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1. Introduction

In this paper we study the existence problem for extremals of the Sobolev immersion theorem
for variable exponents Wé’p ® (£2) — L1 (£2). By extremals we mean functions where the following
infimum is attained
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Here £2 c RV is a bounded open set and the variable exponent spaces LI® (£2) and W(])’p(x)(.Q) are
defined in the usual way. We refer to the book [3] for the definition and properties of these spaces,
though in Section 2 we review the results relevant for this paper.

The critical exponent is defined as usual by

P*() = { pluls i p(o <N,
o0 if p(x) > N.

When the exponent q(x) is subcritical, i.e. 1 < q(x) < p*(x) — 8 for some § > 0, the immersion
is compact (see [6], Theorem 2.3), so the existence of extremals follows easily by direct mini-
mization. But when the subcriticality is violated, i.e. 1 < q(x) < p*(x) with A={x€ 2: qx) =
p*(x), p(x) < N} +# @ the compactness of the immersion fails and so the existence (or not) of min-
imizers is not clear. For instance, in the constant exponent case, it is well known that extremals do
not exists for any bounded open set £2.

There are some cases where the subcriticality is violated but still the immersion is compact. In fact,
in [14], it is proved that if the criticality set is “small” and we have a control on how the exponent
q reaches p* at the criticality set, then the immersion W, P® (£2) < L1®(£2) is compact, and so the
existence of extremals follows as in the subcritical case.

However, in the general case A # @, up to our knowledge, there are no results regarding the
existence or not of extremals for the Sobolev immersion theorem. This paper is an attempt to fill this
gap.

In order to state our main results, let us introduce some notation.

e The Rayleigh quotient will be denoted by

VYV (o
Qpgo(v)=—"@ (12)
VIl a0 (29
e The Sobolev immersion constant by
S(p().q(). 2) = inf  Qpgqe). (13)
vewyP® (2)
e The localized Sobolev constant by
Sx=supS(p(),q(), Be(®)) = lim S(p()),q(-), B¢(x)), x€ K. (14)
=0 £—>0+
e The critical constant by
S = inf S,. 15
xeA X ( )
e The usual Sobolev constant for constant exponents
Vvl r
k1= inr Ve (1.6)

veCe®(RM) ||V||1_r*(]RN) .

With these notations, our main results can be stated as
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Theorem 1.1. Assume that p(-),q(-) : 2 — [1,+00) are continuous functions with modulus of continuity
p(t) such that

pt)log(1/t) >0 ast—0+.

Assume, moreover, that the criticality set A is nonempty.
Then, for every domain 2 it holds

S(p().q(),2)<S<  inf K7,
P <r<py

where p; :=inf4 p(-) and p¥ :=sup 4 p(-).

Theorem 1.2. Under the same assumptions of the previous theorem, if supg p(-) < infg q(-) and if the strict
inequality holds

then there exists an extremal for the immersion Wé’p ® (£2) = LI®(2).

These two theorems give rise to two natural questions:

(1) IsS= infy- <rept, K;! or is the inequality strict?

(2) For what domains £ and exponents p(x), q(x) is the strict inequality S(p(-),q(-),$2) < S
achieved?

We give partial answer to these questions in this paper. For question (1) we show that Sy = K ;(1()
for every point x € A which is a local minimum of p and a local maximum of q. As far as we know, it
is an open problem to determine whether this inequality holds in general or not. For question (2), we
show that the strict inequality is achieved for every domain §2 such that the subcriticality set §2 \ A
contains a sufficiently large ball. It will be interesting to know if there exists an example of the strict
inequality in the case where q(x) = p*(x) in £2.

In the course of our study of question (1), we need to show that the constant S(p(-), q(-), §2) is
continuous with respect to p(-) and q(-) in the L°°(£§2) topology for monotone sequences. We believe
that this result has independent interest.

The proof of Theorem 1.2 heavily relies on the Concentration-Compactness Theorem for variable
exponents that was proved independently by [8] and [9]. Moreover, what is needed here is a slight
refinement of the version in [8]. Though this refinement follows as a simple observation in [8], we
make here a sketch of the full proof of the Concentration-Compactness Theorem in order to make the
paper self contained.

The other key ingredient in the proof is the adaptation of a convexity argument due to P.L. Lions,
F. Pacella and M. Tricarico [11] in order to show that a minimizing sequence either concentrates at a
single point or is strongly convergent.

Analogous results can be obtained for the trace embedding theorem by applying similar tech-
niques. See [7].

To end this introduction, let us comment on different applications where the p(x)-Laplacian has
appeared.

Up to our knowledge there are two main fields where the p(x)-Laplacian has been proved to be
extremely useful in applications:

e Image processing.
o Electrorheological fluids.
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For instance, in [2], Y. Chen, S. Levin and R. Rao proposed the following model in image processing

)
E(u)= f [Vu@I™? + f(Ju@) — I(x)|) dx - min
pX)

where p(x) is a function varying between 1 and 2 and f is a convex function. In their application,
they chose p(x) close to 1 where there is likely to be edges and close to 2 where it is unlikely to be
edges.

The electrorheological fluids application is much more developed and we refer to the monograph
by M. RuZicka, [15], and its references. In these models, after some simplifications, it leads to solve

{—Ap(x)u = f(x,u,Vu) in$2, (1.7)
u=0 onds2

for some nonlinear source f.In most cases, the source term is taken to be only dependent on u and
so in order for the usual variational techniques to work, one needs a control on the growth of f given
by the Sobolev embedding. In this regard there are plenty of literature that deal with this problem
(just to cite a few, see [1,4,5,12,13]). When the source term has critical growth in the sense of the
Sobolev embedding, there are only a few results on the existence of solutions for (1.7). We refer to
the above mentioned works of [8,9,14] and also the work [16] where multiplicity results for (1.7) are
obtained.

Organization of the paper. The rest of the paper is organized as follows. In Section 2, we collect some
preliminaries on variable exponent spaces that will be used throughout the paper. In Section 3 we
revisit the proof of the Concentration-Compactness Theorem in the version of [8] in order to make
the necessary refinement. In Section 4 we prove our main results, Theorem 1.1 and Theorem 1.2. In
Section 5 we prove the continuity of the Sobolev constant with respect to p and q in the L*® topology.
In Section 6 we give partial answer to question (1) and show that for x a local minimum of p and

local maximum of q, Sy = K ;&). Finally, in Section 7 we give partial answer to question (2) and show

that if £2 \ A contains a sufficiently large ball, then S(p(-), q(-), 2) < S.

2. Preliminaries on variable exponent Sobolev spaces

In this section we review some preliminary results regarding Lebesgue and Sobolev spaces with
variable exponent. All of these results and a comprehensive study of these spaces can be found in [3].
The variable exponent Lebesgue space LP® (£2) is defined by

[P0 () = {u el (2): /}u(x)|"(x) dx < oo}.
2

This space is endowed with the norm

M p(X)dx<1}

1l 0 = inf{k -0 /
2

The variable exponent Sobolev space W1-P® (£2) is defined by

WP (2) = {ue Wl (2): uelPP(2)and |Vu| € LPY (2)).

loc
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The corresponding norm for this space is
||u||W1,p<X)(g) = ”u”LP(X)(_Q) + ”VUHLP(X)(_Q)'

Define WQ,*P‘X)(Q) as the closure of C°(£2) with respect to the W1P®(g2) norm. The spaces

LP®(2), WIP®(2) and Wy P™ (£2) are separable and reflexive Banach spaces when 1 < infg p <
supg, p < 00.

As usual, we denote the conjugate exponent of p(x) by p’(x) = p(x)/(p(x) — 1) and the Sobolev
exponent by

Np(x)
p*(X)={N—’;P)((X) lfp(X)<N,
o0 if p(x) > N.

The following result is proved in [6,10] (see also [3], p. 79, Lemma 3.2.20 (3.2.23)).

Proposition 2.1 (Hélder-type inequality). Let f € LP® () and g € LI® (£2). Then the following inequality
holds

+ +
||f(x)g(x) “Ls(x)(g) < ((%) + (2) )”f”LP(X)(Q)“g”L‘W‘)(Q)y

where

1 1 1

s px)  q(x)

The Sobolev embedding theorem is also proved in [6] (see also [10]), Theorem 2.3.

Proposition 2.2 (Sobolev embedding). Let p,q € C(£2) be such that 1 < q(x) < p*(x) for all x € 2. Then
there is a continuous embedding

WIPE (@) s [IM (),
Moreover, if info (p* — q) > 0 then, the embedding is compact.
As in the constant exponent spaces, Poincaré inequality holds true (see [3], p. 249, Theorem 8.2.4)
Proposition 2.3 (Poincaré inequality ). Assume p(x) is log-Hélder continuous, i.e. p(x) verifies that

(@

——, forx#y,
[log |x — y||

[p®) —p(y)| <
for some constant C1 > 0. Then, there is a constant C > 0, C = C(S2), such that
lullppew 2y < CIVUllpw (@),
forallu e Wé’p(x)(.Q).

Remark 2.4. By Proposition 2.3, we know that [|Vu/|l pe ) and [lully1.pw gy are equivalent norms on
WP (@)
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Throughout this paper the following notation will be used: Given q: 2 — R bounded, we denote

+

q" :=supq(x), q :=infq(x).
Q 2

The following proposition is also proved in [10] and it will be most usefull (see also [3], Chapter 2,
Section 1).

Proposition 2.5. Set p(u) := [, |u(x)[P®W dx. For u € LP®W (£2) and {uy}xen C LP™ (£2), we have

u
u#0 = <||U||Lp<x)(:2)=)L < 'O(X> =1>» (2.1)
||u||Lp(X)(Q) <1(=5>1) & pw<1l(=1;>1), (2.2)
ullpwg >1 = lul?, <,0(U)<IIUIIP+ (23)
LPX(£2) LP® () = LPX) ()’ :
lullppooigy <1 = NullPr o < p@) < ful, (2.4)
LP®)(£2) P () = L™ (2)° ’
lim lukllpeo 2y =0 < lim p(ug) =0, (2.5)
k—o00 k— 00
lim ||Uk||l_p(x)(9) =0 < lim p(Uk) = Q. (26)
k— 00 k— o0

For much more on these spaces, we refer to [3].
3. Refinement of the Concentration—-Compactness Theorem

In this section we make a refinement of the Concentration-Compactness Theorem for variable
exponent spaces that was proved independently by [8] and [9].

The refinement made here is essential in the remaining of the paper and it involves a precise
computation of the constants. More precisely, we prove

Theorem 3.1. Let {Un}nen C wg"’(x)(:z) be a sequence such that u, — u weakly in Wcl)’p(x) (£2). Then there
exists a finite set I, positive numbers {jti}ic; and {v;}ie; and points {x;}ic; C A such that

[Un |9 —~ p = u|9® 4 Z vi8x, weakly in the sense of measures, (3.1)
iel
[V PO —~ > | Vu|P® + Z Widx, weakly in the sense of measures, (3.2)
iel
1 1
Sxv™ <™. (33)

Remark 3.2. The refinement that we present here is in inequality (3.3).

Proof. As in [8] it is enough to consider the case where u, — 0 weakly in Wg’p(") (£2).
Now, consider ¢ € C°(£2), from Sobolev inequality for variable exponents, we obtain

S(p()-40). @)l btnll o @) < | V@UD) | - (34)
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In order to compute the right-hand side, we observe that

H|V(¢un)”Lp(x)(Q) —ll¢Vuy ”]_P(X)(Q)‘ < un Vol ppw (o)- (3.5)
Then, we see that the right-hand side of (3.5) converges to 0. In fact,
p+
lun Vol Lpe (o) < (||V¢||L°°(Q) + 1) lunllppew 2y = O,
as Wé’p(x) (£2) is compactly embedded in LP® (£2).
Therefore, taking n — oo in (3.4), we have,
(3.6)

S(PC).a0). 2) 19l g0 ) < 18l o -

This is a reverse-Holder type inequality for the measures @ and v. Now, as in [8] it follows that (3.1)
and (3.2) hold.

Again, exactly as in [8] it follows that the points {x;};c; belong to the critical set A.

It remains to see (3.3).

Let ¢ € C?O(RN) be such that 0 < ¢ <1, ¢(0) =1 and supp(¢) C B1(0). Now, for each i € I and

e > 0, we denote ¢, ;(X) ;= p((x — x;)/¢€).
Since supp(¢s,iun) C Be(xi), by (3.6) with §2 = B, (x;), we obtain

S(PC). 0. Be () 1.l g i, 0y < Mol o, -

By (3.1), we have

v (ig.e) = |ig.e 11 dv

Be (Xig)

= [ Ol O d Y i1
Be (xig) iel

= Vi

From now on, we will denote

gt = sup q0,  q;,:= inf q(x),
T Betx) T Bt

pify:=sup p(),  p;, = inf pX).

B (xi) B (xi)

If py(diy,e) <1 then
1/q7 1/q;,
.6 11509 5, ) > v Bie) e > vig

Analogously, if o, (¢i,¢) > 1 then
1/qf,
”¢i0’8”LZ(X)(Bs(XiO)) Z Vi
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Therefore,

1 1
qi i,
i

min{v
On the other hand,

/ ¢ e P dpa < ju(Be (1))

Be (xi)

hence

1 1

P =
llgi.e ”LP(X)(Bg(x,-)) < maX{Pu (¢i,e) Pie pu(¢i,s) Pie }

1 1

< max{je(Be (x)) "ie , 14(Be (xp)) "ie },

so we obtain,

S(p(), (), Be(x)) min{v,"*, viq;*’ } < maX{M(Bg(xf))ﬁ

As p and q are continuous functions and as q(x;) = p*(x;), letting ¢ — 0, we get

(1im S(p(). a0, Box) )y P < P,

where w; :=limg_0 i (Be(X;)).
The proof is now complete. O

4. Proof of the main results
We begin this section with the proof of Theorem 1.1.

4.1. Proof of Theorem 1.1

First we prove a uniform upper bound for S(p(-), ("), £2) depending only on p’; and pjjl.

Lemma 4.1. With the assumptions of Theorem 1.1, it holds that

S(p().q(). )< inf K7,
PASI<PYL

where K1 is given in (1.6).

Proof. First, we observe that our regularity assumptions on p and q implies that

q(xo + 1x) = q(x0) + p1 (A, X) = p*(x0) + p1 (X, X),
p(Xo + Ax) = p(x0) + p2(A, X),

with lim;_, g4 AP<* =1 uniformly in 2 (k=1,2).

£ e
LY }S(p(‘),Q(‘), Be(Xi)) < ”(pi’g”Lﬁ(X)(Bs(Xi))'

,(Be(x)) P .

1611
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Now, let ¢ € C°(£2), and define ¢, to be the rescaled function around xg € A as ¢, =

AP0 ¢(*5%2). Then we have

q(x) —N(p* (xg)+01 (1, xg 1)) q(x0)+p1(2,x0+AYy)
:/<L> dx:/k P G) +N(&> dy,

||¢A||Lq<X)(Q) o ||¢A||Lq(x)(g)
A

where 2, = %(.Q — X0)-

Since
N1 G x+hy) d () P1(A.X0+AY)
| 2 (W) 1 wheni— 0+ in {|¢| > 0},
2 lLaeo (2)
we get
L Jan g0 dy
limy.—o 12 1 5es )
Analogously,

v px)
. /( V3| > N
AN

—N(p(xg)+p3 (Axg+1y)) 1 P(X0)+02(Axo+AY)
[ OL )
||V¢A(}’)||Lp(><)(g)

dx

—N(p(x AXgFA (x0)+02(Ax0+1Yy)
=fA%W+N—p(Xo)—pz(Mo+ky)( Ve )l )p ooy dx.

IV (y)”LP(X)(_Q)
Again,

_Noy (hx AXo+A
M*Pz(k)«ﬂrk}/)( |V¢(y)| )/)2( Xothy) —1 wheni— 0+ in {|V¢)| < 0}

A p¥(xg)
VoM o (2
SO we arrive at

Jrn IVo (1) [P*0) dy

lim; o+ V17500

Now, by definition of S(p(-), q(-), £2),

IVl peo
S(p().q(), 2) < ——— 2
llpx ||Lq<x)(_Q)

and taking limit A — 0+, we obtain

AN
S(p(),q(), Q) < — &)
”(b”LQ()‘O)(RN)
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for every ¢ € C2°(§2). Then,
-1
S(P().4(), 2) <K, G
SO,

S(p().q(), )< inf K
P <r<ply

as we wanted to show. O
Now, the proof of Theorem 1.1 follows easily as a simple corollary of Lemma 4.1.
Proof of Theorem 1.1. Applying Lemma 4.1 to the case §2 = B.(xp) for xo € A we get that
S(P(),q(), Be (x0)) < Kpy)
for every ¢ > 0. So

T -1
Sxo < Kpix)-

Now, for the first inequality, we just observe that the Sobolev constant is nondecreasing with respect
to inclusion, so

S(p(),a(),£2) <S(p(),q(), Be(x0))

for every ball B¢ (xp) C £2.
So the result follows. O

4.2. Proof of Theorem 1.2

Now we focus on our second theorem. We begin by adapting a convexity argument used in [11]
to the variable exponent case.

Theorem 4.2. Assume that p™ < q~. Let {unlnen be a minimizing sequence for (1.3). Then the following
alternative holds

e {un}nen has a strongly convergence subsequence in L1® (£2), or
o {unlnen has a subsequence such that [up|1® — &, weakly in the sense of measures and |Vu,[P® —
S f(fx(’) 8x, weakly in the sense of measures, for some xg € A.
Proof. Let {u,}ney be a normalized minimizing sequence, that is,
S(p(')v Q(‘)a -Q) = nlLr{:o ”Vun ”LP(X)(_Q)
and

||Un||Lq(X)(_Q) =1

Since {un}nen is bounded in W(])’p(x)(ﬂ), by the Concentration—-Compactness Theorem (Theorem 3.1),
we have that, for a subsequence that we still denote by {up}nen,
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|up 9% — v = Ju|9® 4 Z Vi8x,, weakly in the sense of measures,
iel
|Vup|P® —~ > |VuP® 4+ Z,u,-&xi, weakly in the sense of measures,

iel

where u € Wé’p(")(Q), I is a finite set, x; € A and §,;1u,.1/p(xi) > vil/p*(x").
Hence, using Theorem 4.1,

Vu px)
g
n—oo
Q ”Vun”Lp(x)(Q)

/‘S P90, 2) 7 Vul"Pdx+ > s(p(),a0), 2) "y

iel

/ls pO).q(). 2)7 vu'¥ dx + 3 5Py

iel
1 n 17(?))
> min{(S(p(). (). 2) 7 IVullra@)’ .+ (S(PO. 0. 2) IVulla@)’ J+ > v
iel
P*(X,‘)
>m1n{||u||Lq(X)(Q) ||u||qu)(Q) +Zvin [En)
iel

where in the last inequality we have used the definition of S (1.3).
Now, as |[unllge () =1 and up — u weakly in L9®(£2), it follows that lull o 2y < 1, hence

ot

min{ )%y - 11 [l ) > L) T

LIX) ()’ ]_Q(X)(_Q)}

So we find that
p( ,)

pq(u)q +Zv <1. (4.1)

iel

On the other hand, as u;, is normalized, we get that

T=pgw)+ ) v (4.2)

iel

Since p*t <q~, by (4.1) and (4.2), we can conclude that either pq(u) =1 and the set I is empty, or
u =0 and the set I contains a single point.

If the first case occurs, then 1= [[un||jax o) = Pg(Un) = pg(t) = [|ulljew gy and, as L0 (2) is a
strictly convex Banach space, it follows that u, — u strongly in LI® (£2).

EP(XO)'

If the second case occurs it easily follows that vo =1 and o = S, m]

With the aid of this result, we are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Let {u};cn be a minimizing sequence for (1.3).

If {un}nen has a strongly convergence subsequence in L9%(£2), then the result holds.

Assume that this is not the case. Then, by the previous theorem, there exists xg € A such that
[up|9® — 8, weakly in the sense of measures and Vi, |P® — §fo("°)8x0 weakly in the sense of mea-

sures
v px) gp(Xo)
[ e
A Sxg — € (Sxg — £)Pxo)

So, for € > 0, we have
Then, there exists ng such that for all n > ng, we know that:

IVunllpe 2y > Sxp — €-
Taking limit, we obtain
S(p().q(), 2) = 5y —&.
As & > 0 is arbitrary, the result follows. O

5. Continuity of the Sobolev constant with respect to p and q

In this section, we prove the continuity of the Sobolev constant S(p(-), q(-), £2) with respect to p
and q in the L°°(£2) topology for monotone sequences.

We first prove an easy lemma on the continuity of the Rayleigh quotient.
Lemma 5.1. Let p, — p and q, — q in L°°(£2). Then, for every v € C2°(£2), Qp,.qn.2 (V) = Qp g (V).

Proof. We only need to prove that

IVVIlLpneo 2y = IVVIIpw () and IVl Laneo 2y = 1VIILaw (g2)-

n(X) q(x)
[v] )q /'( [v| >
M)V ks [ (— ) k<,
Q/<Ilvllm(x>(m+a I \ Wl o) +6

so, there exist ng such that Vn > ny,

n(X)
V] )"
_— dx < 1.
/(”V”Lq(x}(g)) +4

2

For that, we have

Therefore ||v||an<x)(Q) < ||v||Lq(x>(Q) + §. Analogously, we obtain ||V||Lq(x)(9) -6 < ”V”an(x)(g). In con-
clusion, for every § > 0 we get

1Vl L () — & < Hminf ||v| jgnw () < HMSUp |Vl gne @) < 1VIILaw () + 8-
In a complete analogous fashion, we get
IVVIipw (o) —8 < liminf”VV”LPn(X)(_Q) < Hmsup [Vl e 2y < IVVIpw (o) + 6.

This finishes the proof. O
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Now we prove the main result of the section.

Theorem 5.2. Let p, — p and q, — q in L>°(§2). Assume, moreover, that p, > p and that q, < q. Then
S(Pn(), qn(), £2) = S(p(), q(), £2).

Proof. Given § > 0 we pick u € C°(£2) such that Qpq o) < S(p(-),q(), 2) + 5. Since, by

Lemma 5.1, limp— 00 Qp,.g..2(U) = Qpq.e (), we obtain, using u as a test-function to estimate
S(pn(), qn(-), £2), that

limsup S(pn(-), gn ("), £2) < limsup Qp, g,.2 ()
n—oo

n—oo

= Qp,q,Q(u)

< S(p(')v q(’)a ‘Q) +(S,

for any & > 0. It follows that
limsup S(pn(-), gu (), 2) < S(p(), q(), 2).
n—oo
We now claim that there holds
liminfS(pa(-). 4a(). 22) > S(P(). 4(). 2).
The claim will follow if we prove that for any u € CZ°(£2),
IVullppneo () = (1 +0(1))||vu||l_p<><)(9)7 (5.1)
and
lullpanco (@) < (1 +0(1))||u||Lq<X)(Q), (5.2)

where o(1) is uniform in u. Since p, > p we can use Holder inequality (Theorem 2.1), with % =
1 1 ;
FR Y obtain
IVull oo < ((p/P)* + (0/50) ™) IVU oo 1] sneo
< (14 0(D) V| oy max {21V 21(1/5n)" )
= (14 0) VUl ppnco .

where the o(1) are uniform in u. Eq. (5.1) follows. We prove (5.2) in the same way considering

— 4nq e
th = g2a; and writing that

1Vl zanco < (@n/@D + @n/t) ™) IV ]| aow [Tl nco
= (1+oM)IVIlLaw-

The proof is now complete. O
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6. Investigation on the validity of § =inf _ _ K1

PASI<PYy

In this section we investigate whether the equality

S= inf K ! (6.1)
pA<r<ply

holds or not.
We show that, under certain assumptions on p(xg) and q(xp), xo € A the equality

< -1
Svo=Kpo) (6.2)

is valid.

As far as we know, it is an open problem to determine whether the equality holds true or not in
general.

The aim of this section is to prove the following theorem.

Theorem 6.1. Assume that p(-) has a local minimum and q(-) has a local maximum at xo € A and at least one
of those is strict. Then

. _ -1
glg)r%) S(p(), q(), Be (XO)) = Kp(XO)'
This theorem is a direct consequence of Theorem 5.2 and the following result:

Proposition 6.2. Assume 0 € A and denote by p = p(0), B; = B¢ (0).
For any u € C°(Bg), there holds

lull g g,y = &V (1 +0(D) llue | jae 0 (s,
and
IVull e 5, = VP (14 0(D) [ Vite | oo 5, )
where 0(1) is uniformin u, p¢(x) := p(€x), qe (X) :=q(ex) and uy(x) ;= u(ex).
Assuming Proposition 6.2 we can prove Theorem 6.1.
Proof of Theorem 6.1. We have
Q(P(),q(), Be) (W) = (14+0(1))Q (P (), qe (-), B1)(ue),
where the o(1) is uniform in u, so that, noticing that the map u € C2°(B;) — ue € C2°(B1) is bijective,
S(P().q(), Bs) = (1+0(1))S(pe (). 4s (), B1)

(1+0(1))S(p(0),q(0), B1)
(1+0(1))S(p(0), p(0)*, By)

which proves Theorem 6.1. O
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It remains to prove Proposition 6.2.
Proof of Proposition 6.2. Given u € C2°(B;) we have
[l jaw (g, = inf{x > 0: I} % (u) < 1},

where

qe(x)

M dx.

N q(x)

E 1) - _

17" () ._f - dx_/
B

Be 1

Ug (X)

__N_
AE Q™)

Writing that

e~ =exp{—NIne(g(0) + 0(e)) '} =& VP" (1+0(1)),

where the O(¢) and the o(1) are uniform in x and u, we obtain

Ul aco g,y = inf{A > 0: I;* (w) < 1}
=eNP" (1 o) inf{% > 0: 1% (ue) < 1}, (6.3)
from which we deduce the result. The proof of the result for the gradient term is similar: we have
IVullppeo g,y = inf {2 > 0: I;:*(Vu) < 1},

and

pe (%)

Vg (X) dx

N
A Ag]_ps(X)

v
II’}S(Vu):/’ 1)
B

p(X)
dx:f
By

and we can end the proof as before. O

7. On the strict inequality S(p(-), q(-), 2) < S

In this section we provide with an example of a domain £2 and exponents p, q where the condition
S(p(-),q(-), 2) < S is satisfied.

The condition is the existence of a large ball where the exponent q is subcritical. Up to our knowl-
edge it is not known if S(p(-), q(-), £2) < S can hold when q = p* on £2.

This example somewhat relates to the one analyzed in [14]. More precisely, we can show

Theorem 7.1. Assume that Bg C §2 \ A where By is a ball of radius R. Moreover, assume that q'gR < (p*)ER.
Then, if R is large enough, we have that S(p(-), q(-), £2) < S.

Proof. Assume that §2 contains a subcritical ball Bg. Take u € CZ°(B1) such that |u], [Vu| < 1, and
consider ug(x) = u(x/R). We take R big enough to have

RN*P+/|Vu|P*dx>1, R’V/|u|q+ ~1

B1 B1
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and

Vull

L3R (Br) pN(1/(Pg)* =1/, _ g

Then we claim that

IVugllpreo
DY PRILP™GBR) _ g

”uR”LQ(X)(BR)
We first note that
/|VuR|p(") dx = / RN=PR0| gy P(RY) () dx > RN—P" [ IVulP" dx > 1
BR B1 By
so that, by Proposition 2.5,

N—pER

1/pg,, — _ 1/Ppy
IVugrllppeo gy < (/ |VUR|p(x)dX> <R PBr (/ |Vu|pBR dx> .

Br By

In the same way

/|uR|‘7<")dx=RN/|u|q<R")dx>R"’/|u|q+ >1
Br By By

so that
1/q3 N
qx) R pN/ag
R a0 5y > (/ lugl dx) > R | e
Br

from which we deduce our claim. This finishes the proof. O
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