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Abstract In this paper, we study the behavior as p — o0 of eigenvalues and eigenfunctions
of a system of p-Laplacians, that is

—Apu =rau" P Q,
—Apv = ABuPl Q,
u=v=0, 082,

in a bounded smooth domain Q2. Here « 4+ 8 = p. We assume that % — T" and % —1-T
as p — oo and we prove that for the first eigenvalue 1, , we have

1
max,eg dist(x, 9Q)

()\l,p)]/p — Aoo =

Concerning the eigenfunctions (u, v,) associated with A1, normalized by fQ lup|*v, |# =
1, there is a uniform limit (¢4, Vo) that is a solution to a limit minimization problem as well
as a viscosity solution to

min{—Aclioo, |Vitoo| — Aot vlsT} =0,
min{—Ax Voo, |VUso| — )»oougovéo_r} =0.

In addition, we also analyze the limit PDE when we consider higher eigenvalues.
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1 Introduction

In this paper, we deal with nonnegative weak or viscosity solutions to the following elliptic
problem
—Apu = o~ h o Q,

—Apv = rputvPl Q@ (1.1)
u=v=0, 092,

when p is large. Here p > 1, Ayu = div(|Vu|?~2Vu) is the well-known p-Laplacian
operator, 2 is a smooth bounded domain in RV, and « and B are real numbers greater or
equal than one and verify

a+ B =p. (1.2)

The limit of p-harmonic functions, that is, of solutions to —A ,u = —div(|Vul|? “2Vu) =
0, as p — oo has been extensively studied in the literature (see [2] and the survey [1]) and
leads naturally to solutions of the infinity Laplacian, given by — Aqout = —VuD>u(Vu)' = 0.
Infinity harmonic functions (solutions to —As.u = 0) are related to the optimal Lipschitz
extension problem (see the survey [1]) and find applications in optimal transportation, image
processing and tug-of-war games (see, for example, [4,7,16,17] and the references therein).
Also limits of the eigenvalue problem related to the p-Laplacian with various boundary
conditions have been exhaustively examined, see [8,11,12,18,19], and lead naturally to the
infinity Laplacian eigenvalue problem (in the scalar case)

min {|Vu|(x) — Au(x), —Asu(x)} =0. (1.3)

In particular, the limit as p — oo of the first eigenvalue A, p of the p-Laplacian with
Dirichlet boundary conditions and of its corresponding positive normalized eigenfunction
u , has been studied in [11,12]. It was proved there that, up to a subsequence, the u, converges
uniformly to some Lipschitz function u, satisfying ||~ ||cc = 1 and that

\% 1
of I “”oo:i, (1.4)
uew!l=@) |ulleo Rg

()\p,D)l/p — Aoo,D =

where R = max,cq dist (x, 082). Moreover 1, is an extremal for this limit variational
problem, and the pair #~o, Aoo, p 1S @ nontrivial solution to (1.3). This problem has also been
studied from an optimal mass transport point of view in [5].

On the other hand, there is a rich recent literature concerning eigenvalues for systems of
p-Laplacian type, (we refer, for example, to [3,9,15,22] and references therein), but there
does not seem to be, to our knowledge, work concerning their asymptotic behavior as p goes
to infinity. The purpose of this paper is to initiate such work by considering the asymptotic
behavior of the first eigenvalue A, of the simple system of p-Laplacian type (1.1).
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The limit as p — oo in the eigenvalue problem for...

Existence of weak solutions to (1.1) can be easily obtained from a variational argument,
see [15]. In fact, we just have to look for a minimizer of the quotient

/ [Vul? / [Vvl?
_|_
Q P Q P

A,p= min Qp,(u,v) where Q,u,v)= (1.5)
S, [ wieiol?
Q
in§, = Wé P(Q) x WO1 "7 (Q) to obtain the first eigenvalue 11, whose associated pair

of eigenfunctions (u,, v,) is nonnegative. Note that, up to our knowledge, except in the
symmetric case « = 8 where we recover the first eigenfunction of the p-Laplacian, it is not
known that the first eigenvalue (1.5) is simple as it happens for a single equation.

Theorem 1.1 Let (up, v,) be a minimizer in (1.5) normalized by

/ lupl*|vplP =1, (1.6)
Q

Assume that

o
— =T as p — oo

4

with 0 < I' < 1 (in view of (1.2), this implies that % — 1 =T as p — o0). Then, there
exist functions ueo, Voo € C(Q) and a sequence p j — 00 such that

Up; —> Uoos and Up;, —> Voo,
uniformly in Q. In addition,

1

Rq
where Rq is the radius of the largest ball included in 2 that is

O )P = hoo =

Rq = maxdist(x, 092).
xeQ

The limit pair of functions (Uso, Voo) belongs to S = W(}’OO(Q) X Wé’oo(Q) and is a
minimizer for the limit variational problem defined by

max {[|Vull )3 1Yol
min  Q(u,v) = in
(.0) €S W v)ESx el o'l oo

(1.7)

In addition, (U0, Vo) IS a viscosity solution to the following limit eigenvalue problem
min{—Aslioo, |Vitoo| — AoottvlsT} =0,
(1.8)
min{—A s Veo, |VUso| — Aoougovéo_r} =0.

where Aoou = szzl 0;jud;ud;ju is the oo-Laplacian of u.
Remark that the limit of (Al,p)l/p as p — ooisgivenby Ao = R—IQ. This is the same limit
as the one for the first eigenvalue for the usual p-Laplacian (that is, for a single equation not
for a system) and is known as the first eigenvalue for the co—Laplacian, see [12]. Hence, we

have the surprising (except in the symmetric case @ = f) fact that the first eigenvalue for the
system converges to the same limit as for a single equation.
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In addition, when €2 is a ball of radius R, we have that there is a unique minimizer of

Ao = inf . I Vull Loo (@)

ueWy > (Q) lullpoo g
case, it can be proved that the limit of u, and v, coincides and is given exactly by the same
cone c(x). Hence, we conclude that for the ball the first eigenvalue is associated with a pair
of eigenfunctions that are quite close to each other for p large.

Notice that any minimizer («, v) of (1.7) must satisfy | Vu| o = ||VV| - Indeed assume,
for example, that |Vu|l < [|[Vv| - It is then easily checked that we can decrease the
quotient in (1.7) by considering a pair (# + ¢, v) where ¢ > 0 is small and ¢ € C°(Q)
satisfies ¢ (xo) = 1 for some maximum point xg of |u I"|v]'~T. However we cannot assert
that in general any minimizer (u, v) satisfies u = v. To see this, notice first that if # and v
are nonnegative minimizer for Ao p in (1.4) that attain their maximum at the same point,
then (u, v) is minimizing. It follows in particular that (u, u) is minimizing for any minimizer
u of Aso, p. However it is not known in general whether Ao p is simple. It is the case, for
instance, for a ball, an annulus and a stadium (the unique eigenvalue is then the function
dist (x, 0€2)—see [21]) but not for the planar dumbbell domain B(5¢;, 1) U R U B(—5e;, 1)
recently considered in [10] (here e; = (1,0) and R = (-5, 5) x (-4, §) with § > O small).
Indeed the authors there proved the existence of a nonnegative normalized eigenvalue v for
Aoo,p minimizing the quotient in (1.4) with u(5, 0) = 1, but which is not symmetric in the
second coordinate and therefore is not equal to an eigenvalue u obtained as a limit of positive
normalized eigenvalues for the p-Laplacian. Since u and v attain their maximum value 1
both at the same point (5, 0), the pair («, v) is minimizing in (1.7).

Notice eventually that we cannot assert that A, is the smallest positive A such that the
equation (1.8) has a nonnegative viscosity solution (u, v). This seems to be a nontrivial
problem due to the lack of comparison principle for a system like (1.8) and also to the fact
that, the infinity norm being non-differentiable, we cannot affirm that a solution of (1.8) is a
critical point of Q.

Next, we show that the limits of the eigenfunctions of the first eigenvalue verify an uncou-
pled problem. To show this fact, we use ideas from optimal mass transportation, see [5], [18]
for similar ideas and [20] for basic concepts and definitions.

that is given by the cone c¢(x) = R — |x|. Therefore, in this

Theorem 1.2 Under the same conditions of Theorem 1.1, consider the measures f, =

u‘;‘," vg dxandg, = u‘?‘,vﬁfl dx. Then, there exists foo, 8oo € P(Q) (the space of probability

measures on S2) such that up to a subsequence,
fpdx = foo and  gpdx — geo.

In addition, we have that (Uco, foo)s (Vsos €oo)) IS a minimizer of the functional G
given by

u, v € Wy (),
VullLe@) <Aoo,
— Jguo — [gut  if [[Vullpo@) < Aoos
0,1 € M(Q),
Jlol<L [lrl <1

+o00 otherwise.

GOO((uv U)s (U, t)) =

Concerning higher eigenvalues, we have the following result: For (1.1) with fixed p,
o, B, it can be proved using topological arguments that there is a sequence of eigenvalues
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The limit as p — oo in the eigenvalue problem for...

An,p — 00 with eigenfunctions (u,, v,) that change sign in 2. Note that since solutions
change sign we have to write #® as |u|*~'u and analogously for v in (1.1). The next result
finds the associated limit PDE as p — oo.

Theorem 1.3 Let A, , be a sequence of eigenvalues with corresponding eigenfunctions

(up, vp) normalized by
IRt
Q

o
— =T as p — 0o
14

and assume that

with0 < T < 1 [note that (1.2) implies that % — 1 —T as p — oo]. If there is a constant
C independent of p such that

(Oon,p)'/P < C,
then, there exists a sequence p; — oo such that

()\n’pj)l/Pj = A
and

Up:

;= Uoos and Up; = Voo,

uniformly in Q. The limit pair of functions (iso, Voo) belongs to Soo = WOI’OO(Q) X WOI’OO(Q)
and is a viscosity solution to the following limit eigenvalue problem

min{—Acolico, |Viteo| — Augo|voo|l_r} =0, ifuce >0,
—Asollos = 0, if hooVoo = 0, (1.9)
max{—Acolloo, —|Viteo| — Aul [oo' T} =0,  iftoovoo <0,

together with the analogous equation that holds for v.

The condition (A, ,,)1/ P < C holds, for example, for the eigenvalues constructed using
topological arguments in [15]. We remark that it is not known whether this set of eigenvalues
exhausts the whole spectrum. Therefore, we prefer to state our result assuming (A, ) I/r < ¢
and let A, , be any possible eigenvalue.

The paper is organized as follows: In Sect. 2, we prove Theorem 1.1, in Sect. 3, we collect
some extra remarks concerning the limit problem for the first eigenvalue and we prove
Theorem 1.2, and finally, in Sect. 4, we deal with higher eigenvalues and prove Theorem 1.3.

2 Proof of Theorem 1.1

1/p
Lp
w € WH(Q) that is a first eigenfunction for the co—Laplacian normalized according to

lw|loe (@) = 1. This function verifies

We first look for a uniform bound for A,’". To this end, let us consider a Lipschitz function

1
Vwl| e~ = —.
IVwll Lo () Ro
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Using the pair (w, w) € S as a test function in (1.5) to estimate A, ,, we obtain

(2)‘/” IVwlir@) _ IVwliee 1 o
p lwlizr ) lwllzoo () Rq

lim sup(r1,,)"/? < lim sup
p—>o p—>00

Therefore, there is a constant, C, independent of p such that, for p large,
rp'? <cC.

Recalling that (up, v,) is a minimizer for A1, , normalized by (1.6), we have that

/|Vup|p+/|vvp|p:[7)hl,p,
Q Q

from which we deduce with (2.1) that

. . 1
limsup [Vu,llir) < ——  and limsup [[VvpllLr) < . 2.2)
p——+00 RQ p—>+00 RQ

Now, we argue as follows. We fix r € (1, co). Using Holder’s inequality, we obtain for
p > r large enough that

1/r 1/p o
(/ |Vup|r) 5(/ IVuplp) Q-7 <C.
Q Q

Hence, extracting a subsequence p; — oo if necessary, we have that
Up = lloo

weakly in wLr(Q) for any 1 < r < oo and uniformly in Q. From (2.2), we obtain that this

weak limit verifies
A el
Vol =< .
Q Rq

As we can assume that the above inequality holds for every r (using a diagonal argument),
we get that u, € WI'OO(Q), and moreover, taking the limit as r — oo, we obtain

1
|Vlloo| < R7’ ae. x € Q.
Q

Analogously, we obtain the existence of a function ve, € W1 (Q) satisfying
Vp = Voo

weakly in W1/ (Q) for any 1 < r < oo and uniformly in , with
1
\Y < —, £.x € Q.
[Viuso| < Ro a.e. x

From the uniform convergence and the normalization condition (1.6), we obtain that
r 1-T
Mool ool ™ L) = 1.

Therefore, we get

max {||V”oo||L°O(Q)§ [ Vvso ||L°°(Q)]

1
<
T, =T =
ol Vool ™ llLe(g) Rg
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The limit as p — oo in the eigenvalue problem for...

Now, let us point out that the limit for the first eigenvalue stated in Theorem 1.1 can be
also characterized as follows:
30 = oo = inf max {|Vaelloo, IV0loo} = ——
P Ro
where the inf is taken over all pairs (u,v) € W&’OO(Q) X WOI’OO(Q) such that
)" [v]' =T || Lo (@) = 1. Indeed, to prove that

inf max {||Vi|loo, |VV|loo} = —

Rq
we argue as follows. First, taking # = v, we obtain that Ay, is less or equal than the
first Dirichlet eigenvalue of —A, which equals 1/Rg. On the other hand if (u, v) sat-
isfies [||u|" [v]' T ||zoo(@) = 1 then |ullo@) > 1 or [v]Le > 1. If, for example,

||u||LOO(Q) > 1, then ||Vu||LOC(Q) > I/RQ so that Ao > I/RQ.
To prove the convergence of k%/ 1]77 to Aoo, We use the fact that for u, v € L°°(2) (indepen-
dent of p),

1/p _
(/Q|u|“|v|ﬁdx) =l ol )

as p — oo and argue as before.

In order to identify the limit PDE problem satisfied by any limit (¢, Vso), We introduce
the concept of viscosity solutions to each of the equations in (1.1). Assuming that u, is
smooth enough, we can rewrite the first equation in (1.1) as

—Vip [P~ (Viep P Ay + (p = 2) Aoot) = et pu~ vl 2.3)

This equation is nonlinear but elliptic (degenerate); thus, it makes sense to consider viscosity
subsolutions and supersolutions of it. Let x, y € R, z € RY, and S a real symmetric matrix.
We define the following continuous function

Hy(x,y,z,8) = —IZIP*4(|z|2trace(S) +(p—2)(S -z, z)) 2.4)
- Of}hl,p|y|a72yvp(x)ﬁ~

Observe that H), is elliptic in the sense that H, (x, y,z, S) = H,(x, y,z, §)if § < §"in the
sense of bilinear forms and also that (2.3) can then be written as H, (x, u ,, Vu,, D*u,) = 0.
We are thus interested in viscosity super- and subsolutions of the partial differential equation

(2.5)

Hy(x,u, Vu, Dzu) =0, inQ,
u=>~0 on 0€2.

Definition 2.1 An upper semicontinuous function u defined in Q2 is a viscosity subsolution
of (2.5) if, u|yq < 0 and, whenever xg € 2 and ¢ € C2%() are such that

(i) u(xo) = ¢(x0),
(i) u(x) < ¢(x),if x # xo,

then
H,y(x0, ¢(x0), Vo (x0), D*¢p(x0)) < 0.

Definition 2.2 A lower semicontinuous function u defined in 2 is a viscosity supersolution
of (2.5) if, u|sq > 0 and, whenever xo € Q and ¢ € C%(2) are such that

@ Springer



D. Bonheure et al.

(i) u(xo) = ¢(xo),
(i) u(x) > ¢(x),if x # xo,

then
H,(x0, ¢(x0), Vo (x0), D*¢p(x0)) > 0.

We observe that in both of the above definitions the second condition is required just in a
neighborhood of xo and the strict inequality can be relaxed. We refer to [6] for more details
about general theory of viscosity solutions and to [13] for viscosity solutions related to the
oo—Laplacian and the p-Laplacian operators. The following result can be shown as in [14,
Proposition 2.4].

Lemma 2.3 A continuous weak solution to the equation
—Apu = relul*2uwf  Q,
u=0, %2,

2.6)

is a viscosity solution to (2.5).

Now, we have all the ingredients to compute the limit of the equation
Hy(x,up, Vu,, D*up) =0

as p — oo in the viscosity sense, that is, to identify the limit equation verified by any limit
Uso- FOorx,y e Rz € RN and S a symmetric real matrix, we define the limit operator Hs
by

Hoo(x, y,2,8) = min{—(S - z, 2), |z] — Aooly|" 2 yvo(x)' 7T} 2.7)

Note that Hyo (x, u, Vu, D2u) = 0 is the first equation in the system that we are looking for.

Theorem 2.4 A function uo obtained as a limit as p — 00 of a subsequence of {up}, the

first component of the eigenfunctions (up, v,) associated with A1 p, that is, a solution to
a—1

B . . . . .
b Up, Is aviscosity solution of the equation

—Apup = Apau
Heoo(x, u, Vu, D*u) = 0, (2.8)

with Heo defined in (2.7) and voo a uniform limit of v),.

Proof In the sequel, we assume that we have a subsequence p,, — oo such that

iy, =
uniformly in €2 and (A pn)]/ Pn.— )\~o. In what follows, we omit the subscript n and denote
as u, and X, such subsequences for simplicity.

We first check that us, is a supersolution of (2.8). To this end, we consider a point
xo € 2 and a function ¢ € C2(2) such that 1o (x0) = ¢ (x0) and o (x) > ¢ (x) for every
x € B(xp, R), x # x0, with R > 0 fixed and verifying that B(xg, 2R) C 2. We must show
that

Hoo (x0. ¢ (x0). Ve (x0), D*¢ (x0)) > 0. (2.9)

Let x,, be a minimum point of u, — ¢ in B(xo, R). Up to a subsequence, the X, converges
to some point xo, € B(xg, R). Recalling that u,, — u, uniformly in B(xg, R), we see that
Xoo 18 @ minimum point of #s, — ¢ so that x5, = xg.
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The limit as p — oo in the eigenvalue problem for...

In view of Lemma 2.3, u, is a viscosity supersolution of (2.5) so that

Vo)1 (V0 0p)PAG () + (p = 2) A ()
> ki pld (xp)|* 2P (rp)h (xp). (2.10)

Assume that ¢ (xg) = ueo(xp) > 0 and v (xg) > 0. Then for p large, ¢(x,) > 0 and
vp(xp) > 0 so that the right-hand side of (2.10) is positive. It follows that [V¢ (x,)| > 0 and
then that

2
(TP |y )
(p—2)
0‘% 1 a2 1 B et P 2.11)
2(1()\1,p)1’|¢(xp)| PGP (xp)vp (xp) IV (x))] p) )
(p—=2)»r

Note that we have

lim —(W + A () = ~Acc(x0) <00, (212)
Hence
% 1 -1 B 4
lim sup 0TS (pE IV T < 1
P (p—2)7

Recalling that by assumptions % — I"as p — 400, we obtain

Moo (x0) 25T (x0) < [V (x0)] (2.13)

and
— Aot (x0) >0, (2.14)

which is (2.9).

Assume now that either 1o (xg) = 0 or veo(xg) = 0. In particular, (2.13) holds. Note
first that if V¢ (xg9) = 0 then Ay (xp) = 0 by definition so that (2.14) holds. We now
assume that [V¢ (xg)| > 0 and write (2.11). The parenthesis in the right-hand side goes to 0
as p — —+oo so that the right-hand side goes to 0 and (2.14) follows.

To complete the proof, it just remains to see that u, is a viscosity subsolution. Let
us consider a point xo € €2 and a function ¢ € C%(Q) such that uss(xg) = ¢ (x0) and
Uso(Xx) < ¢(x) for every x in a neighborhood of xg. We want to show that

Hoo(x0, $(x0), Vo (x0), D*¢(x0)) < 0.

We first observe that if V¢ (xg) = 0 the previous inequality trivially holds. Hence, let us
assume that V¢ (xg) # 0. Now, we argue as follows: Assuming that

IV (x0)| — Aoot (x0) v 15T (x0) > 0, (2.15)

we will show that
— Ao (x0) < 0. (2.16)

@ Springer



D. Bonheure et al.

As before, using that u, is a viscosity subsolution of (2.5), we get a sequence of points
X, — xo such that

Vo2 A
~(ROEEOE) 4 i)
; O_[l/])) p (2.17)
= ((p _ 2) ()‘l,P)l/pM)(xp)|a/pvﬁ/p(xp)|V¢(xp)|fl+4/p) ]

Using (2.15), we get

: allP 1 a/p. BIp i)
hmsup((p_z)()\l,p) Pl (xn)| pvp () IV (xn)| p) =0.

pP—>00

Hence, we conclude (2.16) taking limits in (2.17) and we obtain that

min{—Aso (x0). |V (x0)| — Ao (x0) v " (x0)} < 0. (2.18)
Since we have obtained (2.9) and (2.18), the proof is now complete.
In a complete analogous way, we can prove that v, is a viscosity solution to
Goo(x, v, Vv, D*v) =0
with

Goo(x, ¥, 2,8) = min{—(S - 2, 2), |z] — Aoottr, () ]y| " y}.

3 A mass transport approach: Proof of theorem 1.2

Now we want to put our limit for the first eigenvalue in the context of optimal mass trans-
portation. We find the interesting fact that, from this point of view, the system completely
decouples in the limit.

Lemma 3.1 Let (up, vy) be an eigenfunction associated with 11 ,,. Consider the measures
fr= u‘;_lvg dx and g, = u‘;vg_l dx.

Then fp, 8p € L% (R) and there exists f~o, goo € P(RQ) (the space of probability measures
on Q) such that up to a subsequence,

fp_\foo and 8p — 8oo-
Proof We have

with

1 A
/ ol < T/ Vul? < p2he
Q p.D JQ Ap.D
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The limit as p — oo in the eigenvalue problem for...

Here X, p is the first eigenvalue of the p-Laplacian with Dirichlet boundary conditions.
Then

. p % . )‘1,17 %
lim sup vp <limsup { p—— <1
p Q P Ap.D

Here we used that limpﬁﬂo(xl,p)l/ﬂ = limp%Jroo(A,,,D)l/P = Aso = 1/Rgq and that

% — I'. Hence

limsup/ fp =1L
p Q

In an analogous way, we obtain

limsup/gp <1,
p Q

and therefore, we can extract a subsequence such that

fr — [ and 8p — 8oo>

with f and g nonnegative measures with total mass less or equal than one. Moreover, we

have
/ foup :/ u‘;‘,v]édx =1,
Q Q

/ oo foo = 1. 3.1)
Q

whence

Now, we observe that, since we have

1
Vu 00 < —,
VuolliLo@) < Re

we get
1 IVucollLoeo(e) - 1/Rgq

— =Ax < =
Rq lucoll oo () ltcollLoo ()

and we conclude that

ltoollLoo() < 1,

and therefore, we conclude from (3.1) that the total mass of f, is equal to one.
In an analogous way, we obtain that g, is also a nonnegative probability measure on 2.

Let us consider the functional F), : C (Q) x C(Q) = R U {+o0} defined by

[VulP [Vu|? . Lp
A + N _(prl)_(gp,U) 1fM,U€WO (Q)
Fp(u,v) = Q PAipa  phiipp
+00 otherwise.

Here, given (1, n) € X, wedenoteby (u, u) = fQ u du. We have that (u,, v,) is aminimizer
of F), with

lim F , = -2
pooo ptp, vp)
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In addition, using ideas as in [5], we can show that F, I" converge to the functional F, given
by

—(foor 1) = (go0s V) ifu, v € Wy ™ (),
Foo(u,v) = and [|[Vull =), IVVlLo@) < Aco,
400 otherwise.
Then, (400, Vo) 1s @ minimizer of F, with
Foo(Uoo, Vo) = —2.

Now let X = C(Q) x M(S2) and we consider the functional G, : X x X — R U {400}
defined by

u, v € Wy ™ (),
IVl ro@) < Aoos
if [Vullze@) < Ao,
o, 7€ M(Q),
Jlol <1, [lrl <1

| +00 otherwise.

Goolw, o), (v, 7)) = | ~Jao = Javr

Since (400, Voo) 1S @ minimizer of F, and we have (u, u) < 1 for any pair (u, n) € X
such that [|[Vu|| @) < Ao = 1/Rgq (note that this fact implies that |[u| <) < 1) and
f || < 1, we obtain that (oo, foo), (Voo, €o0)) is @ minimizer of G, and

2 =max —Goo((Ueo, foo)s (Voos &o0))

= max_ sup (o, u) = xc W) + (t,v) — xc(v)
0, 1€PU) [[Vtlloo, [ Vitlloo koo

where xc(u) = 0 if u = 0 on 92 and +o00 otherwise. We then infer that
2

Z =2 max sup (o, u) — xc(u)
A oo o€P(U) || Vull oo @) <hoo
2
=2 max Wi(o, P(OU)) = ——
oeP(0) Moo, D

using the computations in [5] to justify the two last equalities. Here Ao, p = 1/Rg is the
first eigenvalue for the infinity Laplacian, and W (-, -) stands for the Monge—Kantorovich
distance, see [20] for its definition and properties. We thus recover from these computations,
as expected, that the limit of (A, p)‘/ P Ao, 18 the first eigenvalue of Ay, with Dirichlet
boundary conditions.

We want to highlight the fact that the limit pair (#so, Voo) together with the limit pair of
measures (fxo, goo) gives a solution to a variational problem (minimize the functional G )
that is clearly uncoupled.

4 Higher eigenvalues: Proof of theorem 1.3

We have assumed that there is a constant, C, independent of p such that, for p large,

)P < C.
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Recall also that we have normalized the eigenvalues according to

/ ol = 1.
Q

1/p
(/ |Vup|") = ()PP < C
Q

1/p
(/ |va|”) = O p)P(BVP < C
Q

for large p. Hence, for p large, we have

This implies

and analogously

max {|Vu,llr@): IVpllre} < C,

with C independent of p.
Hence, arguing as in the proof of Theorem 1.1, we can extract a subsequence p; — oo if
necessary, such that

Up = Uoo
weakly in W17 () for any 1 < r < oo and uniformly in . In addition, we get that
oo € WH(Q). Analogously, we obtain that

vy — Vo

weakly in whr () for any 1 < r < oo and uniformly in €2, with v, € whoe(Q).

Now our aim is to show that u, is a viscosity solution to (1.9). Fix xo € . First we
consider the case us(xg) > 0. Then there exits p > 0 such that u p; > 0 in B, (xo) for all
p; sufficiently large, and we may proceed as in the case of the first eigenvalue, to conclude
that

min{—Anoltoo, |Viteo| — Al |vse|' T} = 0.

The case uoo (xg) < 0 is similar, but we have to reverse the inequalities.

Finally for the case ux(xg) = 0, we argue as follows. Let ¢ be such that u, — ¢ has a
strict local maximum at xg. Since u pj = Uoo uniformly, there exists a sequence x; — xo
such that u,; — ¢ has a local maximum at x;. Hence, assuming that V¢ (xo) # 0, we get

_(|V¢|2A¢(xn)
(p—2)

all? 1/ a/p, B/p —1+4/ P
S((p_z)()\l,p) Pl (xn)] pvp (X)) IV (xn)] p) . 4.1

Now we observe that
al/p

(r—2)

as p — oo and we conclude that

+ Ao ()

O‘LP)]/[)|¢(xn)|a/pU£/P(xn)|V¢)(xn)|_l+4/P =0

—Acxc(x0) = 0.
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Note that this inequality holds trivially when V¢ (xp) = 0. This shows that u; is a viscosity
subsolution to —Asou = 0.

The fact that it is also a supersolution can be deduced considering —u, and repeating the
previous argument.

Remark 4.1 The condition (4, ) /P < C holds, for example, for the eigenvalues constructed
using topological arguments in [15]. In fact, let us consider

Am,p= inf sup Qp,(u,v)
"r KeKm (u,v)ek b

where K, is the class of compact symmetric (K = —K) subsets of W(;’p () x W(;’p ()
of genus greater or equal than m. For such an eigenvalue A p, it holds that there exists a
constant C independent of p such that (A, ) /P < C. To see this fact, it is enough to consider
the union of m disjoints balls of radius r, B;, inside 2 and as K the set {span(¢y, ..., ¢) N
S1 X {Zi ¢i}}, where ¢; is an eigenfunction of the p-Laplacian in the ball B; C 2 and S

denotes the unit ball in Wol’p (£2). Such set K has genus m and we have

|Vu|P IVol?
T 2m
e P 2 P < Z750(B),

sup Qp(u,v) = sup
(u,v)ek (u,v)eK / |M|alvlﬂ 14
Q

where 11(B;) is the first eigenvalue of the p-Laplacian in B;. Now we just note that from
the results in [12] it follows that (A; (B;))!/? is bounded independently of p and we obtain
the desired uniform in p bound for the eigenvalues constructed using the genus argument at
level m, ()\,,17[,)1/1’ <C.
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