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SHAPE DERIVATIVE OF THE CHEEGER CONSTANT

Enea Parini1 and Nicolas Saintier2,3

Abstract. This paper deals with the existence of the shape derivative of the Cheeger constant h1(Ω)
of a bounded domain Ω. We prove that if Ω admits a unique Cheeger set, then the shape derivative of
h1(Ω) exists, and we provide an explicit formula. A counter-example shows that the shape derivative
may not exist without the uniqueness assumption.
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1. Introduction

Let Ω ⊂ R
n be a bounded domain. The Cheeger constant of Ω is defined as

h1(Ω) := inf
E⊂Ω

P (E; Rn)
|E| ·

Here P (E; Rn) is the distributional perimeter of E measured with respect to R
n, while |E| is the n-dimensional

Lebesgue measure of E. A set C ⊂ Ω for which the infimum is attained is called a Cheeger set.
The problem of finding a Cheeger set for a given domain Ω has extensively received attention in the last

decades, starting from the original work of Cheeger [5]. For an introductory survey on the Cheeger problem
we refer to [18]; here we recall that for every bounded domain Ω with Lipschitz boundary there exists at least
one Cheeger set. Uniqueness does not hold in general, but it is guaranteed if we assume Ω to be convex; in this
case the Cheeger set turns out to be convex and of class C1,1 (see [1]). The Cheeger constant can be obtained
as the limit for p → 1 of the first eigenvalue λp(Ω) of the p-Laplacian under Dirichlet boundary conditions
(see [12]), and corresponds to the first eigenvalue of the 1-Laplacian (see [14]).

Shape analysis roughly consists in studying the regularity and the optimisation of a functional J : Ω ∈ A →
J(Ω) ∈ R defined over some class A of subsets Ω ⊂ R

n. Due to its physical relevance, a particularly important
class of functionals are the ones defined in terms of the eigenvalues of some operator. A lot of works have been
dedicated for instance to the study of the dependence of the eigenvalues of the Laplacian as functions of the
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domain under various boundary conditions. We refer for example to the monograph [11] for an introduction to
the field of shape analysis.

In order to optimize J over A it is important to determine how sensitive is J under perturbation of a given
set Ω. Given a smooth vector field V ∈ C∞

c (Rn; Rn), define Ft : R
n → R

n as Ft(x) = (Id + tV )(x). We then
perturb Ω in the direction V by considering the sets Ωt = Ft(Ω). The shape derivative of J in the direction V
at Ω is then defined as

J(Ω, V )′ := lim
t→0

J(Ωt) − J(Ω)
t

·
For instance the shape derivative of the first eigenvalue λ(Ω) of the Laplacian with Dirichlet boundary
condition is

λ(Ω, V )′ = −
∫

∂Ω

∣∣∣∣∂u

∂ν

∣∣∣∣
2

〈V, ν〉dHn−1,

where u is the unique positive normalized eigenfunction in Ω and ν is the unit exterior normal to ∂Ω. This
formula has been generalized in [8, 16] to the first eigenvalue λp(Ω) of the p-Laplacian (p > 1):

λp(Ω, V )′ = −(p − 1)
∫

∂Ω

∣∣∣∣∂up

∂ν

∣∣∣∣
p

〈V, ν〉dHn−1, (1.1)

where up is the unique positive normalized eigenfunction in Ω.
General results about the stability of the Cheeger constant h1(Ω) as a function of Ω have been obtained

in [10]. In particular the shape derivative was computed but only in the case V (x) = λx, λ ∈ R. The main
purpose of this paper is to provide a formula for the shape derivative of h1(Ω) in the case of an arbitrary
deformation field V . Notice that setting p = 1 formally in (1.1) does not give any meaningful information.
Indeed it is known that characteristic functions of Cheeger sets are, up to a multiplicative constant, normalized
first eigenfunctions of the 1-Laplacian and they are obtained as limit of eigenfunctions of the p-Laplacian as p
goes to 1 (see Sect. 2). Therefore, if C is a Cheeger set, the normal derivative should be thought as equal to
−∞ on ∂Ω ∩ ∂C, so that the integral in (1.1) would be infinite. This kind of problem has also been considered
in [20] where the shape derivative of the best Sobolev constant for the embedding of BV (Ω) into L1(∂Ω) was
computed. Let us mention finally that the other extreme case p = +∞ corresponding to the first eigenvalue of
the ∞-Laplacian has been recently studied in [7,17,19] for Dirichlet, Steklov and Neumann boundary condition
respectively.

The main result of our paper is the following.

Theorem 1.1. Let Ω be a bounded Lipschitz domain. Let V ∈ C∞
c (Rn; Rn), and let Ft : R

n → R
n be the

one-parameter family of diffeomorphisms defined by Ft(x) = (Id + tV )(x). Set Ωt = Ft(Ω). Then

lim
t→0

h1(Ωt) = h1(Ω).

If moreover Ω admits a unique Cheeger set C then the shape derivative

h1(Ω, V )′ = lim
t→0

h1(Ωt) − h1(Ω)
t

exists and is given by

h1(Ω, V )′ =
1
|C|

∫
∂∗C

(div∂C V − h1(Ω)〈V, ν〉) dHn−1, (1.2)

where ∂∗C is the reduced boundary of C, ν is the unit exterior normal vector on ∂∗C, and div∂Ω V (x) =
div V (x) − (ν(x), DV (x)ν(x)), x ∈ ∂∗Ω, is the tangential divergence of V on ∂Ω.



350 E. PARINI AND N. SAINTIER

In the case where ∂C is of class C1,1, this formula can be simplified:

Corollary 1.2. If Ω admits a unique Cheeger set C and ∂C is of class C1,1, then the shape derivative of h1(Ω)
is given by the formula

h1(Ω, V )′ =
1
|C|

∫
∂C∩∂Ω

(κ − h1(Ω))〈V, ν〉dHn−1, (1.3)

where κ(x) = div ν is the sum of the principal curvatures of ∂Ω at the point x (i.e. (n − 1) times the mean
curvature), and ν is the unit exterior normal to ∂Ω.

The assumption in the Corollary is in particular satisfied for every dimension n when Ω is convex (see [1]),
or in dimension n ≤ 7 when ∂Ω is of class C1,1 and admits a unique Cheeger set C (see [4]). We point out
that the uniqueness hypothesis is necessary. Indeed, at the end of this paper we provide a counter example of a
domain admitting more than one Cheeger set, which is not shape differentiable for some choice of V . However,
it is interesting to observe that the bounded domains Ω admitting a unique Cheeger set (and hence shape
differentiable) are dense in the L1 topology (see [4]).

2. Definitions and preliminary results

Let Ω ⊂ R
n be an open set. The total variation in Ω of a function u ∈ L1(Ω) is defined as

|Du|(Ω) := sup
{∫

Ω

u divϕ

∣∣∣∣ ϕ ∈ C1
c (Ω; Rn), ‖ϕ‖∞ ≤ 1

}
.

A function u such that |Du|(Ω) < +∞ is said to be of bounded variation. The space of the functions of bounded
variation will be denoted by BV (Ω). It can be easily proved that the total variation is lower semicontinuous
with respect to the L1-convergence (see [9]). Moreover, the following holds true. Suppose that Ω is a Lipschitz
domain, and let u ∈ BV (Ω); if we denote by u the extension of u by zero outside Ω, then u ∈ BV (Rn), and

|Du|(Rn) = |Du|(Ω) +
∫

∂Ω

|u| dHn−1,

where Hn−1 is the (n − 1)-dimensional Hausdorff measure on ∂Ω.
The perimeter of a set E ⊂ Ω (measured with respect to R

n) is defined as

P (E; Rn) := |DχE |(Rn),

where χE is the characteristic function of E. The Cheeger constant of Ω is

h1(Ω) := inf
E⊂Ω

P (E; Rn)
|E| ,

where |E| stands for the n-dimensional Lebesgue measure of E. A Cheeger set is a set C ⊂ Ω such that

P (C; Rn)
|C| = h1(Ω).

The existence of a Cheeger set for every bounded Lipschitz domain Ω is proved via the direct method of the
Calculus of Variations. Uniqueness does not hold in general; however, any convex body has a unique Cheeger set
(see [1]). If C is a Cheeger set for Ω, then ∂C ∩Ω is analytic, up to a closed singular set of Hausdorff dimension
n− 8; at the regular points of ∂C ∩Ω, the mean curvature is equal to h1(Ω)

n−1 (see e.g. [18], Prop. 4.2). Morever,
if ∂Ω is of class C1,1, then also ∂C enjoys the same regularity (see [4]); the same result holds if Ω is convex, as
a consequence of the results in [21].
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As an application of the coarea formula, h1(Ω) can also be obtained as

h1(Ω) = inf
u∈BV (Ω)\{0}

|Du|(Rn)
‖u‖1

or equivalently
h1(Ω) = inf {|Du|(Rn) |u ∈ BV (Ω), ‖u‖1 = 1} .

Therefore, h1(Ω) can be seen as the first eigenvalue of the 1-Laplacian with Dirichlet boundary condition, which
is defined formally as

Δ1u = div
( ∇u

|∇u|
)

,

and the characteristic functions of Cheeger sets are corresponding eigenfunctions. We refer to [14] for a thorough
analysis of this problem. Here we observe that if Ω admits a unique Cheeger set C, then u = 1

|C|χC is the unique
nonnegative normalized eigenfunction of the 1-Laplacian, since every level set of a first eigenfunction is a Cheeger
set (see [3], Thm. 2).

3. Proof of the main results

Recall that we are given a Lipschitz domain Ω ⊂ R
n that we perturb in the direction of a smooth vector field

V ∈ C∞
c (Rn; Rn) in the sense that we consider the perturbed domains

Ωt = Ft(Ω) with Ft(x) = (Id + tV )(x).

We let h = h1(Ω) and ht = h1(Ωt). We also assume that any function u defined in Ω (resp. Ωt) is extended by
0 to R

n\Ω (resp. R
n\Ωt). With the notation of the previous section this means that u = ū.

We recall the change of variable formula for BV functions (see [9], Lem. 10.1). Let Gt be the inverse of Ft

(which exists for small t). For an arbitrary function u ∈ BV (Ω), if we denote by v the function of BV (Ωt)
defined by v(x) = u(Gt(x)) we have the relations

∫
Ωt

v(x) dx =
∫

Ω

u(y)|det DFt(y)| dy

and

|Dv|(Rn) =
∫

Rn

|(DGt)T σ| · |det DFt| d|Du|,

where σ comes from the polar decomposition Du = σ|Du|.

Proof of Theorem 1.1. Let u ∈ BV (Ω) be a nonnegative eigenfunction for h such that ‖u‖1 = 1 in the sense
that u is an extremal in (2) (which is known to exist). Consider the function wt ∈ BV (Ωt) defined as wt = u◦Gt.
Then

|Dwt|(Rn) =
∫

Rn

|(DGt)T σ| · |det DFt| d|Du|,

where σ comes from the polar decomposition Du = σ|Du|. Since |σ| = 1 |∇u|− a.e., and DFt → Id uniformly
as t → 0, so that |det DFt| → 1 uniformly, we have using (2) and the above change of variable formula that

ht ≤ |Dwt|(Rn)∫
Ωt

wt

=

∫
Rn

|(DGt)T | · |det DFt| d|Du|∫
Ω

u(y)|det DFt(y)| dy

= (1 + o(1))

∫
Rn

d|Du|∫
Ω

u(y) dy

·
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It follows that
lim sup

t→0
ht ≤ h

Let ut ∈ BV (Ωt) be a nonnegative extremal for ht such that ‖ut‖1 = 1. Consider the function vt ∈ BV (Ω)
defined as vt = ut ◦ Ft. Then

|Dvt|(Rn) =
∫

Rn

|(DFt)T σt| · |det DGt| d|Dut| ≤ (1 + o(1))
∫

Rn

d|Dut|
= (1 + o(1))ht

≤ h + o(1), (3.1)

and ∫
Ω

vt dx =
∫

Ωt

ut| det DF−1
t | dx = 1 + o(1). (3.2)

Therefore (vt) is bounded in BV (Rn). Since the embedding of BV (Rn) into L1
loc(R

n) is compact, it follows that
there exists a function v ∈ BV (Rn) such that (up to a subsequence), vt → v a.e.. We deduce first that v = 0 in
R

n\Ω, then, using (3.2), that ∫
Ω

v dx = lim
t→0

∫
Ω

vt dx = 1,

and eventually according to (3.1), that

|Dv|(Rn) ≤ lim inf
t→0

|Dvt|(Rn) ≤ h.

Letting v = v|Ω, it follows that
∫

Ω
v dx = 1, and

h ≤ |Dv|(Rn) ≤ lim inf
t→0

|Dvt|(Rn) = h.

It follows that
lim
t→0

ht = h,

and that v is an extremal for h.
We assume from now on that Ω admits a unique Cheeger set C ⊂ Ω. As a consequence, the only nonnegative

normalized extremal for h is |C|−1χC ; this follows from the fact that every level set of an extremal is a Cheeger
set (see [3], Thm. 2). In particular u = v = |C|−1χC . Therefore vt → u in L1(Ω) and

lim
t→0

|Dvt|(Rn) = |Du|(Rn).

By [2], Proposition 3.13, this implies that

lim
t→0

∫
Rn

φd|Dvt| =
∫

Rn

φd|Du|

for any φ ∈ Cc(Rn).
Let us prove the differentiability. Using wt = u ◦ Gt as a test-function for ht, we obtain

ht − h ≤

∫
Rn

|(DGt)T σ| · |det DFt| d|Du|∫
Ω

u(y)|det DFt(y)| dy

− h.

Observe that
|det DFt(y)| = 1 + t.div V (y) + o(t),
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and
|(DGt(y))T σ(y)| = |σ(y)| − t〈σ(y), DV (y).σ(y)〉 + o(t),

where o(t) is uniform in y. Therefore

ht − h ≤
h + t

∫
Rn

(div V − 〈σ, DV σ〉) d|Du| + o(t)

1 + t

∫
Ω

u div V + o(t)
− h

=
t

(∫
Rn

(div V − 〈σ, DV σ〉) d|Du| − h

∫
Ω

u div V

)

1 + t

∫
Ω

u div V + o(t)
·

We used the fact that |σ| = 1 |Du|− a.e. and u is a normalized extremal for h. It follows that

lim sup
t→0+

ht − h

t
≤

∫
Rn

(div V − 〈σ, DV σ〉) d|Du| − h

∫
Ω

u div V,

and

lim inf
t→0−

ht − h

t
≥

∫
Rn

(div V − 〈σ, DV σ〉) d|Du| − h

∫
Ω

u div V.

Let us now prove the opposite inequality. We use vt as a test-function for h, and we obtain

ht − h =
∫

Rn

d|Dut| − h ≥
∫

Rn

|(DGt)T σt| · |det DFt| d|Dvt| −
∫

Rn d|Dvt|∫
Ω vt

,

where σt is such that Dut = σt|Dut|. We can also write

ht − h ≥
∫

Rn

d|Dvt| + t

∫
Rn

(div V − 〈σt, DV σt〉) d|Dvt| −
∫

Rn d|Dvt|∫
Ω vt

+ o(t).

Since div V ∈ Cc(Rn), we have

lim
t→0

∫
Rn

div V d|Dvt| =
∫

Rn

div V d|Du|.

Observe also that ∫
Ω

vt = 1 − t

∫
Rn

ut div V + o(t) = 1 − t

∫
Rn

u div V + o(t).

so that ∫
Rn d|Dvt|∫

Ω vt
=

∫
Rn

d|Dvt| + t

(∫
Rn

d|Dvt|
) (∫

Ω

u div V

)
+ o(t)

=
∫

Rn

d|Dvt| + th

∫
Ω

u div V + o(t),

where we used the fact that |Dvt|(Rn) = h + o(1). Hence,

ht − h ≥ t

(∫
Rn

div V d|Du| − h

∫
Ω

u div V −
∫

Rn

〈σt, DV σt〉d|Dvt|
)

+ o(t)
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Since Dvt ⇀∗ Du and |Dvt|(Rn) → |Du|(Rn), we have, according to Reshetnyak’s Theorem (see [2], Thm. 2.39),
that

lim
t→0

∫
Rn

f(x, σt(x)) d|Dvt| =
∫

Rn

f(x, σ(x)) d|Du| for any f ∈ Cb(Rn × Sn−1).

It follows in particular that

lim
t→0

∫
Rn

〈σt, DV σt〉d|Dvt| =
∫

Rn

〈σ, DV σ〉d|Du|.

We thus obtain
lim sup

t→0+

ht − h

t
≥

∫
Rn

(div V − 〈σ, DV σ〉) d|Du| − h

∫
Ω

u div V

and
lim inf
t→0−

ht − h

t
≤

∫
Rn

(div V − 〈σ, DV σ〉) d|Du| − h

∫
Ω

u div V.

Therefore
h1(Ω, V )′ = lim

t→0+

ht − h

t

exists, and

h1(Ω, V )′ =
∫

Rn

(div V − 〈σ, DV σ〉) d|Du| − h

∫
Ω

u div V.

Since u = |C|−1χC , we have that |Du| = |C|−1Hn−1
|∂∗C as a measure. We can thus rewrite the previous formula as

h1(Ω, V )′ =
1
|C|

(∫
∂∗C

(div V − 〈σ, DV σ〉) dHn−1 − h

∫
C

div V

)

=
1
|C|

∫
∂∗C

(div V − 〈σ, DV σ〉 − h〈V, ν〉) dHn−1,

where ν is the unit exterior normal to ∂∗C, and σ is given by Du = σ|Du|. We observe that σ = −ν Hn−1−
a.e. on ∂∗C. Recall that

div V (x) − (ν(x), DV (x)ν(x)) = div∂C V (x), x ∈ ∂∗C,

is the tangential divergence of V on ∂∗C (see e.g. [11], Def. 5.4.6). We thus obtain that

h1(Ω, V )′ =
1
|C|

∫
∂∗C

(div∂C V − h〈V, ν〉) dHn−1 (3.3)

which ends the proof of Theorem 1.1. �

Proof of Corollary 1.2. Suppose that Ω admits a unique Cheeger set C which is C1,1. The unit exterior normal
vector ν to ∂C is thus defined at every point and is Lipschitz continuous. Its components are thus differentiable
at Hn−1 almost every point of ∂C; moreover, the quantity κ := div∂Cν belongs to L∞(∂C) and it can be seen
as the distributional curvature of ∂C. Indeed one can easily adapt [11], Section 5.4.3 to the case of C1,1 domains
to obtain

div∂C V = div∂C V∂C + κ(V, ν) Hn−1 − a.e.,

where V∂C = V − (V, ν)ν is the tangential part of V , and
∫

∂C

div∂C V∂C dHn−1 = 0.



SHAPE DERIVATIVE OF THE CHEEGER CONSTANT 355

Therefore it holds ∫
∂C

div∂C V =
∫

∂C

κ〈V, ν〉

and we can rewrite (3.3) as

h1(Ω, V )′ =
1
|C|

∫
∂C

(div∂C V − h1(Ω)〈V, ν〉) dHn−1

=
1
|C|

∫
∂C

(κ − h1(Ω))〈V, ν〉dHn−1

=
1
|C|

∫
∂C∩∂Ω

(κ − h1(Ω))〈V, ν〉dHn−1

since κ = h1(Ω) in ∂C ∩ Ω. We then deduce (1.3). �

We complete this section providing some explicit examples of computation of shape derivatives.

Example 3.1 (the ball). Let Ω = BR be the ball of radius R, and V is a vector field such that V (x) = ν(x)
on ∂BR, we have that dht

dt (0) =
[

d
dr h1(Br)

]
(R). Since h1(Br) = n

r , we obtain using (1.3) that

h1(Ω, V )′ =
nωnRn−1

ωnRn
·
(

n − 1
R

− n

R

)
= − n

R2

as expected. Now let V be a volume-preserving perturbation; formula (1.3) becomes

h1(Ω, V )′ = − 1
|Ω|

∫
∂Ω

〈V, ν〉dHn−1 = − 1
|Ω|

∫
Ω

div V = 0

in accordance with the well-known fact that the ball minimizes h1(Ω) among all bounded domains with fixed
volume.

Example 3.2 (The annulus). As another simple example take Ω = Ar,R = BR\B̄r, the annulus {r < |x| < R},
r < R. According to [6, 13], Ar,R coincides with its Cheeger set so that

h1(Ar,R) =
|∂Ar,R|
|Ar,R| = n

Rn−1 + rn−1

Rn − rn
·

Taking V (x) = ν(x), we have by direct computation that

d
dt

h1(Ar−t,R+t)|t=0 = n
−R2n−2 − r2n−2 − (n − 1)rn−2Rn − (n − 1)Rn−2rn − 2n(rR)n−1

(Rn − rn)2
,

which coincides with formula (1.3):

h1(Ω, V )′ =
(

n − 1
R

− h1(Ar,R)
) |∂BR|

|Ar,R| −
(

n − 1
r

+ h1(Ar,R)
) |∂Br|

|Ar,R| ·

In dimension 2 this example can be generalized to curved annulus:

Example 3.3 (Curved annulus in the plane). Let Γ be a smooth planar closed curve with no self-intersection,
and Ω = ΣΓ,a = {x ∈ R

2, dist(x, Γ ) < a} its tubular neighborhood of width a. We take a so small that Ω has
no self-intersection. According to [15], h1(Ω) = 1

a and Ω itself is the unique Cheeger set. We take V = ν. Then
Ωt = ΣΓ,a+t and h(Ω, V )′ = − 1

a2 = −h1(Ω)2 which coincides with formula (1.3):

h1(Ω, V )′ =
1
|Ω|

∫
∂Ω

(κ − h1(Ω)) dHn−1

since
∫

∂Ω κ = 2πχ(Ω) = 0 according to the Gauss−Bonnet formula.
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Example 3.4 (the square). We eventually provide an example where the Cheeger set is a proper subset of Ω.
According to [13] a rectangle Ra,b ⊂ R

2 of edges 2a and 2b has a unique Cheeger set C with

h1(Ra,b) =
4 − π

2(a + b) − 2
√

(a − b)2 + πab
(3.4)

(see e.g. one of the two squares in Fig. 1). We take Ω = [0, 1] × [0, 1] = R1/2,1/2 and V (x, y) = (η(x), 0) with
η : R → [0, 1] smooth with compact support in (1 − δ, 1 + δ), δ small, and η(x) = 1 for x ∈ (1 − δ/2, 1 + δ/2).
Then Ωt = (0, 1 + t) × (0, 1) for sufficiently small t. It follows by direct computations from (3.4) that

h1(Ω, V )′ = −1
2
h1(Ω).

C1

l1 l2

C2

Figure 1. If l1 = l2, the Cheeger sets are given by C1, C2 and C1 ∪ C2.

C1

l1 l2

Figure 2. If l1 > l2, the only Cheeger set is given by C1.

C2

l1 l2

Figure 3. If l2 > l1, the only Cheeger set is given by C2.

Since ∂C ∩ Ω is made of arc of circle of radius 1/h1(Ω), it is easily seen that

|C| = 1 − 4 − π

h1(Ω)2
=

4
√

π − 2π

4 − π
,

H1(∂C ∩ S) = 1 − 2
h1(Ω)

=
2
√

π − π

4 − π
,
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where S := {1} × [0, 1]. It follows that

h1(Ω, V )′ = −h1(Ω)
H1(∂C ∩ S)

|C| ,

which is formula (1.3) since κ = 0 on ∂C ∩ ∂Ω, 〈V, ν〉 = 1 on S and 〈V, ν〉 = 0 on ∂Ω \ S.

4. A counter-example to the differentiability of h1(Ω)

If Ω does not admit a unique Cheeger set, then h1(Ω) is in general not differentiable. As a counter example,
we consider the “barbell domain”, made of two equal rectangles R1 and R2 linked by a thin strip (see Fig. 1),
defined as

Ω = ([0, 1] × [0, 1]) ∪ ([1, 2]× [0, ε]) ∪ ([2, 3] × [0, 1]),

where ε > 0 is sufficiently small. Let V be a smooth vector field such that:

• V is supported in [3 − δ, 3 + δ] × [−δ, 1 + δ] for some small δ;
• V (x, y) = f(x, y)−→e1 for some smooth nonnegative function f satisfying f(3, y) = 1 for y ∈ [0, 1].

In other words, V shifts the far right edge of Ω to the right. For small positive values of t, h1(Ωt) behaves like
the Cheeger constant of a rectangle obtained by enlarging R2. Recalling formula (3.4) which gives the Cheeger
constant of a rectangle Ra,b of edges 2a and 2b, we see that ∂

∂bh1(Ra,b) < 0. Therefore

lim
t→0+

h1(Ωt) − h1(Ω)
t

< 0.

For small negative values of t, h1(Ωt) = h1(R1) = h1(Ω) so that

lim
t→0−

h1(Ωt) − h1(Ω)
t

= 0.

It follows that h1(Ω) is not differentiable at t = 0.
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