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G. ACOSTA, J. FERNÁNDEZ BONDER, P. GROISMAN, AND J.D. ROSSI

Abstract. In this paper we study the asymptotic behaviour of a semidiscrete
numerical approximation for the heat equation, ut = ∆u, in a bounded smooth
domain, with a nonlinear flux boundary condition at the boundary, ∂u

∂η
= up.

We focus in the behaviour of blowing up solutions. First we prove that every
numerical solution blows up in finite time if and only if p > 1 and that the
numerical blow-up time converges to the continuous one as the mesh parameter
goes to zero. Next, we show that the blow-up rate for the numerical scheme
is different from the continuous one. Nevertheless we find that the blow-up
set for the numerical approximations it is contained in a neighborhood of the
blow-up set of the continuous problem, when the mesh parameter is small
enough.

1. Introduction.

In this paper we study the asymptotic behaviour of a semidiscrete approximation
of the following parabolic problem,

(1.1)





ut = ∆u in Ω× (0, T ),
∂u
∂η = up on ∂Ω× (0, T ),

u(x, 0) = u0(x) > 0 on Ω.

We assume that u0 is regular in order to guarantee a smooth solution u.
A remarkable (and well known) fact is that solutions develop singularities in

finite time, no matter how smooth u0 is. In fact, for many differential equations or
systems such as (1.1) the solution becomes unbounded in finite time, a phenomenum
that is known as blow-up (see [W], [LP], [RR]). Other examples where this happens
are problems involving reaction terms in the equation (see [SGKM], [P] and the
references therein).

In our problem one has a reaction term at the boundary of power type and if
p > 1 this blow-up phenomenum occurs in the sense that there exists a finite time T
such that limt→T ‖u(·, t)‖∞ = +∞ for every initial data (see [W], [LP], [RR]). The
blow-up set is localized at the boundary of the domain, that is for every subdomain
Ω′ ⊂⊂ Ω there exists a constant K = K(d(Ω′, ∂Ω)) such that u(x, t) ≤ K for every
x ∈ Ω′ and for every 0 ≤ t < T (see [RR], [HY]). Also it is known that the blow-up
rate is given by ‖u(·, t)‖∞ ∼ (T − t)−

1
2(p−1) (see [HY]), in the sence that there exists
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positive constants c, C such that

c(T − t)−
1

2(p−1) ≤ ‖u(·, t)‖L∞(Ω) ≤ C(T − t)−
1

2(p−1) .

In this paper we are interested in numerical approximations of (1.1).
Since the solution u develops singularities in finite time, it is an interesting ques-

tion what can be said about numerical approximations for this kind of problems.
For previous work on numerical approximations of blowing up solutions of (1.1)
in one space dimension we refer to [DER]. For other numerical approximations of
blow-up problems we refer to [AB], [ALM1], [ALM2], [BK], [BHR], [C], [GR], [LR],
the survey [BB] and references therein.

In [DER] the authors analyze a semidiscrete scheme (such as ours) in one space
dimension. They find a necessary and sufficient condition for the appearance of
blow-up (p > 1) and prove the convergence of the blow-up time of the discrete
problem to that of the continuous one, when the mesh parameter goes to zero.

Here we extend these results to several space dimensions and prove some new
results concerning the asymptotic behaviour (blow-up rate) and the localization of
blow-up points (blow-up set) for semidiscretetizations in space. We will consider
a general method for the space discretization with adequate assumptions on the
coefficients.

More precisely, we assume that there exists a set of nodes {x1, . . . , xN} and that
our approximate solution uh(x, t) is a linear interpolant of U(t) = (u1(t), . . . , uN (t))
(that is uh(xk, t) = uk(t)) where U is the solution of the following ODE

(1.2)
MU ′(t) = −AU(t) + BUp(t),

U(0) = U0.

The precise assumptions on the matrices involved in the method are: M and B
are a diagonal matrices with positive entries mk and bk and A is a nonnegative
symmetric matrix, with nonpositive coefficients off the diagonal (that is aij ≤ 0 if
i 6= j), aii > 0 and

∑N
j=1 aij ≤ 0. U0 is the initial datum for the problem (1.2).

Writing this equation explicitly we obtain the following ODE system,

(1.3)
{

mku′k(t) = −∑N
j=1 akjuj(t) + bkup

k(t), 1 ≤ k ≤ N,

uk(0) = u0,k, 1 ≤ k ≤ N.

As an example, we can consider a linear finite element approximation of problem
(1.1) on a regular acute triangulation of Ω (see [Ci]). In this case, if Vh is the
subspace of piecewise linear functions in H1(Ω). We impose that uh : [0, Th) → Vh,
verifies

(1.4)
∫

Ω

((uh)tvh)I = −
∫

Ω

∇uh∇v +
∫

∂Ω

((uh)pv)I

for every v ∈ Vh. Here (·)I stands for the linear Lagrange interpolation at the nodes
of the mesh.

We denote with U(t) = (u1(t), ...., uN (t)) the values of the numerical approxima-
tion at the nodes xk at time t. Then U(t) verifies a system of the form (1.2) and all
of our assumptions on the matrices M and B holds as we are using mass lumping
and our assumptions on A are satisfied as we are considering an acute regular mesh.
In this case M is the lumped mass matrix, A is the stiffness matrix, B correspond
to the boundary condition obtained with lumping. As an initial datum, we take
U0 = uI

0.
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As another example if Ω is a cube, Ω = (0, 1)n, we can use a semidiscrete finite
differences method to approximate the solution u(x, t) obtaining an ODE system
of the form (1.3).

In §2 we start our analysis of (1.3) and prove that this method converges uni-
formly over Ω × [0, T − τ ] under the assumption of the consistency of the method
(for one space dimension see [ALM2] where the authors prove consistence under
the regularity hypothesis u ∈ C4,1). Under this assumption we find that

‖u− uh‖L∞(Ω×[0,T−τ ]) ≤ Cρ(h)

where ρ is the modulus of consistency of the method.
In fact, we prove the following result,

Theorem 1.1. Let u be a regular solution of (1.1) and uh the numerical approxi-
mation given by (1.3). If the method is consistent, that is if

mkut(xk, t) = −
N∑

j=1

akju(xj , t) + bkup(xk, t) + ρk(h), t ∈ [0, T − τ ]

and there exists a positive function ρ(h) such that

max{h2,
|ρk(h)|

mk
} ≤ ρ(h) and lim

h→0
ρ(h) = 0,

then there exists a constant C such that

‖u− uh‖L∞(Ω×[0,T−τ ]) ≤ Cρ(h).

if ‖u0 − uh(·, 0)‖L∞(Ω) ≤ Cρ(h).

We say that a solution of (1.2) has finite blow-up time if there exists a finite time
Th such that

lim
t→Th

‖U(t)‖∞ = lim
t→Th

max
j

uj(t) = +∞.

As a first step for our analysis of the behaviour of solutions of (1.3), we want
to describe when the blow-up phenomenum occurs. In §3 we prove the following
Theorem,

Theorem 1.2. Positive solutions of (1.3) blow up in finite time if and only if p > 1.

We want to remark that the blow-up condition, p > 1, is the same to that of the
continuous problem, see [W], [LP], [RR].

The purpose of §4 is to extend the result of [DER] on the convergence of numerical
blow-up times Th to the continuous one T when the mesh parameter h goes to zero.
To this end, we again assume that the method is consistent in the sense of Theorem
1.1 and hypotheses on u0 that implies that the numerical solution uh is increasing
in time.

Theorem 1.3. Let u0 a compatible initial datum for (1.1) such that ∆u0 ≥ α > 0.
Assume that the method (1.3) is consistent in the sence of Theorem 1.1. Let T and
Th be the blow-up times for u and uh respectively, then

lim
h→0

Th = T.
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In §5 and §6 we arrive at the main points of this article, the asymptotic behaviour
(blow-up rate) and the localization of blow-up points (blow-up set) of uh for a fixed
h.

Concerning the blow-up rate for (1.3) in §5 we prove the following Theorem,

Theorem 1.4. Let uh be a solution of (1.3). Assume that p > 1 and that uh blows
up in finite time, Th. Then

max
j

uj(t) ∼ (Th − t)−
1

p−1 ,

in the sense that there exists two positive constants c, C such that

c(Th − t)−
1

p−1 ≤ max
j

uj(t) ≤ C(Th − t)−
1

p−1 .

We have to remark that the constants c, C that appear in Theorem 1.4 may
depend on h.

Let us point out that the blow-up rate for the numerical scheme, (Th−t)−1/(p−1),
is different from the continuous one, (T − t)−1/2(p−1).

Finally, in §6, we turn our attention to the blow-up set for uh, B(uh) that is the
set of nodes xk such that limt↗Th

uk(t) = +∞. Let F be the set of nodes xj such
that uj(t) ∼ (Th − t)−

1
p−1 . By Theorem 1.4, F 6= ∅ and clearly, F ⊂ B(uh). By

means of the blow-up rate given by Theorem 1.4 we observe a propagation property
for blow-up points. We prove that the number of nodes adjacent to F that go to
infinity is finite and determined only by p. To describe this propagation phenomena
we need the following notion of distance between nodes, we say that two different
nodes, xi, xj , are at distance one if and only if aij 6= 0. Let A1 be the set of nodes
that are at distance one from F . Inductively, we define Al as the set of nodes that
are at distance one from Al−1. We say that a node xk is at distance d(k) from F if
xk ∈ Ad(k) −Ad(k)−1. If we are dealing with a linear finite element approximation,
the distance of a node xk to F is the usual distance measured as a graph. We prove
that uk blows up if and only if d(k) ≤ K where K depends only on p,

Theorem 1.5. Let F be the set of nodes, xj, such that

uj(t) ∼ (Th − t)−
1

p−1

Then the blow-up propagates in the following way, let p > 1 and K ∈ N such that
K+2
K+1 < p ≤ K+1

K , then the solution of (1.2), U , blows up exactly at K nodes near
F . More precisely,

uk(t) → +∞ ⇐⇒ d(k) ≤ K

where d(k) is the distance of xk to F in the sense described above. Moreover, if
d(k) ≤ K, the asymptotic behaviour of uk is given by

uk(t) ∼ (Th − t)−
1

p−1+d(k),

if p 6= K+1
K and if p = K+1

K , d(k) = K

uk(t) ∼ ln(Th − t).
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We want to remark that more than one node can go to infinity, but the asymp-
totic behavior imposes uk(t)

uj(t)
→ 0 (t → Th) if d(k) > d(j).

In the blow-up case (p > 1) the number of blow-up points outside F is finite
and depends on the power p but is independent of h. This fact gives a sort of
“numerical localization” of the blow-up set of uh near the blow-up set of u when
the mesh parameter h is small enough.

Theorem 1.6. Let u and uh be solutions of (1.1) and (1.3) respectively. Assume
that the numerical method is consistent and that ∆u0 ≥ α > 0. Then if we call
B(u) and B(uh) the blow-up sets for u and uh respectively, we have that given ε > 0
there exists h0 such that for every 0 < h ≤ h0,

B(uh) ⊂ B(u) + Nε ∀h ≤ h0,

where Nε = {x ∈ Rn : |x| < ε}.

We want to remark that regardless the difference in the blow-up rate showed by
Theorem 1.4; the blow-up sets are similar as is showed by Theorem 1.6.

In [RR] and [HY] it is proved that B(u) ⊂ ∂Ω. Therefore, Theorem 1.6 implies
that B(uh) is contained in a small neighborhood of ∂Ω for h small enough. More-
over, in [Hu] there is an example of single point blow-up for (1.1) and hence in this
case B(uh) shrinks around that single point as h goes to zero.

On the one hand, Theorems 1.3, 1.2 and 1.6 shows that the numerical scheme
(1.3) has asymptotic properties that are similar to the ones of the continuous prob-
lem (1.1) when the mesh parameter is small. On the other hand, a major difference
appears in the blow-up rates (Theorem 1.4). Up to our knowledge, this is the first
time that this phenomenum appears in the literature. This difference suggest that
an adaptive method is needed in order to reproduce the same blow-up rate. We
leave this question for future work.

We also want to remark that the results obtained in Theorems 1.2, 1.4 and 1.5,
holds for a general ODE system of the form (1.3) regardless if it comes from a
semidiscretization of (1.1).

The paper is organized as follows: in §2 we prove our convergence result (The-
orem 1.1), in §3 the blow-up result (Theorem 1.2), in §4 we study the convergence
of the blow-up times (Theorem 1.3), in §5 we consider the blow-up rate (Theorem
1.4) and finally in §6 we study the localization of the blow-up set for uh (Theorem
1.5 and 1.6).

2. Convergence of the numerical scheme.

In this Section we prove a uniform convergence result for regular solutions of the
numerical scheme (1.3). Throughout this section, we consider 0 < τ < T fixed.

We want to show that uh → u (when h → 0) uniformly in Ω× [0, T−τ ]. This is a
natural requirement since in such sets the exact solution is regular. Approximations
of regular problems in one space dimension with a source in the equation have been
analyzed in [ALM2] and also in one space dimension for a problem like (1.1) in
[DER].
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The precise assumption that we make on the scheme is: for u any solution on
(1.1), it holds

(2.1) mkut(xk, t) = −
N∑

i=1

aiku(xi, t) + bku(xk, t)p + ρk(h)

and there exists a function ρ : R>0 → R>0 such that max{|ρk(h)/mk|, h2} ≤ ρ(h)
and limh→0 ρ(h) = 0 (i.e. the scheme is consistent).

Let us begin with a comparison Lemma, that will be used throughout the paper,

Definition 2.1. We say that U is a supersolution of (1.2) if

MU
′ ≥ −AU + BU

p
.

We say that U is a subsolution of (1.2) if

MU ′ ≤ −AU + BUp.

(The inequalities are understood coordenate by coordenate)

Lemma 2.1. Let U and U be a super and a subsolution of (1.2) respectivelly such
that U(0) ≤ U(0). Then

U(t) ≤ U(t).

Proof. Let W = U − U . Assume first that W (0) > 0. We observe that W verifies

MW ′ ≥ −AW + B

(
U

p − Up

U − U

)
W.

Now, set δ = min{wj(0)} and suppose that the statement of the Lemma is false.
Thus, let t0 be the first time that min{wj(t)} = δ/2. At that time, there must be
a j0 such that wj0(t0) = δ/2. But on the one hand w′j0(t0) ≤ 0 and, on the other
hand, by our hypotheses on A,

mj0w
′
j0 ≥ −

N∑

i=1

aij0wi + bj0

(
up

j0
− bj0u

p
j0

uj0 − uj0

)
wj0 > −

N∑

i=1

aij0

δ

2
+ pup−1

j0
wj0 ≥ 0

a contradiction. By an approximation argument using continuity of (1.2) with re-
spect to initial data, the result follows.

Now we are ready to prove our convergence result.

Proof of Theorem 1.1: Let us start by defining the error functions

(2.2) ek(t) = uk(t)− u(xk, t)

By (2.1), these functions verify

mke′k = −
N∑

i=1

aikei + bk(up
k − up(xk, t)) + ρk(h)

Let t0 = maxt∈[0,T−τ ]{maxk |uk(t)− u(xk, t)| ≤ 1}. We will see that t0 = T − τ for
h small enough.

In [0, t0], E = (e1, ..., eN ) is a subsolution of

ME′ ≤ −AE + KBE + ρ(h)M(1, ..., 1)t
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where K = p(‖u‖L∞(Ω×[0,T−τ ]) + 1)p−1.
Let us now define the following function that will be used as a supersolution for

(1.2). Let a ∈ C2(Ω) be such that a(x) ≥ δ > 0 in Ω, ∂a/∂η > Ka on ∂Ω and let
b(t) = exp(Lt) where L is to be determined.

Then, it is easy to check that w(x, t) = Ca(x)b(t)ρ(h) verifies

wt ≥ ∆w in Ω
∂w
∂η ≥ Kw in ∂Ω

Now, by the consistency of the scheme, one can verify that

W = Cb(t)ρ(h)(a(x1), ..., a(xN ))

is a supersolution of

MW ′ ≥ −AW + KBW + ρ(h)M(1, ..., 1)t

for L big enough depending on K but not on h.
Next, as ρ(h) ≥ h2, we can choose C large and independent of h, such that

E(0) ≤ W (0). It follows by a comparison argument (Lemma 2.1) that

E(t) ≤ W (t), ∀t ∈ [0, t0].

By a symmetric argument, it follows that

|E(t)| ≤ Cb(T − τ)‖a‖L∞(Ω)ρ(h).

From this fact it is easy to see that t0 = T − τ for h small enough, and the result
follows.

3. Blow-up for the numerical scheme.

In this section we prove Theorem 1.2 which states a condition for the existence
of blow-up of the discrete solution.

Let us define, Th = sup{t such that uh(s) is defined for s ∈ [0, t]}. If Th is finite,
then by a classical result from ODE theory we have

lim
t↗Th

max
j

uj(t) = +∞.

As we mentioned in the introduction, this means that uh blows up at time Th.
Let us begin with the following Lemma,

Lemma 3.1. Let U be the solution of (1.2). If U0 > 0, then U is unbounded.

Proof. Assume by contradiction that U is uniformly bounded. Then, we observe
that

Φh(U) =
1
2
〈A1/2U,A1/2U〉 − 1

p + 1

N∑

k=1

bkup+1
k

is a Lyapunov functional for (1.3). In fact by direct computation we have
d

dt
Φ(U)(t) = −〈MU ′, U ′〉.

As (1.2) has only U ≡ 0 as a fixed point, it follows that (see [H]) U → 0 as
t →∞. As our scheme verifies the minimum principle, minj uj(t) ≥ minj u0,j > 0,
a contradiction.
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To prove Theorem 1.2 we need the following result.

Lemma 3.2. Let U be the solution of (1.2). Then

max
j

uj(t) = uk(t)

where k is such that bk 6= 0 and the maxj uj(t) > maxj u0,j.

Proof. Follows easily as our hypotheses on the matrices M , B and A implies the
maximum principle.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2: By the previous lemma we have that U(t) is unbounded,
using that p > 1 and Lemma 3.2 we obtain that there exists a time t0 and a node xk

with bk 6= 0 such that −akkuk(t0)+bkup
k(t0) ≥ bk

2 up
k(t0). Hence, by our assumptions

on A,

mku′k(t0) = −
N∑

j=1

akjuj(t0) + bkup
k(t0) ≥ bk

2
up

k(t0).

As a consequence of this uk(t) must be increasing for t ≥ t0 and verifies

mku′k(t) ≥ bk

2
up

k(t).

Again, as p > 1, uk goes to infinity in finite time, and hence U(t) has finite time
blow-up as we wanted to show.

4. Convergence of the blow-up times

Now we prove the convergence of the blow-up times, Theorem 1.3. We use ideas
from [DER].

We begin with the following Lemma,

Lemma 4.1. Let U a solution of (1.2) such that u′k(0) ≥ δup
k(0), 1 ≤ k ≤ N .

Then u′k(t) ≥ δup
k(t), 1 ≤ k ≤ N for every t < Th.
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Proof. Let wk(t) = u′k(t)−δuk(t)p. We want to use the minimum principle to show
that wk(t) is positive. To this end, we observe that wk verifies

mkw′k +
N∑

j=1

akjwj = mk(u′′k − δpup−1
k u′k) +

N∑

j=1

akj(u′j − δup
j )

= −δmkpup−1
k u′k + bkpup−1

k u′k − δ

N∑

j=1

akju
p
j

= −δpup−1
k




N∑

j=1

akjuj + bkup
k


 + bkpup−1

k u′k − δ

N∑

j=1

akju
p
j

= bkpup−1
k wk − δ


∑

j 6=k

akj(u
p
j − pup−1

k uj) + akk(1− p)up
k




= bkpup−1
k wk − δ


∑

j 6=k

akj(u
p
j − pup−1

k (uj − uk))− up
k)+

+
N∑

j=1

akj(1− p)up
k


 .

As up is convex and by our hypotheses on the matrix A it follows that W =
(w1, . . . , wN ) verifies

MW ′ ≥ −AW + BpUp−1W.

As the minimum principle holds for this equation, the result follows.

With this Lemma we can prove Theorem 1.3.

Proof of Theorem 1.3 As the scheme is consistent one can check that the hy-
pothesis ∆u0 ≥ α > 0 implies the hypothesis of the previous lemma for h small
enough, with δ independent of h. So we have that u′k(t) ≥ δup

k(t), integrating we
obtain ∫ Th

t

u′k(s)
up

k(s)
ds ≥ δ(Th − t).

Therefore, changing variables we get

δ(Th − t) ≤
∫ +∞

uk(t)

1
xp

dx,

and so

(4.1) δ(Th − t) ≤
∫ +∞

‖uh(·,t)‖L∞(Ω)

1
xp

dx.

Since p > 1 this last inequality implies that if ‖uh(·, t)‖L∞(Ω) is large enough, then
t is close to Th. Given ε > 0, as δ is independent of h, we can choose M (also
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independent of h) large enough to ensure that

(4.2)
1
δ

∫ +∞

M

1
xp

dx <
ε

2
.

Now, as u blows up at time T we can choose τ < ε
2 such that

‖u(·, T − τ)‖L∞(Ω) ≥ 2M.

Then by Theorem 1.1, if h is small enough,

‖uh − u‖L∞(Ω×[0,T−τ ]) ≤ Cρ(h) ≤ M,

and hence
‖uh(·, T − τ)‖L∞(Ω) ≥ M.

By (4.1) and (4.2),

|Th − (T − τ)| ≤ 1
δ

∫ +∞

‖uh(·,T−τ)‖L∞(Ω)

1
xp

dx ≤ 1
δ

∫ +∞

M

1
xp

dx <
ε

2
.

Therefore,
|Th − T | ≤ |Th − (T − τ)|+ |τ | < ε.

This finish the proof.

5. Blow-up rate.

In this Section we consider positive solutions of (1.3) with h fixed and we denote
by C a positive constant that may depend on h and may vary from one line to
another.

Proof of Theorem 1.4: Let us begin by defining

w(t) =
N∑

k=1

uk(t)

As U blows up at time Th, and by (1.3) we obtain that there exists t0 such that for
every t ∈ [t0, Th) it holds

w′(t) = −
N∑

k=1

N∑

j=1

akj

mk
uj(t) +

N∑

k=1

bk

mk
up

k(t) ≤ C(max
k

uk(t))p

≤ C

(
N∑

k=1

uk(t)

)p

= Cwp(t).

For t ∈ [t0, Th) we can integrate the above inequality between t and Th to obtain
∫ Th

t

w′(s)
wp(s)

ds ≤ C(Th − t).

Changing variables we get
∫ +∞

w(t)

1
sp

ds ≤ C(Th − t),

hence
w(t) ≥ C(Th − t)−

1
p−1 .
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Therefore we obtain
max

j
uj(t) ≥ C(Th − t)−

1
p−1 .

To prove the other inequality we proceed as follows: as maxj uj(t) → +∞ when
t → Th, we have that if uk(t) = maxj uj(t), then akkuk(t) ≤ bk

2 up
k(t) for every t

close to Th. In this case we have

u′k(t) = −
N∑

j=1

akj

mk
uj(t) +

bk

mk
up

k(t) ≥ bk

2mk
up

k(t).

Integrating again over [t, Th] we obtain
∫ Th

t

u′k(s)
up

k(s)
ds ≥ bk

2mk
(Th − t).

Changing variables ∫ +∞

uk(t)

1
sp

ds ≥ bk

2mk
(Th − t),

hence
uk(t) ≥ Ck(Th − t)−

1
p−1 .

So maxj uj(t) verifies

max
j

uj(t) ∼ (Th − t)−
1

p−1

in the sense that

c(Th − t)−
1

p−1 ≤ max
j

uj(t) ≤ C(Th − t)−
1

p−1 .

The proof is finished.

6. Blow-up set.

In this Section we study the blow-up set of the solution U . We begin by distin-
guish the set of nodes that blows up with the same rate as the maximum from the
others.

For this purpose, we make the following change of variables inspired by [GK],
[HV1], [HV2],

(6.1)





yk(s) = (Th − t)
1

p−1 uk(t),

(Th − t) = e−s.

These new variables, Y = (yk(s)), verify

(6.2)





mky′k(s) = −e−s
∑N

j=1 akjyj(s)− mk

p−1yk(s) + bkyp
k(s),

yk(− ln(Th)) = (Th)
1

p−1 u0(xk), 1 ≤ k ≤ N + 1.

We observe that, as max uj(t) ≤ C(Th−t)−
1

p−1 , we have that yj(s) are uniformly
bounded,



12 G. ACOSTA, J. FERNANDEZ BONDER, P. GROISMAN, AND J.D. ROSSI

Let us first define the following constant that will be use troughout this section,

Γk = sup
s

∣∣∣∣∣∣

N∑

j=1

akjyj(s)

∣∣∣∣∣∣
.

Lemma 6.1. If there exists s0 such that

bkyp
k(s0)− mk

p− 1
yk(s0) < −Γke−s0

then
yk(s) → 0 (s →∞).

Proof. ¿From (6.2 yk(s) verifies

mky′k(s) ≤ Γke−s − mk

p− 1
yk(s) + bkyp

k(s).

Let wk(s) be a solution of

w′k(s) = Γke−s − mk

p− 1
wk(s) + bkwp

k(s)

with wk(s0) = yk(s0). We observe that,

w′k(s0) = Γke−s0 − mk

p− 1
yk(s0) + bkyp

k(s0) < 0.

We claim that w′k(s) < 0 for all s > s0. To prove this claim, we argue by contradic-
tion. Assume that there exists a first time s1 such that w′k(s1) = 0. At that time
s1 we have

w′′k(s1) = −Γke−s1 − mk

p− 1
w′k(s1) + pbkwp−1

k (s1)w′k(s1) = −Γke−s1 ,

hence w′′k(s1) < 0. Therefore w′k is decreasing at s1, a contradiction.
So we have proved that wk(s) is decreasing for all s > s0, and wk(s) ≥ 0 hence

there exists lk = lims→∞ wk(s). As lims→∞ w′k(s) = 0 we have that

− mk

p− 1
lk + bklpk = 0.

As wk(s0) is below the only positive root of gk(x) = − mk

p−1x + bkxp and wk is
decreasing for s ≥ s0, we conclude that lk = 0.

By a comparison argument we have that

0 ≤ yk(s) ≤ wk(s) → 0 (s →∞),

hence yk(s) → 0 (s →∞).

Lemma 6.2. For every s, it holds

bkyp
k(s)− mk

p− 1
yk(s) ≤ Γke−s.

Proof. We argue by contradiction. Suppose that there exists s0 such that

bkyp
k(s0)− mk

p− 1
yk(s0) > Γke−s0 .

As before, from (6.2 yk(s) verifies

mky′k(s) ≥ −Γke−s − mk

p− 1
yk(s) + bkyp

k(s)
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Let wk(s) be a solution of

w′k(s) = −Γke−s − mk

p− 1
wk(s) + bkwp

k(s)

with wk(s0) = yk(s0). We observe that,

w′k(s0) = −Γke−s0 − mk

p− 1
yk(s0) + bkyp

k(s0) > 0.

We claim that w′k(s) > 0 for all s > s0. To prove this claim, we argue by contra-
diction. Assume that there exists a first time s1 such that w′k(s1) = 0, at that time
s1 we have

w′′k(s1) = Γke−s1 − mk

p− 1
w′k(s1) + pbkwp−1

k (s1)w′k(s1) = Γke−s1 .

Hence w′′k(s1) > 0. Therefore w′k is increasing at s1, a contradiction.
So we have proved that wk(s) is increasing for all s > s0, hence there exists ε > 0

such that
w′k(s) ≥ εwp

k(s)
and then, using that p > 1, we have that wk blows up in finite time s2.

As before, we can use a comparison argument to get

yk(s) ≥ wk(s) → +∞ s → s̃ ≤ s2 < ∞
hence yk(s) blows up in finite time which contradicts the fact that it is uniformly
bounded.

Lemma 6.3. Let yk(s) be a solution of (6.2) then each yk verifies
(6.3)




yk(s) → 0 (s → +∞),
or
yk(s) → lk (s → +∞) for some contant lk > 0 depending on k and h.

Proof. As yk is uniformly bounded, we conclude that it is globaly defined. If yk(s)
does not converge to zero, by Lemmas 6.1 and 6.2 we observe

Γke−s ≥ bkyp
k(s)− mk

p− 1
yk(s) ≥ −Γke−s.

Then
bkyp

k(s)− mk

p− 1
yk(s) → 0 (s → +∞).

As yk does not converges to zero, we conclude that yk(s) → lk, where lk is the only
positive root of gk(y) = bkyp − mk

p−1y.

Now we are ready to deal with the blow-up set. We begin by the proof of the
propagation result, Theorem 1.5.

Proof of Theorem 1.5: Let F = {xj1 , xj2 , . . . , xjm} be the set of nodes such
that

yji(s) 6→ 0 (s →∞).
Let K be such that

K + 2
K + 1

< p ≤ K + 1
K

.
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We want to see that the blow-up propagates to the K nodes adjacents to F , that
is, a node xk blows up if and only if d(k) ≤ K.

For this purpose let us begin by a considering a node xk such that d(k) = 1. As
xk /∈ F , we have that yk(s) → 0. We want to obtain the asymptotic behaviour of
yk(s). To this end, first we get a bound as follows, from (6.2) yk(s) verifies

mky′k(s) ≤ Γke−s − mk

p− 1
yk(s) + bkyp

k(s).

Using that yk(s) → 0 we have that, given ε > 0 there exists s0 such that, for every
s > s0

mky′k(s) ≤ Γke−s − mk

p− 1
yk(s) + bkyp

k(s) ≤ Γke−s −
(

mk

p− 1
− ε

)
yk(s)

Let wk(s) be a solution of

w′k(s) = Γke−s −
(

mk

p− 1
− ε

)
wk(s),

we get
w(s) ≤ Ce−s

By a comparison argument we obtain that for every s > s0,

(6.4) yk(s) ≤ wk(s) ≤ Ce−s

Again, from (6.2)

mky′k(s) +
mk

p− 1
yk(s) = −e−s

∑
akjyj(s) + bkyp

k(s)

then,

mk(e
1

p−1 syk(s))′ = e
1

p−1 s
(
−e−s

∑
akjyj(s) + bkyp

k(s)
)

.

Integrating between s0 and s, we get

mkyk(s) = e−
1

p−1 s

(
Ck +

∫ s

s0

e
1

p−1 τ
(
−e−τ

∑
akjyj(τ) + bkyp

k(τ)
)

dτ

)
.

We need to find the behaviour of the last integral. With this in mind let us compute
the following limit,

lim
s→+∞

∫ s

s0
e

1
p−1 τ

(
−e−τ

∑N
j=1 akjyj(τ) + bkyp

k(τ)
)

dτ
∫ s

s0
e−

p−2
p−1 τ dτ

.

If the integral diverges, we can use L’Hôspital’s rule to obtain

lim
s→+∞

e( 1
p−1−1)s

(
−∑N

j=1 akjyj(s) + bkesyp
k(s)

)

e−
p−2
p−1 s

=

lim
s→+∞

−
N∑

j=1

akjyj(s) + bkesyp
k(s).

Using (6.4) we get

esyp
k(s) ≤ Ce−(p−1)s → 0 (s →∞),
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hence we have,

lim
s→+∞

∫ s

s0
e

1
p−1 τ

(
−e−τ

∑N
j=1 akjyj(τ) + bkyp

k(τ)
)

dτ
∫ s

s0
e−

p−2
p−1 τ dτ

=

lim
s→+∞

−
N∑

j=1

akjyj(s) = C̃k 6= 0.

Therefore, the integral behaves like∫ s

s0

e−
p−2
p−1 τ dτ.

If p 6= 2, we have

yk(s) ∼ e−
1

p−1 s
(
C1 + C2e

− p−2
p−1 s

)
= C1e

− 1
p−1 s + C2e

−s.

If p = 2 we can repeat the above calculations but in this case the integral behaves
like s. Therefore

yk(s) ∼




Ce−
1

p−1 s if p > 2,

Cse−
1

p−1 s if p = 2,
Ce−s if p < 2.

This implies that uk(t) verifies

uk(t) ∼




C if p > 2, and hence it is bounded,
−C ln(Th − t) if p = 2, and hence it blows up,
C(Th − t)

p−2
p−1 if p < 2, and hence it blows up.

Now we can repeat this procedure with a node xl that is at distance 2 from F
(using the asymptotic behaviour that we have found for yk) and so on to find that
ul(t) blows up if d(l) ≤ K and ul is bonded if d(l) > K where K ∈ N is determined
by p in the following way, K verifies

K + 2
K + 1

< p ≤ K + 1
K

.

Also we find that the asymptotic behaviour of a node xl is given by

ul(t) ∼ (Th − t)−
1

p−1+d(l), d(l) = 1, . . . , K,

if p 6= K+1
K and if p = K+1

K

ul(t) ∼ ln(Th − t)
if d(l) = K.

Finally we localize the blow-up set.
Proof of Theorem 1.6: We want to prove that, given ε > 0 there exists h0 such
that for every 0 < h ≤ h0,

(6.5) B(uh) ⊂ B(u) + Nε.

We have that the blow-up set of u is contained in ∂Ω [RR], [HY]. Let us call
A = B(u)+N ε

2
. First we claim that, for every h small enough, we have F ⊂ A (we

recall that F is the set of nodes xj such that yj(s) → Cj 6= 0). To prove this claim
we observe that there exists a constant L such that

|u(x, t)| ≤ L ∀x ∈ Ω−A, ∀t ∈ [0, T ).
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Now, Theorem 1.1 implies that

‖(uh − u)(·, T − τ)‖L∞ ≤ Cρ(h),

hence given τ , for every h small enough,

|uh(x, T − τ)| ≤ 2L ∀x ∈ Ω \A.

Let xj be a node in Ω \A, then it holds

(Th − (T − τ))
1

p−1 uj(T − τ) ≤ 2L(Th − (T − τ))
1

p−1

and then
yj(s0) ≤ 2L(Th − (T − τ))

1
p−1 ,

where s0 = − ln(Th − (T − τ)). By Theorem 1.3 we have that Th → T . Therefore,
choosing τ and h small enough we can make yj(s0) small and fall into the hypothesis
of Lemma 6.1, proving our claim.

To finish the proof of Theorem we only have to observe that by our propagation
result, Theorem 1.5, we have that, for h small enough,

B(uh) ⊂ F + NKh ⊂ A + NKh ⊂ B(u) + Nε,

proving (6.5).
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