Pablo Groisman
Facultad de Ciencias Exactas y Naturales Argentina
|
|
publications
P. Groisman, R. Huang, H. Vivas, The Kuramoto model on dynamic random graphs.
E. Borghini, X. Fernández, P. Groisman, G. Mindlin, Intrinsic persistent homology via density-based metric learning. Journal of Machine Learning Research 24 (75), 1-42 (2023).
P. Groisman, N. Soprano-Loto, Rank Dependent Branching-Selection Particle Systems . Electronic Journal of Probability 26, 1-27 (2021).
A. Dembo, P. Groisman, R. Huang, V. Sidoravicius, Averaging Principle and Shape Theorem for a Growth Model with Memory. Movie. Communications on Pure and Applied Mathematics 74 (7), 1453-1492 (2021).
F. Arrejoria, P. Groisman, L. Rolla, The quasi-stationary distribution of the subcritical contact process. Proceedings of the American Mathematical Society 148 (10), 4517-4525 (2020).
A. Ferrari, P. Groisman, K. Ravishankar, Tumor growth, R-positivity, Multitype branching and Quasistationarity. Journal of Statistical Physics 180, 427-439 (2020).
P. Groisman, M. Jonckheere, J. Martínez, F-KPP Scaling Limit and Selection Principle for a Brunet-Derrida type Particle System. ALEA, Latinamerican Journal of Probability and Mathematical Statistics (2020).
P. Groisman, M. Jonckheere, F. Sapienza, Nonhomogeneous Euclidean First-passage Percolation and Distance learning. Bernoulli 28 (1), 255-276 (2022).
F. Sapienza, P. Groisman, M. Jonckheere, Weighted Geodesic Distance Following Fermat's Principle, ICLR 2018 Workshop.
E. Fattori, P. Groisman, C. Sarraute, Point Process Models for Distribution of Cell Phone Antennas.
P. Groisman, M. Jonckheere, Front propagation and Quasi-stationary distributions: two faces of the same coin. In: Sidoravicius V. (eds) Sojourns in Probability Theory and Statistical Physics - III. Springer Proceedings in Mathematics & Statistics, vol 300. Springer, Singapore
P. Groisman, S. Saglietti, N. Saintier, Metastability for small random perturbations of a PDE with blow-up. Stochastic Process. Appl. 128, no. 5 (2018), 1558--1589.
P. Groisman, M. Jonckheere, Front propagation and Quasi-stationary for one-dimensional Lévy processes Electronic Communications in Probability (2018).
R. Fernández, P. Groisman, S. Saglietti, Stability of gas measures under perturbations and discretizations. Reviews in Mathematical Physics 28.10 (2016).
A. Asselah, P.A. Ferrari, P. Groisman, M. Jonckheere, Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques. Vol. 52. No. 2. (2016).
E. Andjel, F. Ezanno, P. Groisman, L.T. Rolla, Subcritical contact process seen from the edge: Convergence to quasi-equilibrium. Electronic Journal of Probability, v. 20, n. 32 (2015), 1-16.
I. Armendáriz, P.A. Ferrari, P. Groisman, F. Leonardi, Finite cycle Gibbs measures on permutations of Z^d. Journal of Statistical Physics 158.6 (2015), 1213-1233.
P. Groisman, M. Jonckheere, Simulation of quasi-stationary distributions on countable spaces. Markov Processes and Related Fields, Vol 19 (3) (2013), 521-542.
T. Franco, P. Groisman, A particle system with explosions: law of large numbers for the density of particles and the blow-up time. Journal of Statistical Physics, 149.4 (2012) 629-642.
P.A. Ferrari, R. Grisi, P. Groisman, Harmonic deformation of Delaunay triangulations. Stoch. Proc. Appl. Vol 122 (5) (2012), 2185-2210.
P. Groisman, S. Saglietti, Small Random Perturbations of a Dynamical System with Blow-up. J. Math. Anal. App. Vol 385 (1) (2012),150-166.
A. Asselah, P.A. Ferrari, P. Groisman, Quasi-stationary distributions and Fleming Viot processes on finite spaces. J. Appl. Probab. Vol 48, No 2 (2011), 322-332.
J. Fernández Bonder, P. Groisman, Time-space white noise eliminates global solutions in reaction-diffusion problems. Physica D, 238 (2009), 209--215.
J. Fernández Bonder, P. Groisman, J.D. Rossi, Continuity of the explosion time in stochastic differential equations. Stochastic Anal. Appl. Vol. 27, no. 5, pp. 984-999 (2009).
P. Groisman, J.D. Rossi; The Explosion time in stochastic differential equations with small diffusion, Electron. J. Diff. Eqns. (2007), No. 140, pp. 1-9.
D. Carando, R. Fraiman, P. Groisman, Nonparametric likelihood based estimation for a multivariate Lipschitz density. Journal of Multivariate Analysis 100 (2009) 981-992.
J. Fernández bonder, P. Groisman, J.D. Rossi, Optimization of the first Steklov eigenvalue in domains with holes: a shape derivative approach. Ann. Mat. Pura Appl., 186 (2) 341-358 (2007). Numerical Experiments.
J. Dávila, J. Fernández Bonder, P. Groisman, J.D. Rossi, M. Sued . Numerical analysis of stochastic differential equations with explosions. Stochastic Anal. Appl. 23 (4) 809--826 (2005).
P. Groisman, Totally discrete explicit and semi-implicit Euler methods for a blow-up problem in several space dimensions. Computing, 76 325-352 (2006).
C. Brandle, P. Groisman y J.D. Rossi, Fully discrete adaptive methods for a blow-up problem, Math. Models Methods Appl. Sci. 14 (10), 1425--1450 (2004).
R. Ferreira, P. Groisman y J.D. Rossi, Numerical blow-up for the porous medium equation with a source. Numer. Methods Partial Differential Equations, 20 (4), 552--575 (2004).
P. Groisman y J.D. Rossi, Aproximando soluciones que explotan. Boletín de la Sociedad Española de Matemática Aplicada No. 26, 35-56 (2003).
P. Groisman y J.D. Rossi, Dependence of the blow-up time with respect to parameters and numerical approximations for a parabolic problem. Asymptot. Anal., 37(1) 79-91 (2004).
P. Groisman, J. D. Rossi y H. Zaag, On the dependence of the blow-up time with respect to the initial data in a semilinear parabolic problem. Comm. Partial Differential Equations. 28 (3-4) 737-744 (2003).
R. Ferreira, P. Groisman y J.D. Rossi, Adaptive numerical schemes for a parabolic problem with blow-up. IMA J. Numer. Anal. 23 (3) 439-463 (2003).
F. Quirós, P. Groisman y J.D. Rossi, Non-simultaneous blow-up in a numerical approximation of a parabolic system. Comput. Appl. Math. 21(3) 813-831 (2002).
G. Acosta, J. Fernandez Bonder, P. Groisman y J.D. Rossi, Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with nonlinear boundary conditions. Math. Model. Numer. Anal. (M2AN). 32(1) 55-68 (2002).
R. Ferreira, P. Groisman y J.D. Rossi, Numerical blow-up for a nonlinear problem with a nonlinear boundary condition. Math. Models Methods Appl. Sci. (M3AS). 12 (4) 461-483 (2002).
G. Acosta, J. Fernandez Bonder, P. Groisman y J.D. Rossi, Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions. Disc. Cont. Dyn. Sys. 2(2) 279-294 (2002).
J. Fernández Bonder, P. Groisman, J.D. Rossi, On numerical blow-up sets. Proc. Amer. Math. Soc. 130 , 2049-2055 (2002).
P. Groisman y J.D. Rossi. Asymptotic behaviour for a numerical approximation of a parabolic problem with blowing up solutions. J. Comput. Appl. Math. 135(1), 135-155 (2001).
P. Groisman, Numerical approximations for blow-up problems, PhD Thesis.