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Abstract In this paper, we study the behavior as p → ∞ of eigenvalues and eigenfunctions
of a system of p-Laplacians, that is

⎧
⎪⎪⎨

⎪⎪⎩

−�pu = λαuα−1vβ �,

−�pv = λβuαvβ−1 �,

u = v = 0, ∂�,

in a bounded smooth domain �. Here α + β = p. We assume that α
p → � and β

p → 1 − �

as p → ∞ and we prove that for the first eigenvalue λ1,p we have

(λ1,p)
1/p → λ∞ = 1

maxx∈� dist(x, ∂�)
.

Concerning the eigenfunctions (u p, vp) associated with λ1,p normalized by
∫

�
|u p|α|vp|β =

1, there is a uniform limit (u∞, v∞) that is a solution to a limit minimization problem as well
as a viscosity solution to

{
min{−�∞u∞, |∇u∞| − λ∞u�∞v1−�∞ } = 0,

min{−�∞v∞, |∇v∞| − λ∞u�∞v1−�∞ } = 0.

In addition, we also analyze the limit PDE when we consider higher eigenvalues.
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1 Introduction

In this paper, we deal with nonnegative weak or viscosity solutions to the following elliptic
problem ⎧

⎪⎪⎨

⎪⎪⎩

−�pu = λαuα−1vβ �,

−�pv = λβuαvβ−1 �,

u = v = 0, ∂�,

(1.1)

when p is large. Here p > 1, �pu = div(|∇u|p−2∇u) is the well-known p-Laplacian
operator, � is a smooth bounded domain in R

N , and α and β are real numbers greater or
equal than one and verify

α + β = p. (1.2)

The limit of p-harmonic functions, that is, of solutions to −�pu = −div(|∇u|p−2∇u) =
0, as p → ∞ has been extensively studied in the literature (see [2] and the survey [1]) and
leads naturally to solutions of the infinityLaplacian, given by−�∞u = −∇uD2u(∇u)t = 0.
Infinity harmonic functions (solutions to −�∞u = 0) are related to the optimal Lipschitz
extension problem (see the survey [1]) and find applications in optimal transportation, image
processing and tug-of-war games (see, for example, [4,7,16,17] and the references therein).
Also limits of the eigenvalue problem related to the p-Laplacian with various boundary
conditions have been exhaustively examined, see [8,11,12,18,19], and lead naturally to the
infinity Laplacian eigenvalue problem (in the scalar case)

min {|∇u|(x) − λu(x), −�∞u(x)} = 0. (1.3)

In particular, the limit as p → ∞ of the first eigenvalue λp,D of the p-Laplacian with
Dirichlet boundary conditions and of its corresponding positive normalized eigenfunction
u p has been studied in [11,12]. It was proved there that, up to a subsequence, the u p converges
uniformly to some Lipschitz function u∞ satisfying ‖u∞‖∞ = 1 and that

(λp,D)1/p → λ∞,D = inf
u∈W 1,∞(�)

‖∇u‖∞
‖u‖∞

= 1

R�

, (1.4)

where R� = maxx∈� dist (x, ∂�). Moreover u∞ is an extremal for this limit variational
problem, and the pair u∞, λ∞,D is a nontrivial solution to (1.3). This problem has also been
studied from an optimal mass transport point of view in [5].

On the other hand, there is a rich recent literature concerning eigenvalues for systems of
p-Laplacian type, (we refer, for example, to [3,9,15,22] and references therein), but there
does not seem to be, to our knowledge, work concerning their asymptotic behavior as p goes
to infinity. The purpose of this paper is to initiate such work by considering the asymptotic
behavior of the first eigenvalue λ1,p of the simple system of p-Laplacian type (1.1).
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The limit as p → ∞ in the eigenvalue problem for...

Existence of weak solutions to (1.1) can be easily obtained from a variational argument,
see [15]. In fact, we just have to look for a minimizer of the quotient

λ1,p = min
(u,v)∈Sp

Q p(u, v) where Qp(u, v) =

∫

�

|∇u|p
p

+
∫

�

|∇v|p
p

∫

�

|u|α|v|β
(1.5)

in Sp := W 1,p
0 (�) × W 1,p

0 (�) to obtain the first eigenvalue λ1,p whose associated pair
of eigenfunctions (u p, vp) is nonnegative. Note that, up to our knowledge, except in the
symmetric case α = β where we recover the first eigenfunction of the p-Laplacian, it is not
known that the first eigenvalue (1.5) is simple as it happens for a single equation.

Theorem 1.1 Let (u p, vp) be a minimizer in (1.5) normalized by
∫

�

|u p|α|vp|β = 1, (1.6)

Assume that
α

p
→ � as p → ∞

with 0 < � < 1 (in view of (1.2), this implies that β
p → 1 − � as p → ∞). Then, there

exist functions u∞, v∞ ∈ C(�) and a sequence p j → ∞ such that

u p j → u∞, and vp j → v∞,

uniformly in �. In addition,

(λ1,p)
1/p → λ∞ = 1

R�

where R� is the radius of the largest ball included in � that is

R� = max
x∈�

dist (x, ∂�).

The limit pair of functions (u∞, v∞) belongs to S∞ = W 1,∞
0 (�) × W 1,∞

0 (�) and is a
minimizer for the limit variational problem defined by

min
(u,v)∈S∞

Q(u, v) = min
(u,v)∈S∞

max
{
‖∇u‖L∞(�); ‖∇v‖L∞(�)

}

‖|u|�|v|1−�‖L∞(�)

. (1.7)

In addition, (u∞, v∞) is a viscosity solution to the following limit eigenvalue problem
{
min{−�∞u∞, |∇u∞| − λ∞u�∞v1−�∞ } = 0,

min{−�∞v∞, |∇v∞| − λ∞u�∞v1−�∞ } = 0.
(1.8)

where �∞u = ∑n
i, j=1 ∂i j u∂i u∂ j u is the ∞-Laplacian of u.

Remark that the limit of (λ1,p)1/p as p → ∞ is given by λ∞ = 1
R�

. This is the same limit
as the one for the first eigenvalue for the usual p-Laplacian (that is, for a single equation not
for a system) and is known as the first eigenvalue for the ∞−Laplacian, see [12]. Hence, we
have the surprising (except in the symmetric case α = β) fact that the first eigenvalue for the
system converges to the same limit as for a single equation.
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In addition, when � is a ball of radius R, we have that there is a unique minimizer of

λ∞ = infu∈W 1,∞
0 (�)

‖∇u‖L∞(�)

‖u‖L∞(�)
that is given by the cone c(x) = R − |x |. Therefore, in this

case, it can be proved that the limit of u p and vp coincides and is given exactly by the same
cone c(x). Hence, we conclude that for the ball the first eigenvalue is associated with a pair
of eigenfunctions that are quite close to each other for p large.

Notice that any minimizer (u, v) of (1.7) must satisfy ‖∇u‖∞ = ‖∇v‖∞. Indeed assume,
for example, that ‖∇u‖∞ < ‖∇v‖∞. It is then easily checked that we can decrease the
quotient in (1.7) by considering a pair (u + εφ, v) where ε > 0 is small and φ ∈ C∞

c (�)

satisfies φ(x0) = 1 for some maximum point x0 of |u|�|v|1−� . However we cannot assert
that in general any minimizer (u, v) satisfies u = v. To see this, notice first that if u and v

are nonnegative minimizer for λ∞,D in (1.4) that attain their maximum at the same point,
then (u, v) is minimizing. It follows in particular that (u, u) is minimizing for any minimizer
u of λ∞,D . However it is not known in general whether λ∞,D is simple. It is the case, for
instance, for a ball, an annulus and a stadium (the unique eigenvalue is then the function
dist (x, ∂�)—see [21]) but not for the planar dumbbell domain B(5e1, 1) ∪ R ∪ B(−5e1, 1)
recently considered in [10] (here e1 = (1, 0) and R = (−5, 5) × (−δ, δ) with δ > 0 small).
Indeed the authors there proved the existence of a nonnegative normalized eigenvalue v for
λ∞,D minimizing the quotient in (1.4) with u(5, 0) = 1, but which is not symmetric in the
second coordinate and therefore is not equal to an eigenvalue u obtained as a limit of positive
normalized eigenvalues for the p-Laplacian. Since u and v attain their maximum value 1
both at the same point (5, 0), the pair (u, v) is minimizing in (1.7).

Notice eventually that we cannot assert that λ∞ is the smallest positive λ such that the
equation (1.8) has a nonnegative viscosity solution (u, v). This seems to be a nontrivial
problem due to the lack of comparison principle for a system like (1.8) and also to the fact
that, the infinity norm being non-differentiable, we cannot affirm that a solution of (1.8) is a
critical point of Q.

Next, we show that the limits of the eigenfunctions of the first eigenvalue verify an uncou-
pled problem. To show this fact, we use ideas from optimal mass transportation, see [5], [18]
for similar ideas and [20] for basic concepts and definitions.

Theorem 1.2 Under the same conditions of Theorem 1.1, consider the measures f p =
uα−1
p v

β
p dx and gp = uα

pv
β−1
p dx. Then, there exists f∞, g∞ ∈ P(�) (the space of probability

measures on �) such that up to a subsequence,

f p dx ⇀ f∞ and gp dx ⇀ g∞.

In addition, we have that ((u∞, f∞), (v∞, g∞)) is a minimizer of the functional G∞
given by

G∞((u, σ ), (v, τ )) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∫

�
uσ − ∫

�
vτ if

u, v ∈ W 1,∞
0 (�),

‖∇u‖L∞(�) ≤ λ∞,

‖∇u‖L∞(�) ≤ λ∞,

σ, τ ∈ M(�),
∫ |σ | ≤ 1,

∫ |τ | ≤ 1
+∞ otherwise.

Concerning higher eigenvalues, we have the following result: For (1.1) with fixed p,
α, β, it can be proved using topological arguments that there is a sequence of eigenvalues
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λn,p → ∞ with eigenfunctions (u p, vp) that change sign in �. Note that since solutions
change sign we have to write uα as |u|α−1u and analogously for vβ in (1.1). The next result
finds the associated limit PDE as p → ∞.

Theorem 1.3 Let λn,p be a sequence of eigenvalues with corresponding eigenfunctions
(u p, vp) normalized by

∫

�

|u p|α|vp|β = 1,

and assume that
α

p
→ � as p → ∞

with 0 < � < 1 [note that (1.2) implies that β
p → 1 − � as p → ∞]. If there is a constant

C independent of p such that

(λn,p)
1/p ≤ C,

then, there exists a sequence p j → ∞ such that

(λn,p j )
1/p j → �

and

u p j → u∞, and vp j → v∞,

uniformly in�. The limit pair of functions (u∞, v∞) belongs to S∞ = W 1,∞
0 (�)×W 1,∞

0 (�)

and is a viscosity solution to the following limit eigenvalue problem
⎧
⎪⎪⎨

⎪⎪⎩

min{−�∞u∞, |∇u∞| − �u�∞|v∞|1−�} = 0, if u∞ > 0,

−�∞u∞ = 0, if u∞v∞ = 0,

max{−�∞u∞, −|∇u∞| − �u�∞|v∞|1−�} = 0, if u∞v∞ < 0,

(1.9)

together with the analogous equation that holds for v∞.

The condition (λn,p)
1/p ≤ C holds, for example, for the eigenvalues constructed using

topological arguments in [15]. We remark that it is not known whether this set of eigenvalues
exhausts thewhole spectrum. Therefore, we prefer to state our result assuming (λn,p)

1/p ≤ C
and let λn,p be any possible eigenvalue.

The paper is organized as follows: In Sect. 2, we prove Theorem1.1, in Sect. 3, we collect
some extra remarks concerning the limit problem for the first eigenvalue and we prove
Theorem 1.2, and finally, in Sect. 4, we deal with higher eigenvalues and prove Theorem1.3.

2 Proof of Theorem 1.1

We first look for a uniform bound for λ
1/p
1,p . To this end, let us consider a Lipschitz function

w ∈ W 1,∞(�) that is a first eigenfunction for the ∞−Laplacian normalized according to
‖w‖L∞(�) = 1. This function verifies

‖∇w‖L∞(�) = 1

R�

.
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Using the pair (w,w) ∈ S as a test function in (1.5) to estimate λ1,p , we obtain

lim sup
p→∞

(λ1,p)
1/p ≤ lim sup

p→∞

(
2

p

)1/p ‖∇w‖L p(�)

‖w‖L p(�)

= ‖∇w‖L∞(�)

‖w‖L∞(�)

= 1

R�

. (2.1)

Therefore, there is a constant, C , independent of p such that, for p large,

(λ1,p)
1/p ≤ C.

Recalling that (u p, vp) is a minimizer for λ1,p normalized by (1.6), we have that
∫

�

|∇u p|p +
∫

�

|∇vp|p = pλ1,p,

from which we deduce with (2.1) that

lim sup
p→+∞

‖∇u p‖L p(�) ≤ 1

R�

and lim sup
p→+∞

‖∇vp‖L p(�) ≤ 1

R�

. (2.2)

Now, we argue as follows. We fix r ∈ (1,∞). Using Holder’s inequality, we obtain for
p > r large enough that

(∫

�

|∇u p|r
)1/r

≤
(∫

�

|∇u p|p
)1/p

|�| 1r − 1
p ≤ C.

Hence, extracting a subsequence p j → ∞ if necessary, we have that

u p ⇀ u∞

weakly in W 1,r (�) for any 1 < r < ∞ and uniformly in �. From (2.2), we obtain that this
weak limit verifies

(∫

�

|∇u∞|r
)1/r

≤ |�|1/r
R�

.

As we can assume that the above inequality holds for every r (using a diagonal argument),
we get that u∞ ∈ W 1,∞(�), and moreover, taking the limit as r → ∞, we obtain

|∇u∞| ≤ 1

R�

, a.e. x ∈ �.

Analogously, we obtain the existence of a function v∞ ∈ W 1,∞(�) satisfying

vp → v∞

weakly in W 1,r (�) for any 1 < r < ∞ and uniformly in �, with

|∇v∞| ≤ 1

R�

, a.e. x ∈ �.

From the uniform convergence and the normalization condition (1.6), we obtain that

‖|u∞|�|v∞|1−�‖L∞(�) = 1.

Therefore, we get

max
{
‖∇u∞‖L∞(�); ‖∇v∞‖L∞(�)

}

‖|u∞|�|v∞|1−�‖L∞(�)

≤ 1

R�

.
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The limit as p → ∞ in the eigenvalue problem for...

Now, let us point out that the limit for the first eigenvalue stated in Theorem 1.1 can be
also characterized as follows:

λ
1/p
1,p → λ∞ := inf max {‖∇u‖∞, ‖∇v‖∞} = 1

R�

where the inf is taken over all pairs (u, v) ∈ W 1,∞
0 (�) × W 1,∞

0 (�) such that
‖|u|�|v|1−�‖L∞(�) = 1. Indeed, to prove that

inf max {‖∇u‖∞, ‖∇v‖∞} = 1

R�

we argue as follows. First, taking u = v, we obtain that λ∞ is less or equal than the
first Dirichlet eigenvalue of −�∞ which equals 1/R�. On the other hand if (u, v) sat-
isfies ‖|u|�|v|1−�‖L∞(�) = 1 then ‖u‖L∞(�) ≥ 1 or ‖v‖L∞(�) ≥ 1. If, for example,
‖u‖L∞(�) ≥ 1, then ‖∇u‖L∞(�) ≥ 1/R� so that λ∞ ≥ 1/R�.

To prove the convergence of λ
1/p
1,p to λ∞, we use the fact that for u, v ∈ L∞(�) (indepen-

dent of p),
( ∫

�

|u|α|v|β dx
)1/p → ‖|u|�|v|1−�‖L∞(�)

as p → ∞ and argue as before.
In order to identify the limit PDE problem satisfied by any limit (u∞, v∞), we introduce

the concept of viscosity solutions to each of the equations in (1.1). Assuming that u p is
smooth enough, we can rewrite the first equation in (1.1) as

−|∇u p|p−4
(|∇u p|2�u p + (p − 2)�∞u p

) = αλ1,puα−1
p v

β
p . (2.3)

This equation is nonlinear but elliptic (degenerate); thus, it makes sense to consider viscosity
subsolutions and supersolutions of it. Let x, y ∈ R, z ∈ R

N , and S a real symmetric matrix.
We define the following continuous function

Hp(x, y, z, S) = −|z|p−4
(
|z|2trace(S) + (p − 2)〈S · z, z〉

)

−αλ1,p|y|α−2yvp(x)β .
(2.4)

Observe that Hp is elliptic in the sense that Hp(x, y, z, S) ≥ Hp(x, y, z, S′) if S ≤ S′ in the
sense of bilinear forms and also that (2.3) can then be written as Hp(x, u p,∇u p, D2u p) = 0.
We are thus interested in viscosity super- and subsolutions of the partial differential equation

{
Hp(x, u,∇u, D2u) = 0, in �,

u = 0 on ∂�.
(2.5)

Definition 2.1 An upper semicontinuous function u defined in � is a viscosity subsolution
of (2.5) if, u|∂� ≤ 0 and, whenever x0 ∈ � and φ ∈ C2(�) are such that

(i) u(x0) = φ(x0),
(ii) u(x) < φ(x), if x 
= x0,

then

Hp(x0, φ(x0),∇φ(x0), D
2φ(x0)) ≤ 0.

Definition 2.2 A lower semicontinuous function u defined in � is a viscosity supersolution
of (2.5) if, u|∂� ≥ 0 and, whenever x0 ∈ � and φ ∈ C2(�) are such that
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(i) u(x0) = φ(x0),
(ii) u(x) > φ(x), if x 
= x0,

then

Hp(x0, φ(x0),∇φ(x0), D
2φ(x0)) ≥ 0.

We observe that in both of the above definitions the second condition is required just in a
neighborhood of x0 and the strict inequality can be relaxed. We refer to [6] for more details
about general theory of viscosity solutions and to [13] for viscosity solutions related to the
∞−Laplacian and the p-Laplacian operators. The following result can be shown as in [14,
Proposition 2.4].

Lemma 2.3 A continuous weak solution to the equation
{−�pu = λα|u|α−2uvβ �,

u = 0, ∂�,
(2.6)

is a viscosity solution to (2.5).

Now, we have all the ingredients to compute the limit of the equation

Hp(x, u p,∇u p, D
2u p) = 0

as p → ∞ in the viscosity sense, that is, to identify the limit equation verified by any limit
u∞. For x, y ∈ R z ∈ R

N and S a symmetric real matrix, we define the limit operator H∞
by

H∞(x, y, z, S) = min{−〈S · z, z〉, |z| − λ∞|y|�−2yv∞(x)1−�}. (2.7)

Note that H∞(x, u,∇u, D2u) = 0 is the first equation in the system that we are looking for.

Theorem 2.4 A function u∞ obtained as a limit as p → ∞ of a subsequence of {u p}, the
first component of the eigenfunctions (u p, vp) associated with λ1,p, that is, a solution to

−�pu p = λpαuα−1
p v

β
p , is a viscosity solution of the equation

H∞(x, u,∇u, D2u) = 0, (2.8)

with H∞ defined in (2.7) and v∞ a uniform limit of vp.

Proof In the sequel, we assume that we have a subsequence pn → ∞ such that

lim
n→∞ u pn = u∞

uniformly in � and (λpn )
1/pn → λ∞. In what follows, we omit the subscript n and denote

as u p and λp such subsequences for simplicity.
We first check that u∞ is a supersolution of (2.8). To this end, we consider a point

x0 ∈ � and a function φ ∈ C2(�) such that u∞(x0) = φ(x0) and u∞(x) > φ(x) for every
x ∈ B(x0, R), x 
= x0, with R > 0 fixed and verifying that B(x0, 2R) ⊂ �. We must show
that

H∞(x0, φ(x0),∇φ(x0), D
2φ(x0)) ≥ 0. (2.9)

Let xp be a minimum point of u p −φ in B̄(x0, R). Up to a subsequence, the xp converges
to some point x∞ ∈ B̄(x0, R). Recalling that u p → u∞ uniformly in B̄(x0, R), we see that
x∞ is a minimum point of u∞ − φ so that x∞ = x0.
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In view of Lemma 2.3, u p is a viscosity supersolution of (2.5) so that

−|∇φ(xp)|p−4
(
|∇φ(xp)|2�φ(xp) + (p − 2)�∞φ(xp)

)

≥ αλ1,p|φ(xp)|α−2φ(xp)v
β
p(xp). (2.10)

Assume that φ(x0) = u∞(x0) > 0 and v∞(x0) > 0. Then for p large, φ(xp) > 0 and
vp(xp) > 0 so that the right-hand side of (2.10) is positive. It follows that |∇φ(xp)| > 0 and
then that

−
( |∇φ(xp)|2�φ(xp)

(p − 2)
+ �∞φ(xp)

)

≥
(

α
1
p

(p − 2)
1
p

(λ1,p)
1
p |φ(xp)|

α−2
p φ

1
p (xp)v

β
p
p (xp)|∇φ(xp)|−1+ 4

p

)p

.

(2.11)

Note that we have

lim
p→∞ −

( |∇φ(xp)|2�φ(xp)

(p − 2)
+ �∞φ(xp)

)
= −�∞φ(x0) < ∞. (2.12)

Hence

lim sup
p→∞

α
1
p

(p − 2)
1
p

(λ1,p)
1
p φ

α−1
p (xp)v

β
p
p (xp)|∇φ(xp)|−1+ 4

p ≤ 1.

Recalling that by assumptions α
p → � as p → +∞, we obtain

λ∞φ(x0)
�v1−�∞ (x0) ≤ |∇φ(x0)| (2.13)

and
− �∞φ(x0) ≥ 0, (2.14)

which is (2.9).
Assume now that either u∞(x0) = 0 or v∞(x0) = 0. In particular, (2.13) holds. Note

first that if ∇φ(x0) = 0 then �∞φ(x0) = 0 by definition so that (2.14) holds. We now
assume that |∇φ(x0)| > 0 and write (2.11). The parenthesis in the right-hand side goes to 0
as p → +∞ so that the right-hand side goes to 0 and (2.14) follows.

To complete the proof, it just remains to see that u∞ is a viscosity subsolution. Let
us consider a point x0 ∈ � and a function φ ∈ C2(�) such that u∞(x0) = φ(x0) and
u∞(x) < φ(x) for every x in a neighborhood of x0. We want to show that

H∞(x0, φ(x0),∇φ(x0), D
2φ(x0)) ≤ 0.

We first observe that if ∇φ(x0) = 0 the previous inequality trivially holds. Hence, let us
assume that ∇φ(x0) 
= 0. Now, we argue as follows: Assuming that

|∇φ(x0)| − λ∞φ(x0)
�v1−�∞ (x0) > 0, (2.15)

we will show that
− �∞φ(x0) ≤ 0. (2.16)
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As before, using that u p is a viscosity subsolution of (2.5), we get a sequence of points
xp → x0 such that

−
( |∇φ|2�φ(xp)

(p − 2)
+ �∞φ(xp)

)

≤
(

α1/p

(p − 2)
(λ1,p)

1/p|φ(xp)|α/pv
β/p
p (xp)|∇φ(xp)|−1+4/p

)p

.

(2.17)

Using (2.15), we get

lim sup
p→∞

(
α1/p

(p − 2)
(λ1,p)

1/p|φ(xn)|α/pv
β/p
p (xn)|∇φ(xn)|−1+4/p

)p

= 0.

Hence, we conclude (2.16) taking limits in (2.17) and we obtain that

min{−�∞φ(x0), |∇φ(x0)| − λ∞φ(x0)
�v1−�∞ (x0)} ≤ 0. (2.18)

Since we have obtained (2.9) and (2.18), the proof is now complete.

In a complete analogous way, we can prove that v∞ is a viscosity solution to

G∞(x, v,∇v, D2v) = 0

with

G∞(x, y, z, S) = min{−〈S · z, z〉, |z| − λ∞u�∞(x)|y|−� y}.

3 A mass transport approach: Proof of theorem 1.2

Now we want to put our limit for the first eigenvalue in the context of optimal mass trans-
portation. We find the interesting fact that, from this point of view, the system completely
decouples in the limit.

Lemma 3.1 Let (u p, vp) be an eigenfunction associated with λ1,p. Consider the measures

f p = uα−1
p vβ

p dx and gp = uα
pv

β−1
p dx .

Then f p, gp ∈ L
p

p−1 (�) and there exists f∞, g∞ ∈ P(�) (the space of probability measures
on �) such that up to a subsequence,

f p ⇀ f∞ and gp ⇀ g∞.

Proof We have
∫

�

f p =
∫

�

uα−1
p vβ

p dx

≤
( ∫

�

uα
pv

β
p dx

) α−1
α

( ∫

�

v
p−α
p

) 1
α

≤
( ∫

�

v
p
p

) p−α
αp |�| 1p

with
∫

�

v
p
p ≤ 1

λp,D

∫

�

|∇vp|p ≤ p
λ1,p

λp,D
.
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Here λp,D is the first eigenvalue of the p-Laplacian with Dirichlet boundary conditions.
Then

lim sup
p

(∫

�

v
p
p

) p−α
αp ≤ lim sup

p

(

p
λ1,p

λp,D

) p−α
αp ≤ 1.

Here we used that lim p→+∞(λ1,p)
1/p = lim p→+∞(λp,D)1/p = λ∞ = 1/R� and that

α
p → �. Hence

lim sup
p

∫

�

f p ≤ 1.

In an analogous way, we obtain

lim sup
p

∫

�

gp ≤ 1,

and therefore, we can extract a subsequence such that

f p ⇀ f∞ and gp ⇀ g∞,

with f∞ and g∞ nonnegative measures with total mass less or equal than one. Moreover, we
have

∫

�

f pu p =
∫

�

uα
pv

β
p dx = 1,

whence ∫

�

u∞ f∞ = 1. (3.1)

Now, we observe that, since we have

‖∇u∞‖L∞(�) ≤ 1

R�

,

we get

1

R�

= λ∞ ≤ ‖∇u∞‖L∞(�)

‖u∞‖L∞(�)

≤ 1/R�

‖u∞‖L∞(�)

and we conclude that

‖u∞‖L∞(�) ≤ 1,

and therefore, we conclude from (3.1) that the total mass of f∞ is equal to one.
In an analogous way, we obtain that g∞ is also a nonnegative probability measure on �.

Let us consider the functional Fp : C(�) × C(�) → R ∪ {+∞} defined by

Fp(u, v) =

⎧
⎪⎨

⎪⎩

∫

�

|∇u|p
pλ1,pα

+ |∇v|p
pλ1,pβ

− ( f p, u) − (gp, v) if u, v ∈ W 1,p
0 (�)

+∞ otherwise.

Here, given (u, μ) ∈ X , we denote by (μ, u) = ∫

�
u dμ.We have that (u p, vp) is aminimizer

of Fp with

lim
p→+∞ Fp(u p, vp) = −2.
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In addition, using ideas as in [5], we can show that Fp � converge to the functional F∞ given
by

F∞(u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

−( f∞, u) − (g∞, v) if u, v ∈ W 1,∞
0 (�),

and ‖∇u‖L∞(�), ‖∇v‖L∞(�) ≤ λ∞,

+∞ otherwise.

Then, (u∞, v∞) is a minimizer of F∞ with

F∞(u∞, v∞) = −2.

Now let X = C(�) × M(�) and we consider the functional G∞ : X × X → R∪ {+∞}
defined by

G∞((u, σ ), (v, τ )) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∫

�
uσ − ∫

�
vτ if

u, v ∈ W 1,∞
0 (�),

‖∇u‖L∞(�) ≤ λ∞,

‖∇u‖L∞(�) ≤ λ∞,

σ, τ ∈ M(�),
∫ |σ | ≤ 1,

∫ |τ | ≤ 1
+∞ otherwise.

Since (u∞, v∞) is a minimizer of F∞ and we have (μ, u) ≤ 1 for any pair (u, μ) ∈ X
such that ‖∇u‖L∞(�) ≤ λ∞ = 1/R� (note that this fact implies that ‖u‖L∞(�) ≤ 1) and∫ |μ| ≤ 1, we obtain that ((u∞, f∞), (v∞, g∞)) is a minimizer of G∞ and

2 = max −G∞((u∞, f∞), (v∞, g∞))

= max
σ,τ∈P(Ū )

sup
‖∇u‖∞,‖∇u‖∞≤λ∞

(σ, u) − χC (u) + (τ, v) − χC (v)

where χC (u) = 0 if u = 0 on ∂� and +∞ otherwise. We then infer that

2

λ∞
= 2 max

σ∈P(Ū )
sup

‖∇u‖L∞(�)≤λ∞
(σ, u) − χC (u)

= 2 max
σ∈P(Ū )

W1(σ, P(∂U )) = 2

λ∞,D

using the computations in [5] to justify the two last equalities. Here λ∞,D = 1/R� is the
first eigenvalue for the infinity Laplacian, and W1(·, ·) stands for the Monge–Kantorovich
distance, see [20] for its definition and properties. We thus recover from these computations,
as expected, that the limit of (λ1,p)

1/p , λ∞, is the first eigenvalue of �∞ with Dirichlet
boundary conditions.

We want to highlight the fact that the limit pair (u∞, v∞) together with the limit pair of
measures ( f∞, g∞) gives a solution to a variational problem (minimize the functional G∞)
that is clearly uncoupled.

4 Higher eigenvalues: Proof of theorem 1.3

We have assumed that there is a constant, C , independent of p such that, for p large,

(λn,p)
1/p ≤ C.
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The limit as p → ∞ in the eigenvalue problem for...

Recall also that we have normalized the eigenvalues according to
∫

�

|u p|α|vp|β = 1.

This implies
(∫

�

|∇u p|p
)1/p

= (λn,p)
1/pα1/p ≤ C

and analogously
(∫

�

|∇vp|p
)1/p

= (λn,p)
1/p(β)1/p ≤ C

for large p. Hence, for p large, we have

max
{‖∇u p‖L p(�); ‖∇vp‖L p(�)

} ≤ C,

with C independent of p.
Hence, arguing as in the proof of Theorem 1.1, we can extract a subsequence p j → ∞ if

necessary, such that

u p ⇀ u∞

weakly in W 1,r (�) for any 1 < r < ∞ and uniformly in �. In addition, we get that
u∞ ∈ W 1,∞(�). Analogously, we obtain that

vp ⇀ v∞

weakly in W 1,r (�) for any 1 < r < ∞ and uniformly in �, with v∞ ∈ W 1,∞(�).
Now our aim is to show that u∞ is a viscosity solution to (1.9). Fix x0 ∈ �. First we

consider the case u∞(x0) > 0. Then there exits ρ > 0 such that u p j > 0 in Bρ(x0) for all
p j sufficiently large, and we may proceed as in the case of the first eigenvalue, to conclude
that

min{−�∞u∞, |∇u∞| − �u�∞|v∞|1−�} = 0.

The case u∞(x0) < 0 is similar, but we have to reverse the inequalities.
Finally for the case u∞(x0) = 0, we argue as follows. Let φ be such that u∞ − φ has a

strict local maximum at x0. Since u p j → u∞ uniformly, there exists a sequence x j → x0
such that u p j − φ has a local maximum at x j . Hence, assuming that ∇φ(x0) 
= 0, we get

−
( |∇φ|2�φ(xn)

(p − 2)
+ �∞φ(xn)

)

≤
(

α1/p

(p − 2)
(λ1,p)

1/p|φ(xn)|α/pv
β/p
p (xn)|∇φ(xn)|−1+4/p

)p

. (4.1)

Now we observe that

α1/p

(p − 2)
(λ1,p)

1/p|φ(xn)|α/pv
β/p
p (xn)|∇φ(xn)|−1+4/p → 0

as p → ∞ and we conclude that

−�∞φ(x0) ≤ 0.
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Note that this inequality holds trivially when ∇φ(x0) = 0. This shows that u∞ is a viscosity
subsolution to −�∞u = 0.

The fact that it is also a supersolution can be deduced considering −u∞ and repeating the
previous argument.

Remark 4.1 The condition (λn,p)
1/p ≤ C holds, for example, for the eigenvalues constructed

using topological arguments in [15]. In fact, let us consider

λm,p = inf
K∈Km

sup
(u,v)∈K

Qp(u, v)

where Km is the class of compact symmetric (K = −K ) subsets of W 1,p
0 (�) × W 1,p

0 (�)

of genus greater or equal than m. For such an eigenvalue λm,p , it holds that there exists a
constantC independent of p such that (λm,p)

1/p ≤ C . To see this fact, it is enough to consider
the union of m disjoints balls of radius r , Bi , inside � and as K the set {span(φ1, . . . , φm) ∩
S1 × {∑i φi }}, where φi is an eigenfunction of the p-Laplacian in the ball Bi ⊂ � and S1
denotes the unit ball in W 1,p

0 (�). Such set K has genus m and we have

sup
(u,v)∈K

Qp(u, v) = sup
(u,v)∈K

∫

�

|∇u|p
p

+
∫

�

|∇v|p
p

∫

�

|u|α|v|β
≤ 2m

p
λ1(Bi ),

where λ1(Bi ) is the first eigenvalue of the p-Laplacian in Bi . Now we just note that from
the results in [12] it follows that (λ1(Bi ))1/p is bounded independently of p and we obtain
the desired uniform in p bound for the eigenvalues constructed using the genus argument at
level m, (λm,p)

1/p ≤ C .

Acknowledgments JDRwas partially supported byMECMTM2010-18128 andMTM2011-27998 (Spain).
Part of this work was done during a visit of JDR to Univ. libre de Bruxelles. He wants to thank for the very nice
and stimulating atmosphere found there. DB is supported by INRIA— Team MEPHYSTO, MIS F.4508.14
(FNRS), PDR T.1110.14F (FNRS) & ARC AUWB-2012-12/17-ULB1-IAPAS.

References

1. Aronsson, G., Crandall, M.G., Juutinen, P.: A tour of the theory of absolutely minimizing functions. Bull.
Am. Math. Soc. 41, 439–505 (2004)

2. Bhattacharya, T., DiBenedetto, E., Manfredi, J.J.: Limits as p → ∞ of �pu p = f and related extremal
problems. Rend. Sem. Mat. Univ. Politec. Torino 1991, 15–68 (1989)

3. Boccardo, L., de Figueiredo, D.G.: Some remarks on a system of quasilinear elliptic equations. Nonlinear
Differ. Equ. Appl. 9, 309–323 (2002)

4. Caselles, V., Morel, J.M., Sbert, C.: An axiomatic approach to image interpolation. IEEE Trans. Image
Process. 7, 376–386 (1998)

5. Champion, T., De Pascale, L., Jimenez, C.: The ∞-eigenvalue problem and a problem of optimal trans-
portation. Commun. Appl. Anal. 13(4), 547–565 (2009)

6. Crandall,M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential
equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

7. García-Azorero, J., Manfredi, J.J., Peral, I., Rossi, J.D.: The Neumann problem for the ∞-Laplacian and
the Monge–Kantorovich mass transfer problem. Nonlinear Anal. 66, 349–366 (2007)

8. Garcia-Azorero, J., Manfredi, J.J., Peral, I., Rossi, J.D.: Steklov eigenvalue for the ∞-Laplacian. Rendi-
conti Lincei 17(3), 199–210 (2006)

9. Fleckinger, J.,Mansevich, R.F., Stavrakakis, N.M., de Thlin, F.: Principal eigenvalues for some quasilinear
elliptic equations on Rn . Adv. Differ. Equ. 2(6), 981–1003 (1997)

123



The limit as p → ∞ in the eigenvalue problem for...

10. Hynd, R., Smart, C.K., Yu, Y.: Nonuniqueness of infinity ground states. Calc. Var. PDE. 48(3), 545–554
(2013)

11. Juutinen, P., Lindqvist, P.: On the higher eigenvalues for the ∞- eigenvalue problem. Calc. Var. Partial
Differ. Equ. 23(2), 169–192 (2005)

12. Juutinen, P., Lindqvist, P., Manfredi, J.J.: The ∞-eigenvalue problem. Arch. Ration. Mech. Anal. 148,
89–105 (1999)

13. Juutinen, P.-, Lindqvist, P., Manfredi, J.J.: On the equivalence of viscosity solutions and weak solutions
for a quasilinear equation. SIAM J. Math. Anal. 33(3), 699–717 (2001)

14. Manfredi, J.J., Rossi, J.D., Urbano, J.M.: p(x)Inst Henri Poincaré. C. Anal. Non Linéaire. 26(6), 2581–
2595 (2009)

15. de Napoli, P.L., Pinasco, J.P.: Estimates for eigenvalues of quasilinear elliptic systems. J. Differ. Equ.
227, 102–115 (2006)

16. Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B.: Tug-of-war and the infinity Laplacian. J. Am. Math.
Soc. 22, 167–210 (2009)

17. Peres, Y., Sheffield, S.: Tug-of-war with noise: a game theoretic view of the p-Laplacian. Duke Math. J.
145, 91–120 (2008)

18. Rossi, J.D., Saintier, N.: On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary
conditions. Houston J. Math. (to appear)

19. Rossi, J.D., Saintier, N.: The limit as p → +∞ of the first eigenvalue for the p-Laplacian with mixed
Dirichlet and Robin boundary conditions. Nonlinear Anal. 119, 167–178 (2015)

20. Villani, C.: Optimal transport, old and new, Grundlehren der Mathematischen Wissenschaften, 338.
Springer, Berlin (2009)

21. Yu,Y.: Some properties of the ground sates of the infinity Laplacian. IndianaUniv.Math. J. 56(2), 947–964
(2007)

22. Zographopoulos, N.: p-Laplacian systems at resonance. Appl. Anal. 83(5), 509–519 (2004)

123


	The limit as ptoinfty in the eigenvalue problem  for a system of p-Laplacians
	Abstract
	1 Introduction
	2 Proof of Theorem 1.1
	3 A mass transport approach: Proof of theorem 1.2
	4 Higher eigenvalues: Proof of theorem 1.3
	Acknowledgments
	References




