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In this paper, we study the critical Sobolev embeddings W 1,p(·)(Ω) ⊂ Lp∗(·)(Ω) for 
variable exponent Sobolev spaces from the point of view of the Γ-convergence. More 
precisely we determine the Γ-limit of subcritical approximation of the best constant 
associated with this embedding. As an application we provide a sufficient condition 
for the existence of extremals for the best constant.
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1. Introduction

The purpose of this paper is to analyze the Sobolev immersion theorem for variable exponent spaces in 
the critical range from the point of view of the Γ-convergence. Our motivation comes from the existence 
problem for extremals of these immersions. By extremals we mean functions u ∈ W

1,p(·)
0 (Ω) where the 

infimum

S = S(p(·), q(·),Ω) � inf
v∈W

1,p(·)
0 (Ω)

‖∇v‖p(·)
‖v‖q(·)

(1.1)

is attained. Here Ω is a smooth bounded subset of Rn, and p, q : Ω → R are two functions satisfying the 
following assumptions:
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(H1) p is Log-Hölder continuous on Ω (see (2.2) below), q ∈ C(Ω),
(H2) 1 < p− � infΩ p ≤ p+ � supΩ p < n,
(H3) 1 ≤ q(x) ≤ p∗(x) := np(x)/(n − p(x)) for any x ∈ Ω.

We refer to the next section for the definition and basic properties of the variable exponent Sobolev spaces 
appearing in (1.1). Notice that the exponent p∗ is critical from the Sobolev point of view. We shall also 
assume that

(H4) the set A � {x ∈ Ω: q(x) = p∗(x)} is non-empty.

Because of (H4) the embedding of W 1,p(·)(Ω) into Lq(·)(Ω) is not compact, making non-trivial the problem 
of existence of an extremal for S.

This problem was recently treated in [14] where the authors provide sufficient conditions to ensure 
the existence of such extremals. The approach in [14] was the so-called direct method of the calculus of 
variations. That is, they considered a minimizing sequence for S and find a sufficient condition that ensured 
the compactness of such sequence.

In this paper, we follow a different approach. Instead of looking for minimizing sequences for S, we 
approximate the critical problems by subcritical ones, where the existence of extremals is easily obtained, 
and then pass to the limit. In fact, following G. Palatucci in [29] and [30] where the constant exponent case 
is studied, we want to determine the asymptotic behavior in the sense of the Γ-convergence of the subcritical 
approximations

Sε � S(p(·), q(·) − ε,Ω) = inf
v∈W

1,p(·)
0 (Ω)

‖∇v‖p(·)
‖v‖q(·)−ε

, ε > 0,

and then deduce the behavior of their associated extremals uε. We thus introduce the functional 
Fε : B(Ω) → R, ε > 0, defined by

Fε(u) �
∫
Ω

|u|q(·)−ε dx,

where

B(Ω) �
{
u ∈ W

1,p(·)
0 (Ω), ‖∇u‖p(·),Ω ≤ 1

}
, (1.2)

with the purpose of finding its Γ-limit as ε → 0.
This approach not only provides us with the existence of extremals for the critical embeddings but also 

gives us the asymptotic behavior of the subcritical extremals as the exponent q reaches a critical one. As in 
the constant exponent case, a concentration phenomenon occurs in the sense that the subcritical extremals 
concentrate at some point. In the constant exponent case the location of this point is related to the geometry 
of Ω via its Robin function (see e.g. [18]). The Gamma convergence turns out to be a useful tool in such 
analysis as was shown in [2] and in general in the study of the asymptotic behavior of variational problem 
(see e.g. [7]). On the other hand the study of such concentration phenomena in the variable exponent setting 
is a recent and rapidly growing area (see e.g. [1,13,14,16,15,19,24]). In particular the results in [13,16,15] let 
us think that the location of the concentration point may result of interplay between the exponents p and 
q on the one hand, and on the geometry of Ω on the other hand. The results of this paper are a first step 
toward a finer comprehension of the concentration phenomenon in the variable exponent setting.

In view of the concentration–compactness principle stated in (2.7)–(2.9) below, it turns out to be conve-
nient to extend Fε to the space
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X = X (Ω) =
{

(u, μ) ∈ W
1,p(·)
0 (Ω) ×M(Ω):μ(Ω) ≤ 1, μ = |∇u|p(·) dx + μ̃ +

∑
i∈I

μiδxi

}
,

where M(Ω) is the space of bounded measures over Ω and, in the decomposition of μ, μ̃ is a nonnegative 
measure without atoms, the set I is at most countable, the μi are positive real numbers, and the atoms xi

belongs to the critical set A defined in hypothesis (H4).
We say that a sequence {(uε, με)}ε>0 ⊂ X converges in X to (u, μ), which is denoted by (uε, με) 

τ→ (u, μ), 
if uε ⇀ u weakly in Lq(·)(Ω) and με

∗
⇀ μ in M(Ω). We recall that με

∗
⇀ μ means that 

∫
φ dμε →

∫
φ dμ for 

any φ ∈ C(Ω).
We then extend Fε to the whole space X by

Fε(u, μ) =
{∫

Ω |u|q(·)−ε dx if μ = |∇u|p(·) dx + μ̃

0 otherwise in X

We also consider the limit functional F ∗: X → R defined by

F ∗(u, μ) �
∫
Ω

|u|q(·) dx +
∑
i∈I

μ
p∗(xi)
p(xi)
i S̄−p∗(xi)

xi
,

where S̄xi
, i ∈ I, is the localized best Sobolev constant at xi defined in (2.4).

Our main result is the following

Theorem 1.1. Assume that p and q satisfies assumptions (H1)–(H4). The functionals {Fε}ε>0 Γ-converge 
to F ∗ in the sense that for any (u, μ) ∈ X there holds that:

• For every sequence {(uε, με)}ε>0 ⊂ X converging to (u, μ) in X , we have

lim sup
ε→0

Fε(uε, με) ≤ F ∗(u, μ). (1.3)

• There exists a sequence {(uk, μk)}k ⊂ X converging in X to (u, μ) with the property that for any sequence 
{εj}j∈N converging to 0 as j → ∞, there exists subsequence {εjk}k∈N ⊂ {εj}j∈N such that

lim inf
k→∞

Fεjk
(uk, μk) ≥ F ∗(u, μ). (1.4)

Remark 1.2. Observe that this is not the usual definition of Γ-convergence. The most common definition is 
to replace the lim inf inequality (1.4) by

lim inf
ε→0

Fε(uε, με) ≥ F ∗(u, μ), (1.5)

for some pair (uε, με) converging to (u, μ). These conditions are not equivalent. In fact, (1.5) implies (1.4). 
However, the condition (1.4) is sufficient for our purposes. Indeed it is easily seen that the following property, 
one of the most useful consequence of the Γ-convergence, holds: if (uε, με) is a maximizer of Fε, then any 
cluster point of the sequence {(uε, με)}ε is a maximizer of F ∗ and limε→0 max Fε = max F ∗. This property 
will be useful in the proof of Theorem 1.6 below.

Remark 1.3. What we called Γ-convergence in Theorem 1.1 is what other authors called Γ+-convergence 
following De Giorgi’s original notation – see [29].

Remark 1.4. We mention that Γ-convergence in the framework of variable exponent spaces has already been 
used to study homogenization problems in [3] and [4].
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Define

S̃−1 � S̃(p(·), q(·),Ω) = sup
u∈B(Ω)

∫
Ω

|u|q(·) dx, (1.6)

where B(Ω) is defined in (1.2). We also define a local best constant S̃−1
x0

, x0 ∈ A, in a similar way as in (2.4)
by

S̃−1
x0
� lim

ε→0

⎛⎜⎝ sup
u∈B(Bε(x0)∩Ω)

∫
Bε(x0)

|u|q(·) dx

⎞⎟⎠ , x0 ∈ A. (1.7)

Noticing that B(Bx0(ε) ∩ Ω) ⊂ B(Ω), we have that

sup
x0∈A

S̃−1
x0

≤ S̃−1. (1.8)

We also prove in Lemma 3.3 below that S̃−1
x0

= S̄
−q(x0)
x0 where S̄x0 is defined in (2.4) and appear in the 

definition of F ∗.
We now consider the subcritical approximations S̃−1

ε of S̃−1 defined by

S̃−1
ε � S̃(p(·), q(·) − ε,Ω)−1 = sup

u∈B(Ω)

∫
Ω

|u|q(·)−ε dx.

We first prove that

Proposition 1.5. There holds that

lim
ε→0

S̃−1
ε = S̃−1.

In the same spirit as in [14, Theorem 4.2], we can deduce from the Γ-convergence of Fε to F the asymptotic 
behavior of extremals for S̃ε:

Theorem 1.6. Assume that p and q satisfies assumptions (H1)–(H4) and also that q− > p+. Let uε ∈ B(Ω)
be an extremal for S̃−1

ε , i.e. ∫
Ω

|uε|q(·)−ε dx = S̃−1
ε .

Then the following alternative holds:

(1) either the sequence {uε}ε>0 has a strongly convergent subsequence in Lq(·)(Ω) and the strong limit is 
an extremal for S̃−1,

(2) or the sequence {uε}ε>0 concentrates around a single point x0 ∈ A in the sense that

|uε|q(·) dx ⇀ S̃−1 δx0 and |∇uε|p(·) dx ⇀ δx0 .

Moreover

S̃−1
x0

= S̃−1. (1.9)
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As an immediate consequence of (1.8) and (1.9), we obtain the following sufficient condition for the 
existence of an extremal for S̃−1:

Corollary 1.7. If supx∈A S̃−1
x < S̃−1, then any sequence of extremals for S̃−1

ε converges, up to a subsequence, 
to some u ∈ B(Ω) which is an extremal for S̃−1. In particular, there exists an extremal for S̃−1.

This kind of sufficient condition of existence is common in the study of problems with critical exponent. In 
the constant exponent case, it goes back to [6,9,23]. In the variable exponent case, it was recently established 
and used by the authors in [14,13,15,16] where precise condition on the exponents p and q were provided 
for this condition to hold.

2. Preliminary notations

2.1. Lebesgue and Sobolev spaces with variable exponents

Let Ω be smooth open bounded subset of Rn. Given a measurable function p: Ω → [1, +∞), the Lebesgue 
variable exponent space Lp(·)(Ω) is defined as

Lp(·)(Ω) �

⎧⎨⎩u ∈ L1
loc(Ω):

∫
Ω

|u|p(·) dx < +∞

⎫⎬⎭ .

This space is endowed with the norm

‖u‖p(·) � inf

⎧⎨⎩λ > 0:
∫
Ω

∣∣∣u
λ

∣∣∣p(·) dx ≤ 1

⎫⎬⎭ ,

which turns Lp(·)(Ω) into a Banach space. Assuming moreover that

1 < p− � inf
Ω

p ≤ p+ � sup
Ω

p < +∞, (2.1)

it can be proved that Lp(·)(Ω) separable and reflexive.
These spaces where first considered in the seminal W. Orlicz’ paper [28] in 1931 but then where left 

behind as the author pursued the study of the spaces that now bear his name. The first systematic study 
of these spaces appeared in H. Nakano’s works at the beginning of the 1950s [26,27] where he developed a 
general theory in which the spaces Lp(·)(Ω) were a particular example of the more general spaces he was 
considering. Even though some progress was made after Makano’s work (see in particular the works of the 
Polish school H. Hudzik, A. Kamińska and J. Musielak in e.g. [20,21,25]), it was only in the last 20 years 
that major progress has been accomplished mainly due to the following facts:

• The discovery of a very weak condition ensuring the boundedness of the Hardy–Littlewood maximal 
operator in these spaces, i.e. the log-Hölder condition that implies, to begin with, that test functions 
are dense in Lp(·)(Ω).

• The discovery of the connection of these spaces with the modeling of the so-called electrorheological 
fluids [32].

• The application that variable exponents have shown in image processing [10].

A complete presentation of variable Lebesgue and Sobolev spaces can be found in the book [11]
and [5].
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Of central importance in the above mentioned applications are the variable exponent Sobolev spaces 
W 1,p(·)(Ω) defined as

W 1,p(·)(Ω) �
{
u ∈ W 1,1

loc (Ω):u, ∂iu ∈ Lp(·)(Ω) i = 1, . . . , n
}
,

and the subspace of functions with zero boundary values

W
1,p(·)
0 (Ω) � {u ∈ W 1,p(·)(Ω):u has compact support},

where the closure is taken in the W 1,p(·)(Ω)-norm ‖ · ‖1,p(·) that is defined as

‖u‖1,p(·) � ‖u‖p(·) + ‖∇u‖p(·).

As first noticed in [33], when p is log-Hölder in the sense that

sup
x,y∈Ω

|(p(x) − p(y)) log(|x− y|)| < +∞, (2.2)

it can be proved that the space C∞
c (Ω) is dense in Lp(·)(Ω) and in W 1,p(·)

0 (Ω), and also that the Poincaré 
inequality holds i.e. there exists a constant C = C(Ω, p) > 0 such that

‖u‖p(·) ≤ C‖∇u‖p(·)

for any u ∈ W
1,p(·)
0 (Ω). It follows in particular that ‖∇u‖p(·) is an equivalent norm in W 1,p(·)

0 (Ω).

2.2. Critical Sobolev embedding

A major tool in order to study existence and regularity properties of solutions to partial differential equa-
tions is the Sobolev embedding theorem. For variable exponents spaces this theorem has been established 
in [22] (see also [12]). Given a measurable function q: Ω → [1, +∞), it basically says that, assuming p+ < n, 
we have a continuous embedding

W
1,p(·)
0 (Ω) ⊂ Lq(·)(Ω)

if and only if q(x) ≤ p∗(x) � np(x)/(n − p(x)). Moreover, when the exponent q is strictly subcritical in the 
sense that

inf
x∈Ω

(p∗(x) − q(x)) > 0,

then this embedding is compact (see e.g. [11]). On the other hand when the critical set

A � {x ∈ Ω: q(x) = p∗(x)} (2.3)

is not empty, the immersion is no longer compact in general (see [24] for some very restricted cases where 
A �= ∅ but the immersion still remains compact). The existence of extremal for the best constant S defined 
in (1.1) is then not granted. Indeed the well-known Pohozaev identity implies that when p is constant and 
Ω is star-shaped then S is not attained.

Recall that in [14] the definition of A does not contain the points on the boundary of Ω. That is not 
correct, and the set A in [14] has to be the same as in (2.3). However the results in [14] still holds with 
minor modifications.
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The problem of existence of extremals for S in the variable exponent setting was recently considered in 
[14] where the authors provided sufficient existence conditions. A fundamental tool used in their proof, as 
well as in almost every problem dealing with critical exponent in general, is the so called Concentration 
Compactness Principle (CCP) that was introduced by P. L. Lions in the 80’s (see [23]) and was recently 
extended to the variable exponent setting in [17] (see also the refinement in [14]). This version of the CCP 
relies on a notion of localized Sobolev constant defined as follows. For x ∈ A we define the localized best 
Sobolev constant S̄x as

S̄x � lim
ε→0

S(p(·), q(·), Bε(x) ∩ Ω) = lim
ε→0

inf
v∈W

1,p(·)
0 (Ω)

‖∇v‖p(·),Bε(x)∩Ω

‖v‖q(·),Bε(x)∩Ω
. (2.4)

Notice that

0 < S(p(·), q(·),Ω) ≤ inf
x∈A

S̄x, (2.5)

and that for any x0 ∈ A,

S̄x0 ≤ inf
u∈C∞

c (Rn)

‖∇u‖p(x0)

‖u‖p∗(x0)
. (2.6)

Observe that the r.h.s. of this inequality is the best constant in the usual Sobolev embedding in Rn with 
constant exponent p(x0). We refer to [14] for a proof of this inequality.

The CCP proved in [17] and refined in [14] states that given a weakly convergent sequence {uk}k∈N ⊂
W

1,p(·)
0 (Ω) with weak limit u, there exists a countable set of indices I, positive real numbers {μi}i∈I ,

{νi}i∈I ⊂ R+, points {xi}i∈I ∈ A and nonnegative measures μ, ν such that

|uk|q(·) dx ∗
⇀ dν = |u|q(·) dx +

∑
i∈I

νi δxi
, (2.7)

|∇uk|p(·) dx ∗
⇀ dμ ≥ |∇u|p(·) dx +

∑
i∈I

μi δxi
, (2.8)

S̄xi
ν

1
p∗(xi)
i ≤ μ

1
p(xi)
i for any i ∈ I. (2.9)

It is also easily checked that the nonnegative measure

μ̃ � μ−
(
|∇u|p(·) dx +

∑
i∈I

μi δxi

)

has no atoms.
By analyzing the behavior of minimizing sequences using the CCP, it is proved in [14] that if the inequality 

in (2.5) is strict, q− < p+ and p, q are slightly more regular than merely Log-Hölder continuous, more 
precisely if

lim
Ω�y→x

(p(y) − p(x)) log(|x− y|) = lim
Ω�y→x

(q(y) − q(x)) log(|x− y|) = 0, uniformly in x ∈ Ω (2.10)

is satisfied, then there exists an extremal for S(p(·), q(·), Ω), i.e. a function u ∈ W
1,p(·)
0 (Ω) where the infimum 

in (1.1) is attained.
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3. Proof of Theorem 1.1

We divided the proof into two subsections: one for the lim sup inequality (1.3) and other for the lim inf
inequality (1.4). The strategy of the proof is completely analogous to that of [2] and [29] where the constant 
exponent case is treated with difficulties specific to the variable exponent setting. We mention that an 
alternative approach to that used here in the proof of the lim inf-inequality has recently appeared in [31]
when dealing with the fractional Laplacian.

3.1. Proof of the lim sup property (1.3)

Consider a sequence {(uε, με)}ε>0 ⊂ X converging as ε → 0 to some (u0, μ0) ∈ X . We can assume without 
loss of generality that με = |∇uε|p(·) dx +μ̃ε for all ε > 0 where μ̃ε is a non-negative and non-atomic measure.

We first assume that μ̃ε = 0 i.e. με = |∇uε|p(·) dx. Then by Hölder inequality (see [11, lemma 3.2.20]):

Fε(uε, με) =
∫
Ω

|uε|q(·)−ε dx

≤
( 1

( q(·)
q(·)−ε )−

+ 1
( q(·)ε )−

)
‖|uε|q(·)−ε‖ q(·)

q(·)−ε
‖1‖ q(·)

ε
.

Since 
(

q(·)
q(·)−ε

)−
→ 1, 

(
q(·)
ε

)−
→ ∞, and ‖1‖ q(·)

ε
→ 1 as ε → 0, we obtain

lim sup
ε→0

Fε(uε, με) ≤ lim sup
ε→0

‖|uε|q(·)−ε‖ q(·)
q(·)−ε

.

Up to some subsequence, by the CCP, there exists u ∈ W
1,p(·)
0 (Ω) and measures ν, μ ∈ M(Ω) of the form 

ν = |u|q(·)dx +
∑

i∈I νiδxi
, μ = |∇u|p(·)dx + μ̃ +

∑
i∈I μiδxi

such that

uε ⇀ u weakly in W
1,p(·)
0 (Ω) and in Lq(·)(Ω),

|uε|q(·) dx ∗
⇀ ν and |∇uε|p(·) dx ∗

⇀ μ.

Observe that u = u0 and μ0 = μ since (uε, με = |∇uε|p(·) dx) τ→ (u0, μ0) in X . It follows that

ρq(x)(uε) �
∫
Ω

|uε|q(·) dx →
∫
Ω

|u0|q(·) dx +
∑
i∈I

νi as ε → 0.

Since

‖|uε|q(·)−ε‖ q(·)
q(·)−ε

≤ max
{
ρq(·)(uε)(

q(·)
q(·)−ε )+ , ρq(·)(uε)(

q(·)
q(·)−ε )−

}
,

we obtain, in view of (2.9), that

lim sup
ε→0+

Fε(uε, με) ≤
∫
Ω

|u0|q(·) dx +
∑
i∈I

S̄−p∗(xi)
xi

μ
p∗(xi)
p(xi)
i = F ∗(u0, μ0). (3.1)

This is the limsup inequality.
We now assume that με = |∇uε|p(·) dx + μ̃ε for all ε > 0 where μ̃ε is a non-negative and non-atomic 

measure. Since μ̃ε(Ω) ≤ με(Ω) ≤ 1, we can assume that μ̃ε converge weakly as ε → 0 to some non-negative 
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measure μ̃0. Notice that μ̃0 may have atoms. Passing to the limit in με
∗
⇀ μ0 gives μ0 = μ + μ̃0 with μ as 

before. Notice that according to the definition of Fε, we have Fε(uε, με) = Fε(uε, |∇uε|p(·) dx). Applying 
the first part of the proof to με − μ̃ε = |∇uε|p(·) dx, we deduce from (3.1) that

lim sup
ε→0+

Fε(uε, με) = lim sup
ε→0+

Fε(uε, |∇uε|p(·) dx) ≤ F ∗(u0, μ0 − μ̃0).

It follows from μ0 = μ + μ̃0 ≥ μ̃0 that any atom x0 of μ̃0 is an atom of μ0 with μ0({x0}) ≥ μ̃0({x0}). Thus 
F ∗(u0, μ0 − μ̃0) ≤ F ∗(u0, μ0) which concludes the proof. �
3.2. Proof of the lim inf property (1.4)

The proof of the lim inf property (1.4) follows the original scheme of [2] and mainly consists in proving 
it in two particular cases: when μ has no atoms (see Proposition 3.1) and when μ is purely atomic with a 
finite number of atoms (see Proposition 3.2).

We first prove the lim inf property when μ has no atoms.

Proposition 3.1. Let (u, μ) ∈ X such that μ has no atomic part i.e. μ = |∇u|p(·) dx + μ̃. Then

lim
ε→0

Fε(uε, με) = F ∗(u, μ)

for every sequence {(uε, με = |∇uε|p(·) dx + μ̃ε)}ε>0 ⊂ X converging to (u, μ) as ε → 0.

Notice that we can take in particular the constant sequence (uε, με) = (u, μ).

Proof. Consider a sequence {(uε, με � |∇uε|p(·) dx + μ̃ε)}ε>0 ⊂ X converging to (u, μ). According to the 
CCP, the atoms of the measure ν � lim |uε|q(·) dx (limit in M(Ω̄) – which exists up to a subsequence) 
are also atoms of μ. Since by assumption μ has no atomic part, we deduce that ν also has no atoms so 
that the measure |uε|q(·) dx weakly converges to |u|q(·) dx. In particular limε→0

∫
Ω |uε|q(·) dx =

∫
Ω |u|q(·) dx

i.e. limε→0 ‖uε‖q(·) = ‖uε‖q(·). Since we also have the weak convergence of uε to u in Lq(·)(Ω), which is 
a uniformly convex Banach space since 1 < q− ≤ q+ < ∞ (see [11, thm 3.4.9]), we deduce that uε → u

strongly in Lq(·)(Ω). Up to a subsequence we can further assume that the convergence holds a.e.
As in the proof of the lim sup property we obtain that

lim sup
ε→0

∫
Ω

|uε|q(·)−ε dx ≤
∫
Ω

|u|q(·) dx.

Moreover using Fatou lemma,

lim inf
ε→0

∫
Ω

|uε|q(·)−ε dx ≥
∫
Ω

|u|q(·) dx.

Hence

lim
ε→0

Fε(uε, με) = lim
ε→0

∫
Ω

|uε|q(·)−ε dx =
∫
Ω

|u|q(·) dx = F ∗(u, μ),

as we wanted to show. �
We now prove the lim inf property assuming that μ is purely atomic with a finite number of atoms and 

total mass strictly less that 1.
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Proposition 3.2. Consider (u, μ) ∈ X of the form (u, μ) = (0, 
∑k

i=0 μiδxi
) with xi ∈ A and μi > 0 such 

that μ(Ω̄) =
∑

i μi < 1. Then there exists a sequence (uk, |∇uk|p(·)) ∈ X converging in X to (u, μ) with 
the property that for any sequence {εj}j∈N converging to 0 as j → ∞, there exists subsequence {εjk}k∈N ⊂
{εj}j∈N such that

lim
k→∞

Fεjk
(uk, |∇uk|p(·)) = F ∗(u, μ).

The proof relies on the following two lemmas. The first one gives the relation between the two localized 
Sobolev constants S̄x0 and S̃x0 defined in (2.4) and (1.7) for a point x0 ∈ A.

Lemma 3.3. For any x0 ∈ A,

S̃−1
x0

= S̄−q(x0)
x0

.

Proof. First, suppose that S̃−1
x0

> 1. So there exists ε0 > 0 such that

sup
u∈B(Bε(x0)∩Ω)

∫
Bε(x0)

|u|q(·) dx > 1 for all ε ≤ ε0.

It follows that

sup
u∈B(Bε(x0)∩Ω)

‖u‖q
−
ε

q(·),Bε(x0) ≤ sup
u∈B(Bε(x0)∩Ω)

∫
Bε(x0)

|u|q(·) dx ≤ sup
u∈B(Bε(x0)∩Ω)

‖u‖q
+
ε

q(·),Bε(x0),

where q−ε := infBε(x0) q(·) and q+
ε := supBε(x0) q(·). Notice that

sup
u∈B(Bε(x0)∩Ω)

‖u‖q(·),Bε(x0) =
(

inf
u∈B̃(Bε(x0)∩Ω)

‖∇u‖p(·),Bε(x0)

)−1

,

where B̃(U) = {u ∈ W
1,p(·)
0 (U): ‖u‖q(·),U ≤ 1} for any open set U ⊂ R

n. So, recalling that

lim
ε→0

inf
u∈B̃(Bε(x0)∩Ω)

‖∇u‖p(·),Bε(x0) = S̄x0

in view of (1.7), we get

S̄−q(x0)
x0

= S̃−1
x0

.

The case where S̃−1
x0

≤ 1 is analogous. �
Lemma 3.4. For any x0 ∈ A there exists a sequence (ul)l ⊂ W

1,p(·)
0 (Ω) such that

(ul, |∇ul|p(·)) τ→ (0, δx0) and
∫
Ω

|ul|q(·) dx → S̃−1
x0

.

As a consequence, for any sequence {εj}j∈N such that εj → 0 as j → ∞, there exists subsequence {εjl}l∈N ⊂
{εj}j∈N such that

lim
l→∞

∫
|ul|q(·)−εjl dx = S̄−q(x0)

x0
= S̃−1

x0
.
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Proof. The existence of a subsequence {εjl}l∈N follows from the fact that

lim
ε→0

∫
Ω

|u|q(·)−ε dx =
∫
Ω

|u|q(·) dx for any u ∈ Lq(·)(Ω). (3.2)

Indeed this is an application of the dominated convergence theorem noticing that

|u|q(·)−ε = |u|q(·)−ε1{|u|≥1} + |u|q(·)−ε1{|u|≤1} ≤ |u|q(·) + 1.

Concerning the existence of (ul)l, notice that for any l > 0 there exists εl > 0, εl → 0, such that∣∣∣S̃−1
x0

− S̃(p(·), q(·), Bεl(x0) ∩ Ω)−1
∣∣∣ < 1

l
,

and that there exists ul ∈ W
1,p(·)
0 (Bεl(x0) ∩ Ω) such that ‖∇ul‖p(·) ≤ 1 and

S̃(p(·), q(·), Bεl(x0) ∩ Ω)−1 − 1
l
<

∫
Bεl

(x0)

|ul|q(·) dx ≤ S̃(p(·), q(·), Bεl(x0) ∩ Ω)−1.

In particular ∣∣∣∣∣∣S̃−1
x0

−
∫
Ω

|ul|q(·) dx

∣∣∣∣∣∣ ≤ 2
l
.

Observe that ul ∈ W
1,p(·)
0 (Ω) with ‖∇ul‖p(·) ≤ 1 so that (ul)l is bounded in W 1,p(·)

0 (Ω). Moreover suppul ⊂
Bεl(x0) ∩ Ω). It easily follows that for any φ ∈ C∞

c (Ω), 
∫
ulφ dx → 0, so that ul → 0 weakly in Lq(·)(Ω), 

and also that ‖ul‖q(·) → S̃
−1/p∗(x0)
x0 = S̄−1

x0
in view of the previous lemma. Moreover notice that α :=

lim inf ‖∇ul‖p(·) > 0. Indeed otherwise ul → 0 strongly in W 1p(·)(Ω), and in particular in Lq(·)(Ω), so that 
S̃−1
x0

= 0 i.e. S̄x0 = +∞. This contradicts (2.6). Then, in view of the definition (1.7) of S̄x0 we obtain that

lim
l→+∞

‖ul‖q(·) = S̄−1
x0

≤ lim inf
l→+∞

‖ul‖q(·)
‖∇ul‖q(·)

≤ lim inf
l→+∞

‖ul‖q(·)
α

.

It follows that lim ‖∇ul‖p(·) = 1. As a consequence |∇uk|p(·) ⇀ δx0 weakly in the sense of measures. �
We can now prove Proposition 3.2:

Proof of Proposition 3.2. We prove the claim in the case k = 2 i.e. for μ of the form μ = μ0δx0 +μ1δx1 with 
x0, x1 ∈ A and μ0, μ1 > 0, μ(Ω̄) = μ0 + μ1 < 1. We denote by u0,k and u1,k the functions corresponding to 
the points x0 and x1 given by Lemma 3.4, and by {εjk}k∈N a subsequence such that:

(u0,k, |∇u0,k|p(·)) τ→ (0, δx0), lim
k→∞

∫
|u0,k|q(·)−εjk dx = S̄−q(x0)

x0
,

(u1,k, |∇u1,k|p(·)) τ→ (0, δx1), lim
k→∞

∫
|u1,k|q(·)−εjk dx = S̄−q(x1)

x1
.

(3.3)

Since x0 �= x1, the supports of u0,k and u1,k are disjoint for εjk small. It follows that the functions

uk � μ
1

p(x0)
0 u0,k + μ

1
p(x1)
1 u1,k
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satisfy for any given ψ ∈ C(Ω̄) that∫
Ω

ψ|∇uk|p(·) dx =
∫

μ
p(x)
p(x0)
0 ψ|∇u0,k|p(·) dx +

∫
μ

p(x)
p(x1)
1 ψ|∇u1,k|p(·) dx

→ μ0ψ(x0) + μ1ψ(x1) =
∫

ψ dμ

in view of (3.3). In particular limk→∞
∫
Ω |∇uk|p(·) dx = μ0 + μ1 < 1. Hence (uk, |∇uk|p(·)) belongs to X for 

εjk small and converges to (0, μ) as ε → 0.
Moreover, recalling the u0,k and u1,k have disjoint support, we have

Fεjk
(uk, |∇uk|p(·)) =

∫
Ω

|uk|q(·)−εjk dx =
∫
Ω

μ

q(·)−εjk
p(x0)

0 |u0,k|q(·)−εjk dx +
∫
Ω

μ

q(·)−εjk
p(x1)

1 |u1,k|q(·)−εjk dx

= (1 + o(1))
∫
Ω

μ
q(·)

p(x0)
0 |u0,k|q(·)−εjk dx + (1 + o(1))

∫
Ω

μ
q(·)

p(x1)
1 |u1,k|q(·)−εjk dx

= μ
q(x0)
p(x0)
0 S̄−q(x0)

x0
+ μ

q(x1)
p(x1)
1 S̄−q(x1)

x1
+ o(1)

= F ∗(0, μ0δx0 + μ1δx1) + o(1).

Now, we note that if for any sequence {εj}j∈N such that εj → 0 as j → ∞, there exists subsequence 
{εjk}k∈N ⊂ {εj}j∈N and a sequence (uk, |∇uk|p(·)) ∈ X converging in X to (u, μ) such that

lim
k→∞

Fεjk
(uk, |∇uk|p(·)) = F ∗(0, μ0δx0 + μ1δx1).

In particular, this finishes the proof of Proposition 3.2 in the case k = 2. The proof when μ has an arbitrary 
finite number of atoms is similar. �

The next lemma was first proved in [2] and [30] in the constant exponent case and allows to deduce the 
general case from the two particular cases stated in Propositions 3.1 and 3.2. Since its proof is identical to 
that of [2, lemma 4.1] and [29] we omit it.

Lemma 3.5. If the lim inf property (1.4) holds for every (u, μ) ∈ X such that

(1) μ(Ω) < 1,
(2) μ = |∇u|p(·) + μ̃ +

∑n
i=0 μiδxi

,
(3) dist(supp(|u| + μ̃), 

⋃n
i=1{xi}) > 0,

then it holds for any (u, μ) ∈ X .

Finally, we can prove the principal result.

Proof of the lim inf inequality. We only have to check the hypotheses of Lemma 3.5. Given some (u, μ) ∈ X
as in Lemma 3.5, we can descompose μ as μ = μ1+μ2 with μ1 =

∑n
i=0 μiδxi

and μ2 = |∇u|p(·)+μ̃. Moreover 
there exist relatively open subsets A, B ⊂ Ω such that supp(μ1) ⊂ A and supp(|u| + μ̃) ⊂ B and A∩B = ∅.

By Propositions 3.1 and 3.2, there exist sequences (u1
k, μ

1
k = |∇u1

k|p(·)) ∈ X and (u2
k, μ

2
k = |∇u2

k|p(·) +
μ̃2
k) ∈ X with u1

k ∈ W
1,p(·)
0 (A), u2

k ∈ W
1,p(·)
0 (B) converging in X to (0, μ1) and (u, μ2) respectively, and a 

subsequence (εjk)k of (εj) satisfying
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Fεjk
(u1

k, μ
1
k) → F ∗(0, μ1) and Fεjk

(u2
k, μ

2
k) → F ∗(u, μ2).

Consider uk = u1
k + u2

k and μk = μ1
k + μ2

k. As u1
k and u2

k have disjoint support, it is easily seen as in the 
proof of Proposition 3.2, that (uk, μk) belongs to X and converges to (u, μ). Moreover

Fεjk
(uk, μk) = Fεjk

(u1
k, μ

1
k) + Fεjk

(u2
k, μ

2
k)

= F ∗(0, μ1) + F ∗(u, μ2) + o(1)

=
∫
Ω

|u|q(·) dx +
n∑

i=0
μ

p∗(xi)
p(xi)
i S−p∗(xi)

xi
+ o(1)

= F ∗(u, μ) + o(1).

This finishes the proof. �
4. Proof of Proposition 1.5 and Theorem 1.6

4.1. Proof of Proposition 1.5

Using Hölder inequality (A.1), we have for any u ∈ B(Ω) that

∫
Ω

|u|q(·)−ε dx ≤

⎛⎜⎝ 1(
q

q−ε

)
−

+ 1(
q
ε

)
−

⎞⎟⎠
⎛⎝∫

Ω

|u|q(·) dx

⎞⎠
1(

q
q−ε

)
−

‖1‖( q(·)
ε

)′

= (1 + o(1))
(∫

Ω

|u|q(·) dx
)1+o(1)

from which we deduce that lim supε→0 S̃
−1
ε ≤ S̃−1.

We prove the opposite inequality. For a given δ > 0, consider uδ ∈ B(Ω) such that∫
Ω

|uδ|q(·) ≥ S̃−1 − δ.

Recalling (3.2), we then have

lim inf
ε→0

S̃−1
ε ≥ lim inf

ε→0

∫
Ω

|uδ|q(·)−ε =
∫
Ω

|uδ|q(·) dx ≥ S̃−1 − δ.

The proof is now complete.

4.2. Proof of Theorem 1.6

Before proving Theorem 1.6 we need the following Sobolev type inequality deduced from the definition 
of S̃:

Proposition 4.1. For any u ∈ W
1,p(·)
0 (Ω),∫

Ω

|u|q(·) dx ≤ S̃−1 max
{
‖∇u‖q

+

p(·), ‖∇u‖q
−

p(·)

}
. (4.1)
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Proof. Let u ∈ W
1,p(·)
0 (Ω). By definition of the norm ‖ · ‖p(·), there holds∫

Ω

( |∇u|
‖∇u‖p(·)

)p(·)
dx = 1.

It follows that v � u
‖∇u‖p

is admissible for S̃−1 so that

∫
Ω

|u|q(·)

‖∇u‖q(·)p(·)
dx ≤ S̃−1.

The result follows noticing that ‖∇u‖q(x)
p ≤ max

{
‖∇u‖q

+

p(·), ‖∇u‖q
−

p(·)

}
for a.e. x ∈ Ω. �

We can now prove Theorem 1.6.

Proof of Theorem 1.6. Observe that as an immediate consequence of the Γ-convergence of Fε to F ∗ as 
stated in Theorem 1.1, we have

lim
ε→0

sup
X

Fε = sup
X

F ∗. (4.2)

See [7] and Remark 1.2. Noticing that supX Fε = S̃−1
ε → S̃−1 as ε → 0 according to Proposition 1.5, we 

obtain

sup
X

F ∗ = S̃−1. (4.3)

Being subcritical, the embedding W 1,p(·)
0 (Ω) ↪→ Lq(·)−ε(Ω) is compact for any ε > 0. It follows that there 

exists an extremal uε ∈ B(Ω) for S̃−1
ε i.e.∫
Ω

|uε|q(·)−ε dx = S̃−1
ε = S̃−1 + o(1). (4.4)

According to the CCP (2.7)–(2.9), we can assume that (uε, |∇uε|p(·) dx) → (u, μ) in X , where the measure 
μ can be written as μ = |∇u|p(·) dx + μ̃ +

∑
i∈I μiδxi

. The lim sup property (1.3) and the definition of F ∗

then gives

lim sup
ε→0

∫
Ω

|uε|q(·)−ε dx ≤ F ∗(u, μ) =
∫
Ω

|u|q(·) dx +
∑
i∈I

μ
p∗(xi)
p(xi)
i S̄−p∗(xi)

xi
.

We then obtain in view of (4.3), (4.4) that (u, μ) is an extremal for F ∗ i.e.

F ∗(u, μ) =
∫
Ω

|u|q(·) dx +
∑
i∈I

μ
p∗(xi)
p(xi)
i S̄−p∗(xi)

xi
= S̃−1. (4.5)

In view of Lemma 3.3 and inequality (1.8) we have for any i ∈ I that

S̄−p∗(xi)
xi

= S̃−1
xi

≤ S̃−1.

These inequalities together with the Sobolev inequality (4.1) allow to deduce from the 2nd equality in (4.5)
that
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1 ≤ max
{
‖∇u‖q+p(·), ‖∇u‖q−p(·)

}
+
∑
i∈I

μ
p∗(xi)
p(xi)
i .

Moreover since

1 ≥ μ(Ω̄) ≥
∫
Ω

|∇u|p(·) dx +
∑
i

μi, (4.6)

we have

max
{
‖∇u‖q+p(·), ‖∇u‖q−p(·)

}
= ‖∇u‖q−p(·) ≤

(∫
Ω

|∇u|p(·) dx
) q−

p+
.

It follows that

1 ≤
(∫

Ω

|∇u|p(·) dx
) q−

p+ +
∑
i∈I

μ
p∗(xi)
p(xi)
i .

Since q−p+
, p

∗(xi)
p(xi) > 1 for any i, and noticing that each term of the above sum is less than 1 in view of (4.6), 

we obtain that

1 ≤
(∫

Ω

|∇u|p(·) dx
) q−

p+ +
∑
i∈I

μ
p∗(xi)
p(xi)
i ≤

∫
Ω

|∇u|p(·) dx +
∑
i

μi ≤ 1,

where the 2nd inequality is strict, leading to a contradiction, if one of the terms in the sum belongs to (0, 1). 
It follows that

(i) either 
∫
Ω |∇u|p(·) dx = 0 and all the μi are 0 except one μi0 = 1,

(ii) or μi = 0 for any i ∈ I and 
∫
Ω |∇u|p(·) dx = 1.

In the first case (i), the CCP (2.7)–(2.9) reduces to

|uε|q(·) dx ∗
⇀ νi0 δxi0

, |∇uε|p(·) dx ∗
⇀ δxi0

, νi0 ≤ S̃−1
xi0

.

Then using Hölder inequality as at the beginning of the proof of Proposition 1.5,

S̃−1 = lim
ε→0

∫
Ω

|uε|q(·)−ε dx ≤ lim sup
ε→0

∫
Ω

|uε|q(·) dx = νi0 ≤ S̃−1
xi0

≤ S̃−1.

It follows that νi0 = S̃−1 and we obtain the second alternative in Theorem 1.6.
In the second case (ii), it follows from (4.5) that u is an extremal for S̃−1. Since uε → u a.e. and ∫

Ω |uε|q(·) dx →
∫
Ω |u|q(·) dx, we obtain using the Brezis–Lieb Lemma (see [8] and also [17, Lemma 3.4]) that

∫
Ω

|uε − u|q(·) dx =
∫
Ω

|uε|q(·) dx−
∫
Ω

|u|q(·) dx + o(1) = o(1)

i.e. uε → u strongly in Lq(·)(Ω). This ends the proof of Theorem 1.6. �
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Appendix A

We state and prove an easy version of the Hölder inequality, that, although being well known (see e.g. [11]), 
is not the most common version. So we provide here with a proof for the sake of completeness.

Lemma A.1. Let f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω) where 1 < p− ≤ p(·) ≤ p+ < ∞ and p′(·) = p(·)
p(·)−1 is the 

conjugate exponent. Then ∫
Ω

f(x)g(x) dx ≤
(

1
p−

+ 1
p′−

)
‖f‖p(·)‖g‖p′(·).

In particular

∫
Ω

f(x)g(x) dx ≤
(

1
p−

+ 1
p′−

)
max

⎧⎪⎨⎪⎩
⎛⎝∫

Ω

|f(x)|p(x) dx

⎞⎠1/p−

;

⎛⎝∫
Ω

|f(x)|p(x) dx

⎞⎠1/p+
⎫⎪⎬⎪⎭ ‖g‖p′(·). (A.1)

Proof. Let λ = ‖f‖p(·) and μ = ‖g‖p′(·). By Young’s inequality, we get

∫
Ω

f(x)
λ

g(x)
μ

dx ≤
∫
Ω

1
p(x)

(
|f(x)|
λ

)p(x)

dx +
∫
Ω

1
p′(x)

(
|g(x)|
μ

)p′(x)

dx

≤ 1
p−

∫
Ω

(
|f(x)|
λ

)p(x)

dx + 1
p′−

∫
Ω

(
|g(x)|
μ

)p′(x)

dx

= 1
p−

+ 1
p′−

Now, the result follows just observing that

λ = ‖f‖p(·) ≤ max

⎧⎪⎨⎪⎩
⎛⎝∫

Ω

|f(x)|p(x) dx

⎞⎠1/p−

;

⎛⎝∫
Ω

|f(x)|p(x) dx

⎞⎠1/p+
⎫⎪⎬⎪⎭ . �
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