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We introduce and study a simple model for the dynamics of voting intention in a population of
agents that have to choose between two candidates. The level of indecision of a given agent is modeled
by its propensity to vote for one of the two alternatives, represented by a variable p ∈ [0, 1]. When
an agent i interacts with another agent j with propensity pj , then i either increases its propensity
pi by h with probability Pij = ωpi + (1− ω)pj , or decreases pi by h with probability 1−Pij , where
h is a �xed step. We assume that the interactions form a complete graph, where each agent can
interact with any other agent. We analyze the system by a rate equation approach and contrast
the results with Monte Carlo simulations. We found that the dynamics of propensities depends on
the weight ω that an agent assigns to its own propensity. When all the weight is assigned to the
interacting partner (ω = 0), agents' propensities are quickly driven to one of the extreme values
p = 0 or p = 1, until an extremist absorbing consensus is achieved. However, for ω > 0 the system
�rst reaches a quasistationary state of symmetric polarization where the distribution of propensities
has the shape of an inverted Gaussian with a minimum at the center p = 1/2 and two maxima at
the extreme values p = 0, 1, until the symmetry is broken and the system is driven to an extremist
consensus. A linear stability analysis shows that the lifetime of the polarized state, estimated by the
mean consensus time τ , diverges as τ ∼ (1−ω)−2 lnN when ω approaches 1, where N is the system
size. Finally, a continuous approximation allows to derive a transport equation whose convection
term is compatible with a drift of particles from the center towards the extremes.

I. INTRODUCTION

Political bi-polarization is a widespread phenomenon
that generates divisions in a society, and even clashes
and revolts. Several works try to explain and model the
emergence of polarization using di�erent mechanisms,
like negative in�uence between individuals of antagonis-
tic opinion groups or between members of the same group
[1�4], or a con�rmation bias, by which individuals tend
to search for information that a�rms their prior believes
and discard arguments that confront their opinions [5�
7]. More recently, it has been proposed a new alternative
mechanism that gives rise to bi-polarization, which com-
bines homophily with the theory of persuasive arguments
[8�10]. The idea is that homophily increases interactions
between individuals with the same opinion orientation
who then persuade each other with arguments that sup-
port their opinion tendency, reinforcing their initial po-
sitions and becoming more extreme in their believes (see
[11�14]). The model studied in [11] assumes that each
agent has a list with a number of pro and con arguments
in favor and against a given issue (e.g. marijuana le-
galization), respectively. Agents interact by pairs and
incorporate in their list of arguments one of its partner's
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argument chosen at random, while old arguments are dis-
missed. Within the context of voting intention, it is nat-
ural to think that the number of arguments in favor of
a given candidate is proportional to the inclination or
propensity to vote for that candidate prior to the elec-
tions.

In this article we try to provide a contribution to
the understanding of the phenomenon of opinion bi-
polarization from a theoretical viewpoint. For that,
we study a simple model that mimics the dynamics of
propensities in a population of voters that have to de-
cide between two candidates A and B. When two agents
meet, the �rst agent asks its partner about its voting
intention, whose answer (A or B) depends on its propen-
sity for that candidate. For simplicity we assume that the
second agent answers A with a probability equal to the
fraction of its arguments in favor of candidate A, that is,
its propensity for A (and equivalently for B). If the an-
swer is A, then the �rst agent increases its propensity and
thus becomes more prone to vote for A. Otherwise, if the
answer is B the propensity of the �rst agent is decreased
and becomes more prone to B. In a more general ver-
sion of the model we assume that a given agent increases
its propensity for candidate A with a probability that is
a weighted average of its own and its partner's propen-
sity. This dynamics makes each agent have a tendency
to change its propensity towards its already favored can-
didate, which increases with the weight assigned to the
own propensity. However, we stress the fact that the
propensity update of an agent in an interaction step is
probabilistic and not deterministic, even in the extreme
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case of maximum weight.
This model is simple enough to be analytically

tractable and is able to induce bi-polarization without
relying on the previous mentioned mechanisms, and by
implementing a pairwise interaction rule that is inde-
pendent on the opinion orientation, unlike the models
studied in [13, 14]. The model has some analogies with
continuous or discrete opinion models whose dynamics
is driven by a compromise process [15], in which the
opinions of two agents become closer when they inter-
act. However, in the propensity model studied here the
opinion (or propensity) di�erence between the two inter-
acting agents may either decrease or increase due to the
probabilistic nature of the update.
The article is organized as follows. In Section II we

introduce the model and its dynamics. In Section III we
derive the rate equations and obtain their steady state
solutions. We present simulation results in section IV.
A stability analysis of the rate equations is performed in
sections V and VI. In section VII we develop a continuous
approximation that allows to derive a transport equation.
We conclude in section VIII with a short summary and
a discussion of the results.

II. DESCRIPTION OF THE MODEL

We consider a population of N interacting voters that
have to choose between two candidates, A or B. During
the period previous to the election day, agents have some
degree of indecision about the two possible alternatives,
which is modeled by assuming that each agent has an
inclination or propensity p to vote for candidate A that
varies between 0 and 1, so that when p ≃ 0 (p ≃ 1)
the agent is prone to choose B (A). We assume that
the propensity of each agent evolves under the in�uence
of the other agents, in such a way that agents update
their propensities after pairwise interactions. Initially,
the propensities of all agents are uniformly distributed in
[0, 1]. Then, at each time step∆t = 1/N of the dynamics,
two agents i and j are chosen at random to interact.
Agent j tells its partner i that it is going to vote for
A with a probability equal to its propensity pj . Then,
agent i can either increase or decrease its propensity with
probabilities that depend on its own and its partner's
propensity:

pi(t+ 1/N) =

{
pi(t) + h with probability Pi,j ,

pi(t)− h with probability 1− Pi,j ,
(1)

where

Pi,j = ω pi(t) + (1− ω) pj(t). (2)

The step length h (0 < h ≤ 1) is �xed, while the param-
eter ω (0 ≤ ω ≤ 1) is the weight that gives each agent to
its own propensity in an interaction. The value of pi is
set to 1 (0) when it becomes larger (smaller) than 1 (0),
so that propensities are constrained to the interval [0, 1].
This time step is repeated ad in�nitum.

III. RATE EQUATIONS AND STATIONARY

STATES

At time t = 0 the distribution of propensities f(p, 0)
is uniform in [0, 1], but after a time of order 1 agents'
propensities adopt discrete values p = 0, h, 2h, .., 1. For
the sake of simplicity we can take h such that S ≡ 1/h
is an integer number, and thus the propensity adopts
discrete values p = kh, with k = 0, .., S. Then,
the propensity distribution can be written as f(p, t) =∑S

k=0 nk(t) δ(p− kh), where we de�ne nk(t) as the frac-
tion of agents in state k (with propensity kh) at time t,

where
∑S

k=0 nk(t) = 1 for all times t ≥ 0. Then, the
evolution of the system is described by the following rate
equations:

dn0

dt
= [1− ωh− (1− ω)m)]n1 − (1− ω)mn0, (3a)

dnk

dt
= [ωh(k − 1) + (1− ω)m]nk−1 − nk

+
{
1− [ωh(k + 1) + (1− ω)m]

}
nk+1 (3b)

for 1 ≤ k ≤ S − 1,

dnS

dt
= [ω(1− h) + (1− ω)m]nS−1 − (1− ω)(1−m)nS ,

(3c)

where m ≡ ⟨p⟩ = h
∑S

k=0 k nk is the mean value of the
propensity. The �rst (gain) term in Eq. (3b) corresponds
to the transition of particles from state k − 1 to state k,
which happens with probability ωh(k − 1) + (1 − ω)hk′

when they interact with another particle in state k′.
Adding over all k′ values leads to m. The second (loss)
term represents k → k − 1 and k → k + 1 transitions,
which happen with probability 1 after interacting with
any other particle. Finally, the third (gain) term is anal-
ogous to the �rst term, where particles switch from state
k+1 to state k with probability 1−[ωh(k+1)+(1−ω)hk′]
when they interact with a k′-particle.
We are interested in the stationary distributions of

propensities in the population, which correspond to the
�xed points of the system of equations (3). On the one
hand, we can �rst notice that the two consensus states in
the extreme propensity values p = 0 (n∗

0 = 1, n∗
k = 0 for

k = 1, .., S) and p = 1 (n∗
S = 1, n∗

k = 0 for k = 0, .., S−1)
are �xed points of Eqs. (3) that correspond to the two
absorbing states of the particle system, where the mean
propensities are m = 0 and m = 1, respectively. On the
other hand, we show in Appendix A that for a given mean
propensity m < 1 the system of Eqs. (3) has non-trivial
�xed points given by

n∗
0 =

1

1 +
∑S

k=1 Gk(h, ω,m)
,

n∗
k = n∗

0 Gk(h, ω,m) for 1 ≤ k ≤ S,

(4)

with

Gk(h, ω,m) =
Πk−1

j=0 [(1− ω)m+ jωh]

Πk
j=1 [1− (1− ω)m− jωh]

, (5)
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or

Gk(h, ω,m) =
Γ
(

(1−ω)m
ωh + k

)
Γ
(

1−(1−ω)m
ωh − k

)
Γ
(

(1−ω)m
ωh

)
Γ
(

1−(1−ω)m
ωh

) (6)

using the gamma functions for m > 0 (see Appendix A),
and where the mean propensity must satisfy the relation

m+

S∑
k=1

(m− kh)Gk(h, ω,m) = 0. (7)

Notice that for m = 0 we have from Eq. (5) that
Gk(h, ω, 0) = 0 for 1 ≤ k ≤ S due to the j = 0 term
in the numerator, and thus we recover the consensus so-
lution n∗

0 = 1. Note also that Eq. (5) is not valid when
m = 1 because the denominator equals 0 due to the term
j = S = 1/h.
We now look for non-consensus stationary states m ̸=

0, 1. It is instructive to start analyzing the simplest cases
S = 1 and S = 2. For S = 1 (h = 1) is G1(1, ω,m) =
m/(1−m) from Eq. (5), and thus Eq. (7)

m+ (m− 1)G1(1, ω,m) = 0 (8)

is satis�ed for all values of m, that is, each m is a sta-
tionary value. This is because for S = 1 the propen-
sity model turns out to be equivalent to the voter model
[16, 17], where it is known that the fractions of vot-
ers in each state are conserved, i e., n0(t) = n0(0) and
n1(t) = n1(0) = 1−n0(0) for all t ≥ 0. Then, the station-
ary value of m is equal to its initial value m(0) = n1(0)
given by the initial propensity distribution. For S = 2
(h = 1/2), Eq. (7) for m is

m+ (m− 1/2)G1(h, ω,m) + (m− 1)G2(h, ω,m) = 0.(9)

Replacing in Eq. (9) the expressions for G1 and G2

G1(h, ω,m) =
(1− ω)m

1− ω/2− (1− ω)m
and (10a)

G2(h, ω,m) =
m [(1− ω)m+ ω/2]

(1−m) [1− ω/2− (1− ω)m]
, (10b)

we arrive, after doing some algebra, to the simple rela-
tion

(1− ω)m(1−m)(1− 2m) = 0.

Therefore, besides the extreme consensus states m∗ = 0
and m∗ = 1, we obtain the new stationary solution m∗ =
1/2. For general S, the possible stationary values of m
are given by the solutions of Eq. (7), which are the roots
of a polynomial of order S + 1. We were unable to �nd
the roots of that polynomial analytically for any S ≥ 3.
However, we have veri�ed numerically for many di�erent
values of ω and h that the only real roots are m∗ = 0,
m∗ = 1 and m∗ = 1/2, as in the case S = 2.
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FIG. 1: Main: distribution of propensities at the stationary
polarized state for step h = 0.1 and weights ω = 0.1 (circles),
ω = 0.3 (squares) and ω = 0.8 (diamonds). Filled symbols
joined with lines are the stationary solution Eqs. (11), while
open symbols correspond to MC simulation results. Inset:
upper (lower) curve corresponds to ω = 0.5 and h = 0.1
(h = 0.005), respectively.

We now analyze the non-trivial solutionm∗ = 1/2 that
corresponds, as we shall see below, to a stationary dis-
tribution of propensities f∗(p) that is symmetric and po-
larized around p = 1/2. For m = 1/2, Eqs. (4) and (6)
become

n∗
P,0 =

1

1 +
∑S

k=1 Gk(h, ω, 1/2)
, (11a)

n∗
P,k = n∗

P,0 Gk(h, ω, 1/2) 1 ≤ k ≤ S,

(11b)

Gk(h, ω, 1/2) =
Γ
(
1−ω
2ωh + k

)
Γ
(
1+ω
2ωh − k

)
Γ
(
1−ω
2ωh

)
Γ
(
1+ω
2ωh

) , (11c)

where the subindex P in Eqs. (11) stands for polariza-
tion. This series solution Eqs. (11) is plotted in Fig. 1
for S = 10 (h = 0.1) and di�erent values of ω (�lled
symbols), while the inset shows the behavior for two
values of h (�lled circles). We observe that, for each
ω, the shape of f∗(p) is symmetric around p = 1/2
and peaked at the opposite extreme values p = 0 and
p = 1. This describes a situation in which propensities
in the population are polarized, where most individuals
adopt opposite and extreme propensity values. In the
main plot we see that the system becomes more polar-
ized as ω increases, while we observe in the inset that
the polarization is more pronounced as h decreases. To
quantify the level of polarization we computed the ratio
R(h, ω) ≃ σ∗(h, ω)/σu between the standard deviation

σ∗(h, ω) =
√

⟨p2⟩ − ⟨p⟩2 =

√(
h2

∑S
k=0 k

2 n∗
k

)
− 1/4 of

the propensity distribution f∗(p) for given values of h

and ω, and the corresponding value σu =
√

1/12 + h/6

of the uniform distribution fu(p) =
1

S+1

∑S
k=0 δ(p− kh).
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FIG. 2: Polarization level R versus weight ω for h = 0.05
(circles) and h = 0.1 (squares). The horizontal dashed lines
denote the saturation values at ω = 1.

As the width of f∗(p) increases with respect to the uni-
form distribution when the system is polarized, we expect
R > 1 and proportional to the magnitude of the polar-
ization. Results are shown in Fig. 2. We see that, for a
given h, R increases with ω from the value 1 for ω = 0
to the value 1/(2σu) corresponding to the double-peak
distribution f(p) = [δ(p) + δ(p − 1)]/2 obtained when
ω = 1. It is quite remarkable that the system becomes
polarized (R > 1) for any ω > 0, while for ω = 0 there
is no polarization (R = 1) and the symmetric stationary
solution is the uniform distribution nk = 1/(S+1) for all
k = 0, .., S, as we can check from Eqs. (4) and (5) using
ω = 0 and m = 1/2, or alternatively from Eqs. (11). In
other words, there is no polarization when agents assign
zero weight to their own propensity, but a tiny amount of
weight is enough to polarize the population. In summary,
for any h and ω, the only stationary states predicted by
the rate equations (3) are the consensus absorbing states
m∗ = 0 and m∗ = 1, and the symmetric polarized state
m∗ = 1/2 in which most agents hold extreme propensi-
ties. This polarization phenomenon appears when ω > 0
and is magni�ed as ω increases.

IV. MONTE CARLO SIMULATIONS

To compare the previous analytical results with that
obtained from Monte Carlo (MC) simulations of the
model we studied the time evolution of the fractions nk

in single realizations of the dynamics starting from a uni-
form distribution, as we show in Fig. 3 for a population
of N = 106 agents, S = 10 (h = 0.1) and ω = 0.5. We
can see that after a short initial transient the fractions
nk reach a nearly constant value (plateau) that depends
on k. However, this state is not stable and eventually
all nk �nally decay to zero except for n10 (p = 1) that
increases and reaches 1, corresponding to a consensus in
p = 1. We observe that the duration of this quasista-
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FIG. 3: Monte Carlo results for the time evolution of the
fraction of agents nk with propensities p = kh (k = 1, .., 10)
in a single realization of the dynamics starting from a uniform
distribution of propensities in [0, 1]. The system consists of a
population of N = 106 agents with h = 0.1 and ω = 0.5. Solid
(dashed) curves correspond to p = 1.0 (0.0), p = 0.9 (0.1),
p = 0.8 (0.2), p = 0.7 (0.3), p = 0.6 (0.4) and p = 0.5 (from
top to bottom). The main panel shows the entire evolution
up to the consensus time t ≃ 420, while the inset shows a
detailed view of the plateaus at the quasistationary state.

tionary state described by the plateaus is approximately
∆t ≃ 150, which is similar to that of the �nal exponen-
tial approach to consensus, a phenomenon observed in
related models with intermediate states [13, 18, 19]. The
height of the plateaus (see inset of Fig. 3 for a detailed
view) are plotted by open symbols in the main panel
of Fig. 1 for h = 0.1 and di�erent values of ω, and in
the inset of the same �gure for ω = 0.5 and two val-
ues of h. We observe a very good agreement with the
analytic stationary values Eqs. (11) obtained from the
rate Eqs. (3) (�lled symbols), which describe an in�nite
large system where �nite-size �uctuations are neglected.
We have checked that, indeed, the length of the plateaus
increase with N and thus they become in�nitely large
in the thermodynamic limit, corresponding to the sta-
tionary states predicted by the theory. Therefore, the
polarized state seems to be unstable, and an extremist
consensus is eventually achieved in a �nite system.

We have also performed simulations starting from an
asymmetric initial condition that consists of a uniform
distribution of propensities in the interval [0, 0.5], with
N = 106 agents, S = 10 and ω = 0.8. Results are shown
in Fig. 4. The top and bottom curves correspond to
the total fraction of agents with propensities p ≤ 0.5
(
∑5

k=0 nk) and p ≥ 0.6 (
∑10

k=6 nk), respectively, while
the insets show the individual fractions. We see that the
system does not reach a quasistationary state as in the
previous studied case where the initial propensity distri-
bution was symmetric but, instead, agents' propensities
are driven to p = 0 given that low propensity values
are favored at the initial state. As we shall see in sec-
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FIG. 4: Main: time evolution of the total fraction of agents
with propensities p = 0, 0.1, 0.2, 0.3, 0.4 or 0.5 (top curve) and
propensities p = 0.6, 0.7, 0.8, 0.9 or 1.0 (bottom curve), for a
system with N = 106 agents, S = 10 and ω = 0.8, and with
an asymmetric initial state where propensities are uniformly
distributed in the interval [0, 0.5]. Top and bottom insets
show the evolution of propensity fractions nk for p ≤ 0.5 and
p ≥ 0.6, respectively.

tion V, this is a consequence of the fact that the two
consensus states are stable �xed points while the sym-
metric polarized state is a saddle point and, therefore, for
most asymmetric initial conditions the system is quickly
driven away from the symmetric polarized state towards
the consensus state. Even though a stationary state is
not reached, the dynamics exhibits an interesting behav-
ior. We can see in Fig. 4 that propensities above p = 0.5,
which are initially empty, become populated by agents,
and thus the fractions nk for k = 6, .., 10 exhibit a non-
monotonic time evolution (bottom inset). As a conse-
quence, the system reaches a small level of transient po-
larization at time t ≃ 10 (maximum of bottom curve of
the main panel) before decaying to the p = 0 consensus.

To study the lifetime of the quasiestationary polarized
state in �nite systems we computed the time to reach
consensus starting from a uniform distribution in [0, 1].
In Fig. 5 we show MC results of the mean consensus
time τ vs ω for various system sizes N . We see that τ
increases with ω and seems to diverge when ω approaches
1 as a power law τ ∼ (1 − ω)−α, with α ≃ 2 (see inset).
This means that polarization not only gets stronger as
ω increases, but also lasts for longer times. The collapse
of the data in the inset also shows that τ increases very
slowly with N , as lnN . In the next section we perform a
linear stability analysis for the S = 2 case that allows to
obtain the exponent α and the logarithmic scaling with
N .
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FIG. 5: Mean consensus time τ vs ω for h = 0.1 and sys-
tem sizes N = 20 (triangles), N = 80 (diamonds), N = 320
(squares) and N = 1280 (circles). Inset: the data collapse
shows the approximate scaling τ ∼ (1− ω)−2 lnN for ω ≲ 1.
The dashed line has slope −2.

V. STABILITY ANALYSIS FOR THE S = 2 CASE

An insight into the results shown in the last section
can be obtained by studying the simplest non-trivial case
S = 2, for which the rate equations (3) are

dn0

dt
= [1− ω/2− (1− ω)m)]n1 − (1− ω)mn0, (12a)

dn1

dt
= (1− ω)mn0 − n1 + (1− ω)(1−m)n2, (12b)

dn2

dt
= [ω/2 + (1− ω)m]n1 − (1− ω)(1−m)n2. (12c)

It proves convenient to work with the closed system of
equations for n0 and n2

dn0

dt′
= [1 + ϵ(n0 − n2)] (1− n0 − n2)− ϵ(1− n0 + n2)n0,

(13a)

dn2

dt′
= [1− ϵ(n0 − n2)] (1− n0 − n2)− ϵ(1 + n0 − n2)n2,

(13b)

obtained from Eqs. (12) by using the identities n1 =
1−n0−n2 and 2m = n1+2n2 = 1−n0+n2 to express n1

and m in terms of n0 and n2, and de�ning the parameter
ϵ ≡ 1 − ω and the rescaled time t′ = t/2. As we proved
in section III for S = 2, the rate equations have three
�xed points. The two trivial �xed points that represent
consensus states in p = 0 and p = 1 are n⃗∗

0 = (1, 0, 0) and
n⃗∗
2 = (0, 0, 1), respectively. The non-trivial �xed point

n⃗∗
P = (n∗

P,0, n
∗
P,1, n

∗
P,2) corresponding to polarization is

n⃗∗
P =

(
1

3− ω
,
1− ω

3− ω
,

1

3− ω

)
, (14)
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which is calculated from Eqs. (4) using the expres-
sions n∗

P,0 = 1/(1 + G1 + G2), n∗
P,1 = G1 n

∗
P,0 and

n∗
P,2 = G2 n

∗
P,0, with G1(1/2, ω, 1/2) = 1 − ω and

G2(1/2, ω, 1/2) = 1 obtained from Eqs. (10) for S = 2
(h = 1/2) by plugging m = 1/2.
To investigate how the system approaches consensus

we start by performing a linear stability analysis of the
trivial �xed point n⃗∗

0 = (1, 0, 0) which, by symmetry, is
analogous to the analysis of n⃗∗

2. We consider small inde-
pendent perturbations 0 < x0, x2 ≪ 1 of the �xed point
components and write n0 = 1 − x0 and n2 = x2. Plug-
ging these expressions for n0 and n2 into Eqs. (13) we
obtain, to �rst order in x0 and x2 (neglecting terms of
order 2), the following system of linear equations written
in matrix representation:

dx

dt′
= Ax,

where

A ≡
(

−1 1 + 2ϵ
1− ϵ −1− ϵ

)
,

and x ≡ (x0, x2). The eigenvalues of the matrix A

λ± =
−2− ϵ±

√
(2 + ϵ)2 − 8ϵ2

2
(15)

are both negative, and thus the �xed point n⃗∗
0 is stable

under a small perturbation in any direction. To study the
behavior of the system for ω ≲ 1 we expand Eqs. (15) to
leading order in 0 < ϵ ≪ 1. This gives

λ+ = −ϵ2 +O(ϵ3), λ− = −2 +O(ϵ) (16)

and, therefore, we have

x0(t
′) ≃ a e−ϵ2t′ + b e−2t′ and

x2(t
′) ≃ c e−ϵ2t′ + d e−2t′ ,

where a, b, c and d are constants given by the initial con-
dition. At long times, only the term corresponding to the
lowest eigenvalue λ+ survives, and thus the time evolu-
tion of n0 and n2 after a perturbation from n⃗∗

0 are ap-
proximately given by

n0(t) ≃ 1− a e−ϵ2t/2 and n2(t) ≃ c e−ϵt/2. (17)

The mean time to reach consensus in a population of
N agents can be estimated as the time for which the
fraction of agents with propensity p = 0 becomes larger
than 1−1/N (less than one agent with propensity p > 0).
Then, from Eq. (17) we obtain that at consensus time τ

is n0(τ) = 1−a e−ϵ2τ/2 = 1− 1/N , from where we arrive
to the approximate expression for the mean consensus
time

τ ≃ 2 ln(aN)

(1− ω)2
, (18)

after replacing back ϵ by 1−ω. The (1−ω)−2 divergence
of τ as ω → 1 predicted by Eq. (18) is in good agreement
with the exponent α ≃ 2 found from MC simulations
(see inset of Fig. 5). Equation (18) also agrees with the
logarithmic increase of τ with N observed in the inset of
Fig. 5.
We now study the stability of the polarized state. For

that, we linearize the system of Eqs. (13) around the
�xed point n⃗∗

P by rewriting n0 and n2 as n0 = n∗
P,0 + x0

and n2 = n∗
P,2 + x2, with 0 < |x0|, |x2| ≪ 1 and n∗

P,0 =

n∗
P,2 = 1/(2 + ϵ) from Eq. (14). Expanding the resulting

equations to �rst order in x0 and x2 we arrive to the
following linear system:

dx

dt′′
= Bx,

with

B ≡
(

−2(1 + ϵ) −2(1 + ϵ)− ϵ2

−2(1 + ϵ)− ϵ2 −2(1 + ϵ)

)
,

and t′′ = t/(4 + 2ϵ). The eigenvalues of B are

λ+ = ϵ2 and λ− = −4(1 + ϵ)− ϵ2, (19)

while the associated eigenvectors are

v+ = (1,−1) and v− = (1, 1).

In Fig. 6 we show the �ow diagram that summarizes the
stability analysis of the S = 2 case. The �xed points n⃗∗

0

and n⃗∗
2 (circles) are stable in any direction, while n⃗∗

P (di-
amond) is a saddle point that is stable only along the v−
direction (λ− < 0) and unstable along any other direc-
tion. This means that starting from a state that is sym-
metric around p = 1/2 [n0(0) = n2(0)] the system evolves
along the line n0(t) = n2(t) towards the �xed point n⃗∗

P .
However, any perturbation from the �xed point n⃗∗

P that
is not symmetric around the center propensity p = 1/2
leads the system to one of the absorbing consensus con-
�gurations p = 0 or p = 1 for all agents. This explains
the MC simulation results shown in section IV, where
the fractions nk show an initial fast approach from a uni-
form (symmetric) distribution nk(0) ≃ 1/(S + 1) (with
k = 0, .., S) to the polarized stationary state n⃗∗

P (see
Fig. 3) but, eventually, �nite-size �uctuations allow the
system to escape from this unstable state and reach con-
sensus.

VI. STABILITY ANALYSIS FOR THE S ≥ 3
CASE

In this section we analyze the stability of the �xed
points of the rate equations (3) for general S, namely,
the two consensus points n⃗∗

0 = (1, 0, .., 0) and n⃗∗
S =

(0, 0, .., 1), and the symmetric point n⃗∗
P given by

Eqs. (11). As we showed in the last section for the 3-
propensity system (S = 2), any symmetric distribution
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FIG. 6: Schematic �ow diagram in the n0 − n2 plane for the
3�propensity system (S = 2). The two stable �xed points de-
noted by circles correspond to the absorbing consensus states
in an extreme propensity, while the saddle point denoted by
a diamond represents the steady-state of polarization. The
lines with arrows show the �ow direction of the system inside
the composition triangle 0 ≤ n0 + n2 ≤ 1.

evolves towards the �xed point n⃗∗
P , and one can guess

that this behavior also holds for any S ≥ 2. More inter-
estingly, we found that for S ≥ 3 there are non-trivial
distributions that are not symmetric around p = 1/2
which also evolve towards n⃗∗

P , as we shall see below. We
start by reducing the number of independent variables to

S using the relation nS = 1 −
∑S−1

k=0 nk and expressing
the mean propensity as

m =

S−1∑
k=1

khnk + nS = 1−
S−1∑
k=0

(kh− 1)nk,

and so we can rewrite Eqs. (3) as d
dtnk = Fk(n0, .., nS−1),

where the functions Fk correspond to the right-hand-
side of the rate equations. We can then di�erentiate Fk

around the �xed points to obtain a linear system of equa-
tions de�ned by a linearized matrixM. For practical rea-
sons, we used Mathematica to calculate the matrix M,
its eigenvalues and eigenvectors.
Let us �rst analyze the stability of n⃗∗

0 (the same re-
sults hold from the analysis of n⃗∗

S). In Fig. 7 we plot the
maximum of the real part of the eigenvalues λmax0 of M0,
calculated numerically, as a function of ω for two values
of h. We can see that Re(λmax0 ) < 0 for all 0 ≤ w ≤ 1.
Therefore, all eigenvalues ofM0 have a negative real part
and thus the consensus �xed point n⃗∗

0 is locally asymp-
totically stable. This result generalizes the stability of
the two consensus states found for S = 2 (section V) to
all values S ≥ 2. We also see in the inset of Fig. 7 that
Re(λmax0 ) ∼ (1− ω)2 as ω → 1. Thus, assuming that the
mean consensus time scales as τ ∼ 1/Re(λmax0 ), we found
that the scaling τ ∼ (1 − ω)−2 when ω approaches 1.0
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FIG. 7: Maximum real part of the eigenvalues of matrix MP

vs ω for h = 0.1 (circles) and h = 0.05 (squares). The inset
shows how Re(λ) approaches 0 from below as ω goes to 1.
Dashed lines have slope 2.

seems to hold for any S ≥ 2 (see Fig. 5 for S = 10).
We now repeat the analysis above for the symmetric

�xed point n⃗∗
P . We observed numerically that, for various

values of S and ω, the matrix MP has only one positive
eigenvalue and S − 1 negative eigenvalues. As we know
from standard dynamical system theory, the eigenvalues
ofMP with negative real part generate the tangent plane
T to the stable manifold of n⃗∗

P , which therefore has di-
mension S − 1. Besides, the space of propensity distri-
bution (n0, .., nS) with mean m = 1/2 is an a�ne plane
of codimension 1 which contains n⃗∗

P , whose intersection
with T is a manifold of positive dimension S − 1. When
the system starts from a point of this manifold it follows
a trajectory that converges to n⃗∗

P , that is, the points on
T represent propensity distributions with mean m = 1/2
that evolve towards the polarized state. To illustrate
with an example, one of the eigenvectors of MP that we
found numerically for the case S = 9 and ω = 1/2 is

V⃗ ≃ (0.31551,−0.74694, 0.90799,−0.97402, 1.00000,

−1.00000, 0.97402,−0.90799, 0.74694,−0.31551),

whose associated eigenvalue is λ = −1.878148. We can

now consider the point n⃗(0) = n⃗∗
P + 0.02 V⃗ on the plane

T as an initial state of the system, which is obtained
by slightly perturbing the �xed point n⃗∗

P in the direc-

tion of V⃗ . The time evolution of the components nk of
n⃗ are plotted in the main panel of Fig. 8, while the inset
shows the initial perturbed state (empty diamonds) as
compared to n⃗∗

P (�lled circles). We can see that the n⃗(0)
is not symmetric with respect to p = 0.5. This asymme-

try is the result of the components of V⃗ , which exhibit an
anti-symmetry that is necessary to preserve the normal-

ization condition
∑S

k=0 nk(t) = 1 for all t ≥ 1. We ob-
serve that the fractions nk (solid and dotted lines) quickly
converge to the corresponding values of the components
of n⃗P denoted by horizontal dashed lines. However, if we
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FIG. 8: Time evolution of the propensity fractions nk for a
system with h = 1/9 (S = 9) and ω = 0.5. Solid curves cor-
respond to p = 0, 1/9, 2/9, 3/9 and 4/9, while dotted curves
are for p = 1, 8/9, 7/9, 6/9 and 5/9 (from top to bottom). In-
set: the initial values nk(0) (empty diamonds) correspond to
a small perturbation of the polarized stationary distribution
given by the components of the �xed point n⃗∗

P (�lled circles).

zoom in we can see that n⃗ gets extremely close to n⃗P but
not exactly to n⃗P . This very tiny di�erence is a conse-
quence of the fact that the initial state n⃗(0) belongs to
the tangent plane T to the stable manifold of n⃗P , but
a priori not to the stable manifold itself. Therefore, the
systems spends some time very near to n⃗P before even-
tually going away and converging to the consensus state
p = 0.

VII. CONTINUOUS APPROXIMATION

In order to analyze the polarized state in more detail
it proves useful to consider the system of rate Eqs. (3) in
the limiting case of a very small step h ≪ 1. This allows
to derive continuous in p partial di�erential equations
that describe the long-time behavior of the system, as
we shall see in this section.
As we explained in section III, after a short initial

transient all agents take discrete propensities in the set
p = kh, with k = 0, .., S, and thus the propensity distri-
bution can be written as

f(p, t) =

S∑
k=0

nk(t) δ(p− kh), (20)

where δ(p−kh) is the Dirac delta function at kh. Notice
that the consensus states correspond to f(p) = δ(p) and
f(p) = δ(p − 1). We consider a generic function ϕ(p) of
the propensity, whose mean value over the population is
de�ned as

⟨ϕ⟩f (t) ≡
∫ 1

0

ϕ(p)f(p, t)dp =

S∑
k=0

nk(t)ϕ(kh). (21)

This is a macroscopic scalar variable of the particle sys-
tem, like the mean propensity m(t) = ⟨p⟩(t) and its vari-
ance when we take ϕ(p) = p and ϕ(p) = (p−⟨p⟩)2, respec-
tively. In Appendix B we show that the time evolution
of ⟨ϕ⟩f is described by the following equation:

1

h

d

dt
⟨ϕ⟩f =

⟨
v(p, t)ϕ′(p) +

h

2
ϕ′′(p)

⟩
f

+ [1−B0(t)] f(0, t)

[
ϕ′(0)− h

2
ϕ′′(0)

]
(22)

− [1−B1(t)] f(1, t)

[
ϕ′(1) +

h

2
ϕ′′(1)

]
+O(h2),

where

v(p, t) ≡ 2m(t)− 1 + 2ω [p−m(t)] ,

B0(t) ≡ (1− ω)m(t) and

B1(t) ≡ (1− ω) [1−m(t)] .

There are no O(h2) terms when ϕ is linear in p. As we
can see in the derivation of Appendix B, the �rst term
in the rhs of Eq. (22) comes from the rate equations for
nk(t) (0 < k < S) that describe the evolution of the
propensity distribution in (0, 1), while the second and
third terms come from the dynamics near the boundary
points at p = 0 and p = 1, respectively, and describe the
balance between the particles entering and leaving the
boundary. The coe�cient v(p, t) is related to the drift of
particles from the center value p = 1/2 towards the ends
of the interval [0, 1], while B0(t) and B1(t) are boundary
coe�cients.
Taking ϕ(p) = 1 in Eq. (22) leads to the conservation

of the total mass
∫ 1

0
f(p, t)dp = 1, as expected. Besides,

for ϕ(p) = p we obtain the following equation for the
evolution of the mean propensity:

1

h

d

dt
m(t) = 2m(t)− 1 + f(0, t) [1− (1− ω)m(t)]

− f(1, t) [ω + (1− ω)m(t)] . (23)

We can check from Eq. (23) that if the population is
initially in a consensus state, i.e. (i) m(0) = 0 or (ii)
m(0) = 1, then (i) m(t) = 0 or (ii) m(t) = 1 for any
t ≥ 0, meaning that the population remains in the con-
sensus state as expected from the �xed point solutions
m∗ = 0, 1. We can also see in Eq. (23) that term 2m− 1
describes a drift towards m = 0 (m = 1) when m < 1/2
(m > 1/2) caused by the instability of the �xed point
m∗ = 1/2. Therefore, starting from a nearly uniform dis-
tribution with m(0) slightly larger than 1/2 as in the MC
simulations, agents' propensities are slowly dragged to
p = 1. Besides, we see thatm(0) = m∗ = 1/2 is a station-
ary value if f(0, 0) = f(1, 0), in agreement with the fact
that any symmetric distribution f(1/2− p) = f(1/2+ p)
evolves towards the polarized �xed point n⃗∗

P , as shown
in sections V and VI.
To better explore the dynamics, we can derive an ap-

proximate equation for the time evolution of the propen-
sity distribution f(p, t). For that, we can rewrite Eq. (22)
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neglecting order h terms as

1

h

d

dt
⟨ϕ⟩f =

∫ 1

0

[v(p, t) + u(p, t)]f(p, t)ϕ′(p) dp, (24)

where we have introduced the �eld

u(p, t) = [1−B0(t)]δ(p)− [1−B1(t)]δ(p− 1)

= [1− (1− ω)m(t)]δ(p)− [ω + (1− ω)m(t)]δ(p− 1).

Integrating by parts the r.h.s. of Eq. (24) and regrouping
terms leads to∫ 1

0

ϕ(p)

{
1

h

∂

∂t
f(p, t) +

∂

∂p

{
[v(p, t) + u(p, t)] f(p, t)

}}
dp

= [v(1, t) + u(1, t)] f(1, t)ϕ(1)

− [v(0, t) + u(0, t)] f(0, t)ϕ(0).

Since this relation holds for any function ϕ we see that f
satis�es formally the transport equation

∂

∂t
f(p, t) = − ∂

∂p

{
h [v(p, t) + u(p, t)] f(p, t)

}
+ h [v(1, t) + u(1, t)] f(1, t)δ(p− 1)

− h [v(0, t) + u(0, t)] f(0, t)δ(p). (25)

Equation (25) expresses the conservation of to-
tal number of particles under the transport in-
duced by the e�ective drift v + u and with
source terms h [v(1, t) + u(1, t)] f(t, 1)δ(p − 1) and
−h [v(0, t) + u(0, t)] f(t, 0)δ(p) at the boundary points
p = 1 and p = 0, respectively. An intuitive interpre-
tation of this equation is that the mass density f(p, t)
is transported by the �eld v in [0, 1] and su�ers an addi-
tional impulse at the borders p = 0, 1 given by the �eld u,
which is associated to the rate Eqs. (3a) and (3c) for n0

and nS , respectively. This is reminiscent of the bouncing
e�ect of particles at the boundaries, by which a particle
that hits p = 0 (p = 1) can later jump back to the inter-
val (0, 1) with probability (1− ω)m(t) = v(0, t) + u(0, t)
[(1− ω)(1−m) = −v(1, t)− u(1, t)].

A. Approximate stationary state solution

It is useful to decompose f(p, t) into a sum of a bound-
ary term f(0, t) δ(p)+f(1, t) δ(p−1) taking into account
the dynamics near p = 0 and p = 1, and an inside term
f̃(p, t) that describes the dynamics in (0, 1):

f(p, t) = f̃(p, t) + f(0, t) δ(p) + f(1, t) δ(p− 1),

with f̃(0, t) = f̃(1, t) = 0. Then, Eq. (22) becomes

1

h

d

dt
⟨ϕ⟩f =

⟨
v ϕ′ +

h

2
ϕ′′

⟩
f̃
+B0 f(0, t)

[
ϕ′(0)− h

2
ϕ′′(0)

]
− B1 f(1, t)

[
ϕ′(1)− h

2
ϕ′′(1)

]
, (26)

where we have neglected terms of order 2 and higher,
and simpli�ed the notation by writing v = v(p, t), B0 =
B0(t), B1 = B1(t) and ϕ = ϕ(p). We are interested in
the stationary solutions to Eq. (26). As expected from
previous results, the consensus states f∗(p) = δ(p) and
f∗(p) = δ(p− 1) are stationary solutions. One can check
that by noticing that for p = 0 (p = 1) consensus is

f̃∗(p) = 0, f∗(0) = 1 (f∗(0) = 0), f∗(1) = 0 (f∗(1) = 1)
and m = 0 (m = 1). In view of our �ndings in section III
we also expect a symmetric polarized state with mean
m∗ = 1/2 to be a stationary solution. In that perspec-
tive it makes sense to drop the terms involving ϕ′′(0) and
ϕ′′(1) for symmetry reasons. We then look for a station-

ary solution f̃∗(p) = f∗(p) − f∗(0) δ(p) − f∗(1) δ(p − 1)
satisfying⟨

v ϕ′ +
h

2
ϕ′′

⟩
f̃∗

+B0 f
∗(0)ϕ′(0)−B1 f

∗(1)ϕ′(1) = 0,

(27)
for any ϕ(p). In Appendix C we show that the solution
to Eq. (27), di�erent from δ(p) and δ(p− 1), is given by

f∗(p) = A

{
exp

[
2ω

h

(
p− α

2ω

)2
]

(28)

+
h

2(1− ω)
exp

(
α2

2ω h

)[
δ(p)

m
+

δ(p− 1)

1−m

]}
,

where α ≡ 1 − 2(1 − ω)m and A > 0 is a normalization

constant that satis�es the condition
∫ 1

0
f∗(p) dp = 1. No-

tice that the magnitudem in Eq. (29) is the mean propen-

sity that must satisfy the relation
∫ 1

0
(p−m) f∗(p)dp = 0,

which is equivalent to∫ 1

0

(p−m) exp

[
2ω

h

(
p− α

2ω

)2
]
dp = 0.

This is a nonlinear equation in m that we studied nu-
merically for various values of ω and h. We found that
m = 1/2 is the only solution in all cases, which is in agree-
ment with the symmetric solution of the rate Eqs. (3) in
section III. Therefore, the symmetric stationary distribu-
tion of Eq. (26) is given by

f∗(p) = A

{
exp

[
2ω

h

(
p− 1

2

)2
]

+
h

(1− ω)
exp

( ω

2h

)
[δ(p) + δ(p− 1)]

}
, (29)

with

A =

{∫ 1

0

exp

[
2ω

h

(
p− 1

2

)2
]
dp+

2h exp
(

ω
2h

)
(1− ω)

}−1

.

As we can see, f∗(p) is symmetric around m = 1/2 and is

the sum of the continuous function A exp
[
2ω
h

(
p− 1

2

)2]
in the interval (0, 1) that has the shape of an inverted
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FIG. 9: Propensity cumulative distribution vs p for the pa-
rameter values indicated in the legends. Solid lines corre-
spond to the approximate continuous solution for h ≪ 1 from
Eq. (30), while circles represent the exact discrete solution

F ∗
k =

∑k
k′=0 nk′ .

Gaussian, and the two Dirac masses located at the
boundaries, what makes f∗(p) a discontinuous function
at p = 0 and p = 1.
We can alternatively describe the stationary solution

by the cumulative distribution function of f∗(p)

F ∗(p) =


0 if p < 0,
Ah

(1−ω) exp
(

ω
2h

)
if p = 0,

A
∫ p

0
e

2ω
h (p− 1

2 )
2

dp+ Ah
(1−ω) exp

(
ω
2h

)
if 0 ≤ p < 1,

1 if p ≥ 1.

(30)
In Fig. 9 we plot the approximate stationary cumulative
distribution F ∗(p) for continuous p (solid curves) and the

exact discrete cumulative distribution F ∗
k =

∑k
k′=0 nk′

(circles) for two di�erent small values of h. We see that
the data for F ∗(p) agrees very well with that of F ∗

k , show-
ing that f∗(p) given by Eq. (29) is indeed the limit of∑S

k=0 n
∗
k δ(p− kh) when h → 0.

VIII. SUMMARY AND DISCUSSION

We studied a system of interacting particles that mod-
els the dynamics of voting intentions in a population of
individuals that interact by pairs. The propensity of an
individual to vote for a given candidate may either in-
crease or decrease after interacting with another part-
ner, depending on the propensity of the partner and the
weight ω in [0, 1] assigned to its own propensity. We have
investigated the dynamics of the system by means of a
rate equation approach and we have checked the results
with MC simulations. Starting from a nearly uniform
distribution of propensities in [0, 1], we found that for
ω = 0 the system is quickly driven towards an extreme

propensity (p = 0 or p = 1) that corresponds to the ini-
tial majority. The dynamics stops evolving when all in-
dividuals share the same extreme propensity; an absorb-
ing consensus state. However, for ω > 0 the evolution is
quite di�erent: the system initially evolves towards a sta-
tionary state characterized by a distribution of propen-
sities that is symmetric around p = 1/2 and peaked at
the extreme values p = 0 and p = 1, and it becomes
more pronounced when ω gets larger. This distribution
describes a state of polarization where most individuals
adopt extreme values of p, whose e�ect is magni�ed as
ω increases. This implies that a tiny weight assigned to
our own propensity is enough to polarize the population
into two groups with extreme and opposite propensities.
However, this state of symmetric polarization is unsta-
ble, and thus any perturbation from that state leads the
system towards one of the two extremist consensus. Sin-
gle MC simulations of the dynamics of the model showed
that, indeed, the system may initially reach this sym-
metric quasistationary state but �nite-size �uctuations
eventually drive the system towards one of the two ab-
sorbing con�gurations. A stability analysis of the rate
equations shows that any symmetric distribution evolves
towards the polarized state, but there are also non-trivial
propensity distributions with mean propensity m = 1/2
that are not symmetric around p = 1/2 and that evolve
and reach the polarized state.

An insight into the polarized state was obtained by an-
alyzing the continuous limit of the system of rate equa-
tions. This approximation lead to a transport equation
with a convection term that represents a drift of particles
from the center propensity p = 1/2 towards the extremes,
which induces polarization. The stationary solution has
the shape of an inverted Gaussian with two Delta func-
tions at p = 0 and p = 1 that account for the dynamics
at the boundaries. In this peculiar dynamics, particles
can hit and stay at one of the boundaries for some time
but eventually leave, and then hit the boundary again
and so on, following an endless loop. We have quanti�ed
the lifetime of the polarized state by measuring the mean
consensus time τ , and found that it increases with ω and
diverges as τ ∼ (1 − ω)−2 when ω approaches 1. This
would imply that polarization is quite stable in popula-
tions with narrow-minded individuals that only take into
account its own opinion when interacting with others,
reinforcing their previous believes and adopting more ex-
treme viewpoints. This result is akin to that obtained in
related models for opinion formation [11�14] that include
a reinforcement mechanism by which pairs of individuals
with the same opinion orientation (both in favor or both
against a given political issue) are more likely to interact
and become more extremists. Even though the propen-
sity model studied in this article does not include this
mechanism implicitly, it is able to capture the same phe-
nomenology by implementing a simple interaction rule
that consider pairwise interactions between individuals
as independent of the opinion group they belong to.

In the studied model, the propensity update proba-
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bility is a simple weighted average of the propensities
of the two interacting individuals. It would be worth-
while to explore some extensions of the model that con-
sider updating probabilities that are non-linear functions
of the propensities and investigate how the behavior of
the model is a�ected, for instance, whether the polar-
ized state becomes more stable or not. It might also be
interesting to study versions of the model where pair-
wise interactions are not simply taken as all-to-all, but
rather take place on lattices or complex networks. As
the model studied here is akin to multistate voter mod-
els with intermediate states and two extreme absorbing
states corresponding to consensus [13, 14, 18�21], we ex-

pect that the dynamics of the propensity model on two-
dimensional lattices will exhibit some of the phenomenol-
ogy observed in these models. Some of the phenomena
we expect to see include metastable phases in which the
system falls into long-lasting striped states where agents
organize into single-opinion horizontal, vertical or diago-
nal bands [18, 19, 22�24] whose lifetime scales with the
system size as τ ∼ Nν , and ν is a non-trivial exponent
[14]. Furthermore, by including in the propensity model
a control parameter like temperature we also expect to
�nd non-equilibrium phase transitions that belong to the
generalized voter model universality class [23�26]. These
are all topics for future investigation.

APPENDIX A: STATIONARY SOLUTIONS OF THE RATE EQUATIONS

Setting the time derivatives of Eqs. (3) to zero leads to the system

[1− ωh− (1− ω)m)]n1 − (1− ω)mn0 = 0, (A1a)

[ωh(k − 1) + (1− ω)m]nk−1 − nk +
{
1− [ωh(k + 1) + (1− ω)m]

}
nk+1 = 0 1 ≤ k ≤ S − 1, (A1b)

[ω(1− h) + (1− ω)m]nS−1 − (1− ω)(1−m)nS = 0. (A1c)

Notice that the two consensus states corresponding to

• m = 0, n0 = 1, nk = 0 for k = 1, .., S,

• m = 1, n1 = 1, nk = 0 for k = 0, .., S − 1,

are solutions of the system of Eqs. (A1). To �nd other possible non-trivial solutions we �rst note that nk (for all
k = 1, .., S) can be expressed as a function of n0. Starting from Eq. (A1a) we obtain

n1 =
(1− ω)mn0

1− ωh− (1− ω)m
. (A2)

Then, solving for n2 from Eq. (A1b) for k = 1, and using the previous expression for n1 we obtain

n2 =
mn0(1− ω)(ωh+ (1− ω)m)

(1− ωh− (1− ω)m)(1− 2ωh− (1− ω)m)
. (A3)

The same procedure applied to k = 2 leads to

n3 =
mn0(1− ω)(ωh+ (1− ω)m)(2ωh+ (1− ω)m)

(1− ωh− (1− ω)m)(1− 2ωh− (1− ω)m)(1− 3ωh− (1− ω)m)
. (A4)

In general we have

nk = n0 Gk(h, ω,m) 1 ≤ k ≤ S, (A5)

where

Gk(h, ω,m) =
Πk−1

j=0 [(1− ω)m+ jωh]

Πk
j=1 [1− (1− ω)m− jωh]

, (A6)

as quoted in Eq. (5) of the main text. The value of n0 can be obtained by inserting the expression nk = n0 Gk(h, ω,m)

in the normalization condition
∑S

k=0 nk = 1 and solving for n0, which leads to the expression

n0 =
1

1 +
∑S

k=1 Gk(h, ω,m)
. (A7)
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quoted in Eq. (4) of the main text. Using relation A5 we can rewrite the mean propensity m as

m =

S∑
k=0

hknk = hn0

S∑
k=1

k Gk(h, ω,m),

which after replacing the expression A7 for n0 and rearranging the terms becomes Eq. (7) of the main text.
When m > 0 we can rewrite Gk(h, ω,m) in terms of the gamma functions by using the Pochhammer formula

(z)k ≡ z(z + 1)(z + 2)...(z + k − 1) =
Γ(z + k)

Γ(z)
for z ∈ C\Z− and k ≥ 0 integer, (A8)

which follows from the relation Γ(z+1) = z Γ(z). We �rst rewrite the numerator of Gk(h, ω,m) in Eq. (A6) introducing
z ≡ (1− ω)m/(ωh) as

(1− ω)m(ωh)k−1
( (1− ω)m

ωh
+ 1

)( (1− ω)m

ωh
+ 2

)
...
( (1− ω)m

ωh
+ k − 1

)
= (ωh)kz(z + 1)...(z + k − 1)

= (ωh)k
Γ(z + k)

Γ(z)
.

Notice that if m = 0 then z = 0 and we cannot use Pochhammer formula. Letting z̃ ≡ [1− (1− ω)m− kωh] /(ωh),
we rewrite in the same way the denominator of Gk(h, ω,m) in Eq. (A6) as

(ωh)kz̃(z̃ + 1)...(z̃ + k − 1) = (ωh)k
Γ(z̃ + k)

Γ(z̃)
.

Inserting these two last expressions for the numerator and denominator of Gk(h, ω,m) in Eq. (A6) leads to the
expression quoted in Eq. (6) of the main text.

APPENDIX B: CONTINUUM EQUATION FOR ⟨ϕ⟩f

In this section we derive an equation for the time evolution of the mean of a generic function ϕ(p) over the population
of agents, expressed as

⟨ϕ⟩f (t) ≡
∫ 1

0

ϕ(p)f(p, t)dp =

S∑
k=0

nk(t)ϕ(kh), (B1)

where f(p, t) is the propensity distribution at time t. Taking the time derivative of Eq. (B1) gives

d

dt
⟨ϕ⟩f =

S∑
k=0

dnk

dt
ϕ(kh)

= Aϕ(0) +Bϕ(1)−
S−1∑
k=1

nkϕ(kh) +

S−1∑
k=1

nk−1ϕ(kh)[ωh(k − 1) + (1− ω)m] (B2)

+

S−1∑
k=1

nk+1ϕ(kh)[1− ωh(k + 1)− (1− ω)m],

with

A ≡ (1− ωh− (1− ω)m)n1 − (1− ω)mn0 and B ≡ (ω(1− h) + (1− ω)m)nS−1 − (1− ω)(1−m)nS .

We then write

ϕ(kh) = ϕ((k − 1)h) + hϕ′((k − 1)h) +
h2

2
ϕ′′((k − 1)h) +O(h3) and

ϕ(kh) = ϕ((k + 1)h)− hϕ′((k + 1)h) +
h2

2
ϕ′′((k + 1)h) +O(h3),
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and replace these expressions in the summations of Eq. (B2). Then

d

dt
⟨ϕ⟩f = (A+ n0)ϕ(0) + (B + nS)ϕ(1)− ⟨ϕ⟩f

+

S−2∑
k=0

nk [ωhk + (1− ω)m]

[
ϕ(kh) + hϕ′(kh) +

h2

2
ϕ′′(kh)

]

+

S∑
k=2

nk [1− ωhk − (1− ω)m]

[
ϕ(kh)− hϕ′(kh) +

h2

2
ϕ′′(kh)

]
+O(h3).

(B3)

The �rst summation in the rhs of Eq. (B3) is

S∑
k=0

nk[ωhk + (1− ω)m]

[
ϕ(kh) + hϕ′(kh) +

h2

2
ϕ′′(kh)

]
−nS−1[ω(1− h) + (1− ω)m]

[
ϕ(1− h) + hϕ′(1− h) +

h2

2
ϕ′′(1− h)

]
−nS [ω + (1− ω)m]

[
ϕ(1) + hϕ′(1) +

h2

2
ϕ′′(1)

]
which is, up to O(h3),⟨

[ωp+ (1− ω)m]

(
ϕ+ hϕ′ +

h2

2
ϕ′′

)⟩
f

− ϕ(1) [[ω + (1− ω)m]nS + [ω(1− h) + (1− ω)m]nS−1]

− hϕ′(1)nS [ω + (1− ω)m]− h2

2
ϕ′′(1)nS [ω + (1− ω)m].

(B4)

The second summation in the rhs of Eq. (B3) is

S∑
k=0

nk[1− ωhk − (1− ω)m]

[
ϕ(kh)− hϕ′(kh) +

h2

2
ϕ′′(kh)

]
− n0[1− (1− ω)m]

[
ϕ(0)− hϕ′(0) +

h2

2
ϕ′′(0)

]
− n1[1− ωh− (1− ω)m]

[
ϕ(h)− hϕ′(h) +

h2

2
ϕ′′(h)

]
,

which is, up to O(h3),⟨
[1− ωp− (1− ω)m]

(
ϕ− hϕ′ +

h2

2
ϕ′′

)⟩
f

− ϕ(0) [n0[1− (1− ω)m]− n1[1− ωh− (1− ω)m]]

+ hϕ′(0)n0[1− (1− ω)m]− h2

2
ϕ′′(0)n0[1− (1− ω)m].

(B5)

Replacing the two summations in Eq. (B3) by the expressions (B4) and (B5) leads to Eq. (22) quoted in the main
text.

APPENDIX C: STATIONARY SOLUTION OF THE EQUATION FOR ⟨ϕ⟩f

We look for a stationary solution f∗ of the form

f∗(p) = f̃∗(p) + f∗(0)δ(p) + f∗(1)δ(p− 1),

where f̃∗(p) is a continuous function of p. We can then rewrite Eq. (27) as

0 =

∫ 1

0

(2ωp+ 2(1− ω)m− 1)ϕ′(p) f̃∗(p) dp+
h

2

∫ 1

0

ϕ′′(p) f̃∗(p) dp

+ ϕ′(0)f∗(0)(1− ω)m− f∗(1)(1− ω)(1−m)ϕ′(1).
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Integrating by parts the second integral of the above equation gives

0 =

∫ 1

0

ϕ′(p)
{
(2ωp+ 2(1− ω)m− 1)f̃∗(p)− h

2
f̃∗′

(p)
}
dp

+ ϕ′(0)
{
f∗(0)(1− ω)m− h

2
f̃∗(0)

}
+ ϕ′(1)

{h

2
f̃∗(1)− f∗(1)(1− ω)(1−m)

}
.

Since this equality must hold for any function ϕ(p) we obtain that

[2ωp+ 2(1− ω)m− 1] f̃∗(p)− h

2
f̃∗′

(p) = 0,

f∗(0)(1− ω)m =
h

2
f̃∗(0),

h

2
f̃∗(1) = f∗(1)(1− ω)(1−m),

from which we arrive to the expression for f∗(p) quoted in Eq. (29).
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