu

(
e
∆−δ

ε2 < τε(∂G) < e
∆+δ

ε2

)
− 1

⏐⏐⏐⏐
]

= 0.

The second result gives information about the typical escape routes chosen by U ε.

Theorem 6.2. The stochastic system verifies

lim
ε→0

[
sup
u∈Bc

Pu
(
U ε(τε(∂G), ·) ̸∈ ∂±z)]

= 0.

Furthermore, if G̃ is the pre-domain constructed in Section 5, then for any δ > 0

lim
ε→0

[
sup
u∈Bc

Pu

(
U ε

(
τε(∂G̃), ·

)
̸∈ Bδ(±z)

)]
= 0. (6.1)

The asymptotic distribution of the exit time is established in this third result.

Theorem 6.3. For each ε > 0 define the normalization coefficient γε > 0 by the relation

P0(τε(∂G) > γε) = e−1.

Then there exists ρ > 0 such that for every t ≥ 0

lim
ε→0

[
sup
u∈Bρ

|Pu(τε(∂G) > tγε) − e−t
|

]
= 0. (6.2)

Finally, the stability of time averages is shown in the fourth and last result.

Theorem 6.4. There exists a sequence (Rε)ε>0 with limε→0 Rε = +∞ and limε→0
Rε
γε

= 0 such
that given δ > 0 we have

lim
ε→0

[
sup
u∈Bc

Pu

(
sup

0≤t≤τε(∂G)−3Rε

⏐⏐⏐⏐ 1
Rε

∫ t+Rε

t
f (U ε(s, ·))ds − f (0)

⏐⏐⏐⏐ > δ

)]
= 0

for any bounded continuous function f : CD([0, 1]) → R.

Remark 6.1. We would like to point out that the main technical point in the proof of Theorem 6.3
is to show that for small ρ > 0

lim
ε→0

[
sup

u,v∈Bρ

[
sup
t>t0

|Pu(τε(∂G) > tγε) − Pv(τε(∂G) > tγε)|

]]
= 0. (6.3)

We do this by proceeding as in [2] with the help of the coupling of solutions with different
initial data proposed in [14]. Some technical difficulties which are not present in [2] arise in the
construction of the coupling due to the behavior of the source term g but, nonetheless, it is still
possible to couple solutions with initial data sufficiently close to 0 so that (6.3) can be obtained.
We refer to [18] for details.
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7. Asymptotic behavior of τ u
ε for u ∈ D0

We now use the analysis from Section 6 to derive our main results with respect to the
metastable behavior of U u,ε for initial data u ∈ D0. We begin by showing that, uniformly over
D0-compactifiable sets, for u ∈ D0 the system U u,ε typically visits a small neighborhood of 0
before explosion without ever exiting D0.

Lemma 7.1. For any D0-compactifiable set K and ρ > 0

lim
ε→0

[
sup
u∈K

⏐⏐Pu
(
τε(Bρ) < τε

)
− 1

⏐⏐] = 0. (7.1)

Proof. Note that for any u ∈ D0 the system U u reaches the interior of B ρ
2

in a finite time

τ u
(

B◦
ρ
2

)
:= inf{t ≥ 0 : d(U u(t, ·), 0) < δ}

while remaining at all times inside the ball Bru , where ru
:= supt≥0∥U u(t, ·)∥∞ < +∞.

Furthermore, for any D0-compactifiable set K the quantities τK, ρ2 := supu∈Kτ
u(B◦

ρ
2

) and rK :=

supu∈Kru are both finite. Indeed, observe that for any t0 > 0 we have that

sup
u∈K

τ u(B◦

δ ) ≤ t0 + sup
u∈K(t0)

τ u(B◦

δ ). (7.2)

Now, since the application u ↦→ τ u,+(Bδ) is upper semicontinuous (and finite) on D0 by the
continuity of the solutions to (1.2) with respect to the initial datum (Proposition A.3), it follows
that the right-hand side of (7.2) is finite for t0 > 0 sufficiently small since then K(t0) has compact
closure contained in D0. Similarly, to see that rK is finite we note that for any t0 > 0

rK ≤ sup
u∈K,t∈[0,t0]

∥U u(t, ·)∥∞ + sup
u∈K,t≥t0

∥U u(t, ·)∥∞ (7.3)

and that by Proposition A.2 the first term in the right-hand side of (7.3) is finite for every t0
sufficiently small. That supu∈K,t≥t0∥U u(t, ·)∥∞ is finite then follows as before, due to the fact
that the application u ↦→ ru is also both upper semicontinuous and finite on D0.

Finally, let us notice that if we write T K
ε := τK, ρ2

∧ τ
(rK+1)
ε then for any u ∈ K we have the

bound

Pu
(
τε ≤ τε(Bρ)

)
≤ Pu

(
τε(Bρ) > τK, ρ2

)
+ Pu

(
τε ≤ τK, ρ2

)
(7.4)

with

Pu

(
τε(Bρ) > τK, ρ2

)
≤ Pu

(
dT K

ε
(U ε,U ) > min

{
ρ

2
,

1
2

})
and

Pu

(
τε ≤ τK, ρ2

)
≤ Pu

(
dT K

ε
(U ε,U ) >

1
2

)
.

The uniform bounds given by (2.4) now allow us to conclude the result. □

The next step is to show that, for initial data in a small neighborhood of the origin, the
explosion time and the exit time from G are asymptotically equivalent.
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Lemma 7.2. If τ ∗ > 0 is taken as in Remark 5.10 then

lim
ε→0

[
sup
u∈Bc

Pu(τε > τε(∂G) + τ ∗)

]
= 0. (7.5)

Proof. For any u ∈ Bc the strong Markov property implies that

Pu(τε > τε(∂G) + τ ∗) ≤ sup
v∈Bc

Pv
(
U ε(τε(∂G), ·) ̸∈ ∂±z)

+ sup
v∈∂±z

Pv(τε > τ ∗).

We may now conclude the result by using Theorem 6.2 and Remark 5.10. □

With these two lemmas at hand, we can now show the remaining results of Section 2.4. Indeed,
Theorem 2.3 follows from Theorem 6.1 by using the strong Markov property together with
Lemmas 7.1 and 7.2. Furthermore, Theorem 2.4 follows from Lemma 7.1 for ρ = c, where
c is as in Conditions 5.9, together with (6.1) for δ > 0 sufficiently small so as to guarantee that
Bδ(±z) is contained in the interior of Bn0 , where n0 is as in (5.3). Finally, Lemma 7.2 implies
that limε→0

βε
γε

= 1 from which, together with Lemma 7.1 and the strong Markov property, we get
Theorems 2.5 and 2.6 by using Theorems 6.3 and 6.4. We leave the details to the reader, which
are completely straightforward.
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Appendix

A.1. Comparison principle

Proposition A.1. Let f1, f2 : R → R be globally Lipschitz functions. For u, v ∈ C([0, 1])
consider U u and U v the solutions of the equation

∂tU = ∂2
xxU + f1(U ) + f2(U )Ẇ

with initial data u and v, respectively, and boundary conditions satisfying

P(U u(t, ·)|∂[0,1] ≥ U v(t, ·)|∂[0,1] for all t ≥ 0) = 1.

Then, if u ≥ v we have that

P
(
U u(t, x) ≥ U v(t, x) for all t ≥ 0, x ∈ [0, 1]

)
= 1.

A proof of this result can be found in [6, p. 130]. Let us notice that by taking f2 ≡ 0 one
obtains a comparison principle for deterministic partial differential equations.

A.2. Growth and regularity estimates

Proposition A.2. Given a bounded set B ⊆ CD([0, 1]) there exists tB > 0 such that τ u > tB for
every u ∈ B and

sup
u∈B,t∈[0,tB ]

∥U u(t, ·)∥∞ < +∞.
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Proof. For each n ∈ N let us consider a globally Lipschitz map gn such that gn|Bn ≡ g|Bn , and
let U (n),u be the solution of (1.2) with g replaced by gn . Notice that, by uniqueness of the solution
of (1.2), for all u ∈ CD([0, 1]) we have that

U u(t, x) ≡ U (n),u(t, x)

for all x ∈ [0, 1] and t ≤ τ (n),u , where

τ (n),u
:= inf

{
t ≥ 0 : ∥U (n),u(t, ·)∥∞ ≥ n

}
and also that, since gn is globally Lipschitz, U (n),u,ε is globally defined. Now, if y+

n , y−
n

respectively denote the solutions to the equations{
ẏ±

n = gn(y±

n )
y±

n (0) = ± sup
u∈B

∥u∥∞

then by the continuity of y+
n and y−

n there exists tn,B > 0 sufficiently small so that

sup
t∈[0,tn,B ]

y+

n (t) ≤ sup
u∈B

∥u∥∞ + 1 and inf
t∈[0,tn,B ]

y−

n (t) ≥ −

(
sup
u∈B

∥u∥∞ + 1
)
.

Hence, by the comparison principle we conclude that

sup
u∈B,t∈[0,tn,B ]

∥U (n),u(t, ·)∥∞ ≤ sup
u∈B

∥u∥∞ + 1.

In particular, if we take n > supu∈B∥u∥∞ + 1 then for any u ∈ B we have τ (n),u > tn,B and
therefore that

sup
u∈B,t∈[0,tn,B ]

∥U u(t, ·)∥∞ < +∞

since U u coincides with U (n),u until τ (n),u . From this the result immediately follows. □

Proposition A.3. The following local and pointwise growth estimates hold:

i. Given a bounded set B ⊆ CD([0, 1]) there exist CB, tB > 0 such that

• τ u > tB for any u ∈ B
• For any pair u, v ∈ B and t ∈ [0, tB]

∥U u(t, ·) − U v(t, ·)∥∞ ≤ eCB t
∥u − v∥∞.

ii. Given u ∈ CD([0, 1]) and t ∈ [0, τ u) there exist Cu,t , δu,t > 0 such that

• τ v > t for any v ∈ Bδu,t (u)
• For any v ∈ Bδu,t (u) and s ∈ [0, t]

∥U u(s, ·) − U v(s, ·)∥∞ ≤ eCu,t s
∥u − v∥∞.

Proof. These are standard continuity estimates with respect to the initial datum which can be
found, for example, in [16]. □

Proposition A.4. If u ∈ CD([0, 1]) then ∂2
xxU u exists for any t ∈ (0, τ u). Furthermore, for any

bounded set B ⊆ CD([0, 1]) there exists a time tB > 0 such that

• τ u > tB for any u ∈ B
• For any t ∈ (0, tB) we have supu∈B

[
max{∥∂xU u(t, ·)∥∞, ∥∂

2
xxU u(t, ·)∥∞}

]
< +∞.
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Proof. One can obtain this result by following the analysis in the proof of [1, Lemma A.1]. □

Proposition A.5. For any bounded set B ⊆ CD([0, 1]) there exists tB > 0 such that

• τ u > tB for any u ∈ B
• For any t ∈ (0, tB) there exist positive constants Rt , Nt such that for every u ∈ B the

function U u(t, ·) belongs to the compact set

γRt ,Nt = {v ∈ CD([0, 1]) : ∥v∥∞ ≤ Rt , |v(x) − v(y)| ≤ Nt |x − y|

for all x, y ∈ [0, 1]}.

Proof. This is direct consequence of Propositions A.2–A.4 and the mean value theorem. □

Proposition A.6. The following local and pointwise growth estimates hold:

i. Given a bounded set B ⊆ CD([0, 1]) there exists tB > 0 such that

• τ u > tB for any u ∈ B
• For any t ∈ (0, tB) there exists Ct,B > 0 such that for all u, v ∈ B

∥∂xU u(t, ·) − ∂xU v(t, ·)∥∞ ≤ Ct,B∥u − v∥∞.

ii. Given u ∈ CD([0, 1]) and t ∈ (0, τ u) there exist Cu,t , δu,t > 0 such that

• τ v > t for any v ∈ Bδu,t (u)
• For any v ∈ Bδu,t (u)

∥∂xU u(t, ·) − ∂xU v(t, ·)∥∞ ≤ Cu,t∥u − v∥∞.

Proof. These estimates also follow from the analysis in the proof of [1, Lemma A.1]. □

A.3. Properties of the potential S

Proposition A.7. The mapping t ↦→ S(U u(t, ·)) is monotone decreasing and continuous for any
u ∈ H 1

0 ((0, 1)).

Proof. An easy computation shows that

d
dt

S(U u(t, ·)) = −

∫ 1

0
(∂tU u(t, x))2dx ≤ 0

from which the result follows. Details can be found in [17, Lemma 17.5]. □

Proposition A.8. The potential S is lower semicontinuous.

Proof. Let (vk)k∈N ⊆ CD([0, 1]) be a sequence converging to some limit v∞ ∈ CD([0, 1]). We
must check that

S(v∞) ≤ lim inf
k→+∞

S(vk). (A.1)

Notice that since (vk)k∈N is convergent in the supremum norm we have, in particular, that

sup
k∈N

∥vk∥L p+1 < +∞ (A.2)
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and therefore that lim infk→+∞S(vk) > −∞. Hence, by passing to a subsequence if necessary,
we may assume that the limit in (A.1) exists and is finite so that, in particular, we have that
(S(vk))k∈N is bounded. This implies that each vk is absolutely continuous and, furthermore, that
the sequence (vk)k∈N is bounded in H 1

0 ((0, 1)) by (A.2). Therefore, there exists some subsequence
(vk j ) j∈N which is weakly convergent in H 1

0 ((0, 1)) and also strongly convergent in L2([0, 1])
to some limit v∗

∞
. Notice that since (vk)k∈N converges in the supremum norm to v∞, it also

converges in Lq for every q ≥ 1. In particular, we have that v∗
∞

= v∞ and thus, by the lower
semicontinuity of the H 1

0 -norm with respect to the weak topology, we conclude that

∥∂xv∞∥L2 ≤ lim inf
j→+∞

∥∂xvk j ∥L2 .

Finally, since (vk)k∈N converges to v∞ in L p+1 and we have S(u) =
1
2∥∂x u∥

2
L2 −

1
p+1∥u∥

p+1
L p+1 for

all u ∈ H 1
0 , we obtain (A.1). □

Proposition A.9. Given u ∈ CD([0, 1]) and t ∈ (0, τ u) there exist constants Cu,t , δu,t > 0 such
that

• τ v > t for any v ∈ Bδu,t (u)
• For any v ∈ Bδu,t (u) one has

∥S(U u(t, ·)) − S(U v(t, ·))∥∞ ≤ Cu,t∥u − v∥∞.

Proof. This is a direct consequence of Propositions A.6 and A.3. □

A.4. Properties of the quasipotential V

Proposition A.10. The mapping u ↦→ V (0, u) is lower semicontinuous on CD([0, 1]).

Proof. Let (uk)k∈N ⊆ CD([0, 1]) be a sequence converging to some limit u∞ ∈ CD([0, 1]). We
must check that

V (0, u∞) ≤ lim inf
k→+∞

V (0, vk). (A.3)

If S(u∞) = +∞ then by Proposition 5.6 we see that V (0, u∞) = +∞ and thus by the lower
semicontinuity of S we conclude that limv→u V (0, v) = +∞ which establishes (A.3) in this
particular case. Now, if S(u∞) < +∞ then, by the lower semicontinuity of S and the continuity
in time of the solutions to (1.2), given δ > 0 there exists t0 > 0 sufficiently small such that
S(U u∞ (t0, ·)) > S(u∞) −

δ
2 . Moreover, by Proposition A.3 we may even assume that t0 is such

that

∥U uk (t0, ·) − U u∞ (t0, ·)∥∞ ≤ 2∥uk − u∞∥∞

for any k ∈ N sufficiently large. Thus, given k sufficiently large and a path ϕk from 0 to uk we
construct a path ϕk,∞ from 0 to u∞ by the following steps:

i. We start from 0 and follow ϕk until we reach uk .
ii. From uk we follow the deterministic flow U uk until time t0.

iii. We then join U uk (t0, ·) and U u∞ (t0, ·) by a linear interpolation of speed one.
iv. From U u∞ (t0, ·) we follow the reverse deterministic flow until we reach u∞.
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By the considerations made in the proof of [18, Lemma 4.3] it is not difficult to see that there
exists C > 0 such that for any k ∈ N sufficiently large we have

I (ϕk,∞) ≤ I (ϕk) + C∥uk − u∞∥∞ + δ

so that we ultimately obtain

V (0, u∞) ≤ lim inf
k→+∞

V (0, uk) + δ.

Since δ > 0 can be taken arbitrarily small we conclude (A.3). □

Proposition A.11. For any u, v ∈ CD([0, 1]) the map t ↦→ V (u,U v(t, ·)) is decreasing.

Proof. Given 0 ≤ s < t and a path ϕ from u to U v(s, ·) we may extend ϕ to a path ϕ̃ from u to
U v(t, ·) simply by following the deterministic flow afterwards. It follows that

V (u,U v(t, ·)) ≤ I (ϕ̃) = I (ϕ)

which, by taking infimum over all paths from u to U v(s, ·), yields the desired monotonicity. □
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