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CRISTINA BRÄNDLE, PABLO GROISMAN, AND JULIO D. ROSSI

Abstract. We present adaptive procedures in space and time for
the numerical study of positive solutions to the following problem,

ut(x, t) = (um)xx(x, t) (x, t) ∈ (0, 1)× [0, T ),
(um)x(0, t) = 0 t ∈ [0, T ),
(um)x(1, t) = up(1, t) t ∈ [0, T ),
u(x, 0) = u0(x) x ∈ (0, 1),

with p,m > 0. We describe how to perform adaptive methods
in order to reproduce the exact asymptotic behavior (the blow-up
rate and the blow-up set) of the continuous problem.

1. Introduction

We are interested in developing fully discrete adaptive numerical
approximations for the following problem,

(1.1)


ut(x, t) = (um)xx(x, t) (x, t) ∈ (0, 1)× [0, T ),
(um)x(0, t) = 0 t ∈ [0, T ),
(um)x(1, t) = up(1, t) t ∈ [0, T ),
u(x, 0) = u0(x) x ∈ (0, 1).

In order to have a regular solution, we assume that u0 is positive and
compatible with the boundary condition. Parabolic problems with
nonlinear boundary conditions like (1.1) appear in several branches
of applied mathematics. They have been used to model, for example,
chemical reactions, heat transfer or population dynamics. See [23] and
the references therein.

The constant T denotes the maximal time of existence of the solution.
If T is infinite we say that the solution is global. However, it is known
that, for certain choices of the parameters p and m, the solution may
become unbounded in finite time, which means that this solution is
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defined for t ∈ [0, T ), with

lim sup
t↗T

‖u(·, t)‖L∞ = ∞.

This phenomena is known as blow-up, [16].

Let us summarize the known results concerning solutions of (1.1).

If m > 1 the equation is known as porous medium equation. It is
proved in [16] that for every positive initial data the solution blows up
if and only if p > 1. Moreover the blow-up rate for increasing in space
initial data is given by,

• ‖u(·, t)‖L∞ ∼ (T − t)−
1

p−1 if 1 < p ≤ m,

• ‖u(·, t)‖L∞ ∼ (T − t)−
1

2p−m−1 if p > m.

Here and throughout the paper f(t) ∼ g(t) means that there exist two
positive constants c, C, such that cg(t) ≤ f(t) ≤ Cg(t).

For this kind of problems it is important to study the set of points
where the solution becomes unbounded. To this end the blow-up set is
defined as

B(u) = {x : there exist xn → x, tn ↗ T, such that u(xn, tn) →∞},
In [10, 13, 16] it is proved that the blow-up set for solutions to (1.1) is
given by

• B(u) = [0, 1] if 1 < p ≤ m (global blow-up),
• B(u) = {1} if p > m (single point blow-up).

In the case 0 < m ≤ 1 (known as fast diffusion equation if 0 < m < 1
or heat equation for m = 1) the existence of blow-up solutions depends
on m and p. In fact if p ≤ m+1

2
every solution is global (see [16]) and

every positive solution blows up if p > m+1
2

. In this case the blow-up
rate is given by

• ‖u(·, t)‖L∞ ∼ (T − t)−
1

2p−m−1 ,

and the blow-up set is

• B(u) = {1} (single point blow-up).

It is remarkable that the blow-up condition depends strongly on the
diffusivity, through the exponent m. Indeed, the condition changes
across the critical value m = 1, and, if m > 1 the properties of the
solution change also across the value p = m.

Numerical approximations for (1.1) have been already studied in [13],
where the authors deal with a semidiscrete numerical approximation
in a fixed mesh of size h, keeping the time variable t continuos. They
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compare the behavior of the continuous problem with the discrete one
and observed that significant differences appear. For example, they
proved that positive solutions of the numerical problem blow up if and
only if p > 1. Hence, in the case 0 < m < 1, if m+1

2
< p ≤ 1

the continuos solutions blow up in finite time, while the numerical
approximations are globally defined. Moreover, it is shown that the
blow-up rate for the numerical approximation, U , is given by

‖U(t)‖∞ ∼ (Th − t)−
1

p−1 .

Therefore the blow-up rate does not coincide with the expected for the
continuous problem when p > m. In addition, it is shown that the nu-
merical blow-up set is [1−Lh, 1]. The constant L depends only on p and
m, hence the numerical blow-up sets concentrates in a neighborhood
of B(u) as h→ 0.

In view of these facts, we conclude that usual methods with fixed
grid are not well suited in order to reproduce the asymptotic behavior
of problem (1.1): the blow-up cases do not coincide and even if both,
the discrete and the continuous solutions blow up, the blow-up rates
can be different.

The aim of this paper is to combine ideas from [2] and [14] to obtain
fully discrete adaptive schemes that reproduce the blow-up cases, blow-
up rates and blow-up sets. We deal with two different improvements
of the previous works simultaneously. On the one hand we extend the
adaptive in space ideas of [14] to the case of nonlinear diffusion. On the
other hand we use the ideas from [2] to develop a method to integrate
the time variable adequately.

We use two different methods in order to define the mesh refinement:
the first one adds points near the boundary when the numerical solu-
tion becomes large. The second method moves the last point near the
boundary when the solution becomes large. This procedure is inspired
in the moving mesh algorithms developed in [6, 7, 8, 18] combined with
the time step adaptive procedures of [2]. In our case we take advantage
of the a priori knowledge of the spatial location of the singularity at
x = 1 and, instead of moving the whole mesh, we concentrate only the
last point near the boundary, leaving the rest of the mesh fixed. This
allows us to use a unified approach to analyze rigorously both schemes
simultaneously. One advantage of this moving procedure is keeping the
size of the problem to be solved constant in time.

Since we are dealing with totally discrete schemes we also need to
determine how to integrate in time. First of all we present an explicit
Euler method with adaptive time steps. The implicit Euler scheme
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is briefly mentioned. We also describe how to discretize using second
order Runge-Kutta scheme. These discretizations may be combined
with any of the two mentioned mesh refinements (adding points or
moving point) to get new numerical methods. Higher order schemes
can also be considered for the time discretization.

For previous work on numerical approximations of solutions with
blow-up we refer to [1, 2, 3, 5, 8, 11, 12, 20, 21, 22] the survey [4] and
references therein. In [2, 5, 8, 14], adaptive numerical methods are
described for problems with linear diffusion, that is m = 1.

To state our main result we need to introduce some notation. Let
uh,λ be the numerical solution of (1.1). We use h to denote the size of
the spatial mesh and λ is the parameter used in the time discretization.
We will say that uh,λ blows up if there exists a finite time Th,λ such
that

lim
tj↗Th,λ

‖uh,λ(·, tj)‖∞ = +∞.

In this case, we will call Th,λ the numerical blow-up time. The main
theorem of the paper states that, for an explicit Euler scheme, the
numerical solution, uh,λ, reproduces the properties of the continuous
blowing up solution, u.

Theorem 1.1. Let u be an increasing in x, smooth solution of (1.1),
that blows up at time T , and uh,λ the numerical approximation. Then

(i) for every τ > 0, the numerical solution uh,λ converges to the
continuous one uniformly in [0, 1] × [0, T − τ ]. In fact, there
exists a constant C = C(τ) such that

‖u− uh,λ‖L∞([0,1]×[0,T−τ ]) ≤ C(h2 + λ).

(ii) The numerical solution uh,λ blows up if and only if p > 1 when
m > 1 and if and only if p > (m+ 1)/2 when m ≤ 1.

(iii) The numerical blow-up rate is given by

lim
tj↗Th,λ

(Th,λ − tj)
1

(2p−m−1)‖uh,λ(·, t)‖∞ = Γ1, if p > m,

lim
tj↗Th,λ

(Th,λ − tj)
1

(p−1)‖uh,λ(·, t)‖∞ = Γ2, if p ≤ m.

(iv) The numerical blow-up time, Th,λ, converges to the continuous
one when h and λ tend to 0,

lim
(h,λ)→(0,0)

|Th,λ − T | = 0.

Moreover, when m = 1, there exist α > 0 and C > 0 such that

|Th,λ − T | ≤ C(h2 + λ)α.
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(v) Finally, the numerical blow-up set is given by

B(uh,λ) =

{
{1} if p > m,

[0, 1] if p ≤ m.

If higher order methods are considered the conclusions of the theorem
still holds, but the order of convergence increases.

Organization of the paper: In Section 2 we describe the numerical
adaptive procedures. Section 3 is devoted to the proof of the main
result, Theorem 1.1. To begin the analysis we prove that numerical
approximations converge uniformly in sets of the form [0, 1]× [0, T −τ ].
Next we prove that the scheme reproduces the blow-up rate and set. We
also prove that the numerical blow-up time converges to the continuous
one.

2. Adaptive numerical schemes

To obtain a fully discrete adaptive scheme we proceed in three steps:

(1) space discretization;
(2) time discretization with adaptive time steps;
(3) mesh refinement as time evolves.

2.1. Space discretization.
For the space discretization we propose piecewise linear finite elements

with mass lumping. Consider a partition (that can be non-uniform),
x1, ..., xN+1 of [0, 1] of size h (h = max(xi − xi−1)) and its associated
standard piecewise linear finite element space Vh. Let {ϕj}1≤j≤N be the
usual Lagrange basis of Vh. We denote by uh(t) the semidiscrete ap-
proximation obtained by the finite element method with mass lumping
(that in this case coincides with a finite differences discretization) and
U(t) = (u1(t), . . . , uN+1(t)) the values of the numerical approximation
at the nodes xk, at time t. Writing,

uh(t) =
N∑

j=1

uj(t)ϕj,

a simple computation shows that U(t) satisfies the following system of
ordinary differential equations (see [9]):

(2.1)

{
MU ′(t) = −AUm(t) +BUp(t),
U(0) = uI

0.

Here M is the mass matrix obtained with lumping, A is the stiffness
matrix and uI

0 is the Lagrange interpolation of the initial datum, u0.
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2.2. Time discretization.
Several methods can be used to discretize the time variable. Nev-

ertheless, we will only focus on explicit and implicit adaptive Euler
schemes and a second order explicit Runge-Kutta method. Higher or-
der Runge-Kutta methods can be considered as well.

Euler methods. If we apply an explicit Euler method to (2.1), we
get {

MU j+1 = MU j − τjA(U j)m + τjB(U j)p,
U0 = uI

0,

where U j = (uj
1, . . . , u

j
N+1) is the discretization of U(t) at time tj.

The time steps are selected, following [2], according to the rule

(2.2)
τj(u

j
N+1)

2p−m = λ, if p > m,

τj(u
j
N+1)

p = λ, if p ≤ m,

where λ is the parameter of the method that has to be selected small in
order to verify the usual stability condition of explicit schemes. Remark
that the time step τj becomes smaller as the solution increases.

In a similar way we can consider an implicit method by evaluating
the discrete laplacian (A) at time tj+1. That is{

MU j+1 = MU j − τjA(U j+1)m + τjB(U j)p,
U0 = uI

0.

Note that the scheme is not totally implicit since the nonlinear bound-
ary condition up is evaluated at time tj while the discrete laplacian is
evaluated a time tj+1. This discretization has the advantage that, if
m = 1, the explicit evaluation of (U j)p avoids the problem of solving
a nonlinear system in each step. For m 6= 1 one can consider either
B(U j)p or B(U j+1)p, since the nonlinearity is originated by the diffu-
sion term. The time steps τj are chosen in the same way as before, but
in this case no stability restrictions have to be imposed.

However, we will show that if U j is large enough, the required stabil-
ity restriction for the explicit method is always verified. Therefore any
implicit method can be used until the stability condition is satisfied,
and from that moment on the explicit scheme is recommended.

Runge-Kutta methods. To produce higher order methods we pro-
ceed following ideas from [2]. We introduce a new time variable s = s(t)

for the semidiscrete problem (2.1), such that Û(s) = U(t(s)). We select

s in such a way that Û(s) is globally defined. Hence any method with
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fixed time step can be applied to Û(s). The time rescaling is given by

(2.3)


dt

ds
=

1

uη
N+1(t)

,

t(0) = 0.

The parameter η will be chosen below in terms of p and m. Observe
that since U is positive, t(s) defines a one to one function. In terms of

(Û(s), s), the system (2.1) takes the form

(2.4)

{
MÛ ′(s) = F (Û),

Û(0) = uI
0,

where F is given by

(2.5) F (Û) =
1

ûη
N+1(s)

(
−AÛm(s) +BÛp(s)

)
.

We can approximate (2.3)–(2.4) by any method with fixed step λ. This
allows us to define adaptive in time procedures for (2.1). For example,
if we apply an explicit Euler method we obtain

tj+1 − tj

λ
=

1

(uj
N+1)

η
,

t(0) = 0,
MÛ j+1 −MÛ j

λ
=

1

(ûj
N+1)

η

(
−A(Û j)m +B(Û j)p

)
,

Û(0) = uI
0.

Calling τj = tj+1 − tj, these equations can be rewritten in terms of

U j = Û j and τj as
MU j+1 −MU j = τj (−A(U j)m +B(U j)p) ,

τj =
λ

(uj
N+1)

η
.

Observe that this coincides with the adaptive explicit Euler method
previously described. So, as before we take η as

η =

{
2p−m if p > m,

p if p ≤ m.
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If we apply the half step second order R-K method to (2.3)–(2.4) we
obtain 

tj+1 − tj

λ
=

1

(ûj
N+1 + λ

2
F (Û j)N+1)η

,

t(0) = 0, MÛ j+1 −MÛ j

λ
= F (Û j +

λ

2
F (Û j)),

Û(0) = uI
0.

The vector function F is defined as in (2.5). This system can be rewrit-
ten in the original variables as

MU j+1 −MU j = τj
(
−A(U j + λ

2
F (U j))m +B((U j + λ

2
F (U j))p

)
,

τj =
λ

(uj
N+1 + λ

2
F (U j)N+1)η

.

Using these ideas any Runge-Kutta method can be used to approximate
(2.4). This provides higher order adaptive in time procedures.

2.3. Mesh refinement.
Once the method to integrate the time variable is selected, it remains

to show how to perform the spatial mesh refinement. To this end let us
pay special attention to the numerical solution at the point xN+1 = 1,
where the continuous solution develops the singularity.

The numerical mesh refinement that we describe is based on the scale
invariance of the problem in the half line with the nonlinear boundary
condition placed at x = 0, −(um)x(0, t) = up(0, t). We mean the
following: there exists a self-similar blow-up solution in the half-line
of the form uS(x, t) = (T − t)−αψ(ξ), ξ = x(T − t)−β, where α =
1/(2p − m − 1), β = (p − m)/(2p − m − 1). This solution uS(x, t)
gives the behavior near the blow-up time T for solutions of (1.1). Our
numerical schemes use this fact to add or move points of the mesh near
x = 1 trying to reproduce the scaling invariance in the half-line.

Adding points. For the sake of simplicity we will consider the explicit
Euler method for time discretization to describe the spatial refinement.
We will describe how to proceed just in the case p > m since for this
choice of parameters fixed mesh methods do not reproduce the asymp-
totic behavior. If p ≤ m, as will be shown, the adaptive procedure
described here does not refine the mesh and hence the method is a
time discretization of the system analyzed in [13].
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Writing the equation satisfied by uj
N+1 explicitly we obtain the fol-

lowing,

uj+1
N+1 − uj

N+1 = τj

(
2

h2
N

((uj
N)m − (uj

N+1)
m) +

2

hN

(uj
N+1)

p

)
,

where hN = 1− xN . As we want the numerical blow-up rate to be

uj
N+1 ∼ (Th,λ − tj)−

1
(2p−m−1)

we impose the last node uj
N+1 to satisfy

(2.6) c1(u
j
N+1)

2p−m ≤
uj+1

N+1 − uj
N+1

τj
≤ c2(u

j
N+1)

2p−m.

A straightforward calculation shows that this implies the behavior de-
scribed above. Recalling (2.2), we get

(2.7) c1λ ≤ uj+1
N+1 − uj

N+1 ≤ c2λ.

On the other hand, imposing (2.6) is equivalent to,
(2.8)

c1(u
j
N+1)

2p−m ≤ 2

h2
N

((uj
N)m − (uj

N+1)
m) +

2

hN

(uj
N+1)

p ≤ c2(u
j
N+1)

2p−m.

As the scheme with fixed mesh blows up at the last node, so we have
that

R(j;hN) =

2
h2

N
((uj

N)m − (uj
N+1)

m) + 2
hN

(uj
N+1)

p

(uj
N+1)

2p−m
→ 0,

as j increases. Let tj1 be the first time such that R(j;hN) ≤ c1 (here-
after we will use ti to denote tji). Namely t1 is the first time where
R(j1;hN) does not verify the lower bound c1. At that moment, we add
a point z between xN and xN+1 = 1 to the mesh and give the value to
uh,λ(z, t1) such that the slope of the line between (z, (uh,λ)

m(z, t1)) and
(1, (uh,λ)

m(1, t1)) is the same as the slope between (xN , (uh,λ)
m(xN , t1))

and (1, (uh,λ)
m(1, t1)). Hence we have a new value for the length of the

last interval, [z, 1],

hN,1 = 1− z < hN = 1− xN .

In other words, we add the new node z at 1− hN,1 in such a way that,

1

hN

((uj1
N)m − (uj1

N+1)
m) =

1

hN,1

((uj1
z )m − (uj1

N+1)
m).
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Therefore, we obtain that R(j1;hN,1) satisfies

R(j1;hN,1) =

2
h2

N,1
((uj1

z )m − (uj1
N+1)

m) + 2
hN,1

(uj1
N+1)

p

(uj1
N+1)

2p−m

=

2
hN,1

((uj1
z )m − (uj1

N+1)
m) + 2(uj1

N+1)
p

hN,1 (uj1
N+1)

2p−m

=
2

hN
((uj1

N)m − (uj1
N+1)

m) + 2(uj1
N+1)

p

hN,1 (uj1
N+1)

2p−m

=
hN

hN,1

R(j1;hN) > c1.

With this new mesh x1, ..., xN , z, xN+1 we have that

R(j1;hN,1) > c1,

and we can continue the method with initial time step τj in the new
mesh. This gives a solution uh,λ that verifies (2.8) in a time interval
[t1, t2] where at time t2, the quotient R(j2;hN,1) fails again the lower
bound c1. At that time we have to add another point in the last
interval. As before this increases R(j2;hN,2) and we can continue in a
new mesh, made up by the old one plus the point that we have added
near the boundary x = 1. This procedure generates an increasing
sequence of times ti (the times at which we refine the spatial mesh),
an increasing sequence of added points accumulating at x = 1 and a
numerical solution uh,λ(x, t) defined for (x, t) ∈ [0, 1]× [0, Th,λ).

Let us point out that, when using this procedure, the system verified
by the numerical solution changes whenever we add a new point to the
mesh. Indeed, U j is a solution of

(2.9)

{
MiU

j+1 = MiU
j − τjAi(U

j)m + τjBi(U
j)p,

U0 = uI
0.

The matrices Ai, Bi and Mi are modified each time the mesh is refined.
In fact, as we add a new point to the mesh, an equation is added to the
system, and hence we need to add a new row (which takes into account
the added point) to the three matrices. The matrix Ai is modified in
the elements that correspond to the new point. The matrix Bi has
zeros in all of its rows but the last one, where it collects the boundary
condition. Nevertheless, the matrix Ai preserves the properties of the
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original matrix A, i.e.

aii > 0, aij ≤ 0, if j 6= i

N(j)+1∑
k=1

akj ≥ 0,

where N(j) is the dimension of U j. For simplicity, we will keep the
original nomenclature of the nodes, i.e

U j =

N(j)+1︷ ︸︸ ︷
(uj

1, u
j
2, . . . , u

j
N , u

j
N+1) = (uj

1, u
j
2, . . . , u

j
N(j), u

j
N(j)+1),

and we will assume that the mesh is fixed and uniform, whenever we
can do it. If this is not the case, we will mention it explicitly. Under
these conditions, we obtain the following discretization for the original
problem (1.1)
(2.10)

uj+1
1 − uj

1

τj
=

2((uj
2)

m − (uj
1)

m)

h2
,

uj+1
i − uj

i

τj
=

(uj
i−1)

m − 2(uj
i )

m + (uj
i+1)

m

h2
, 2 ≤ i ≤ N,

uj+1
N+1 − uj

N+1

τj
=

2((uj
N)m − (uj

N+1)
m)

h2
+

2(uj
N+1)

p

h
,

and the initial datum u0
i = u0(xi).

It remains to be more concrete on the election of the sequence hi and
the constants c1, c2. If we take,

c1 = Γ
−(2p−m−1)
1 (2p−m− 1)−1,

and hi and c2 such that

(2.11)
hi

hi+1

→ 1, and c2(ti) =
hi

hi+1

R(j, hi),

we get

c1 ≤ R(j, hi+1) ≤
hi

hi+1

R(j, hi) ∼ c1.

In fact, if hi is chosen such that

(2.12) hi+1(u
j
N+1)

p−m =
2

c1
− A

uj
N+1

,
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we have

c2 =
hi

hi+1

R(ji, hi) =

2
hi+1

((uji
z )m − (uji

N+1)
m) + 2(uji

N+1)
p

hi+1 (uji

N+1)
2p−m

=

2
hi+1

((uji
z )m − (uji

N+1)
m) + 2(uji

N+1)
p

(uji

N+1)
p

(
2
c1
− A

u
ji
N+1

)
=

2
hi+1

((uji
z )m − (uji

N+1)
m)

(uji

N+1)
p

(
2
c1
− A

u
ji
N+1

) + c1

 1

1− c1A
2ui

N+1



≤ c1

 1

1− c1A
2ui

N+1

→ c1.

Observe that

τj
hi+1

≤ Cλ
(uj

N+1)
p−m

(uj
N+1)

2p−m
=

Cλ

uj
N+1

.

Hence usual stability conditions for explicit schemes are verified if uj
N+1

is large.

In addition we will show that this selection of hi makes

hi = 1− xN ∼ C(Th,λ − tj)β,

hence the method reproduces both the asymptotic behavior and the
spatial structure of the continuous solution near the blow up time.

Observe that if p ≤ m, R(j, hN) is bounded from below and the
method keeps the mesh fixed.

Moving point. An alternative procedure to refine the mesh near
the singularity is to move a point towards xn+1 = 1. This method is
inspired in the moving mesh methods described in [8].

We begin with a mesh composed by two types of nodes, a uniform
mesh of size h = 1/N and a node placed between xN = (N − 1)h and
xN+1 = 1, that we are going to move when appropriate. Let us call
0 = x1 < .... < xN < xN+1 = 1 the fixed mesh and w the moving node,
xN < w < xN+1.

As before, let us consider an explicit Euler procedure for the time
discretization and let us use the mesh composed by the xi and the w
together for the space discretization. If we denote by z the numerical
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s s s s
xN−1 xN w

h h− hi hi

xN+1

Moving point method

solution at the moving node w, we arrive to the following system

uj+1
1 − uj

1

τj
=

2
(
(uj

2)
m − (uj

1)
m
)

h2
,

uj+1
i − uj

i

τj
=

(uj
i−1)

m − 2(uj
i )

m + (uj
i+1)

m

h2
, 2 ≤ i ≤ N − 1

uj+1
N − uj

N

τj
=

2
(
(uj

N−1)
m(h− hi)− (uj

N)m(2h− hi) + (zj)mh
)

h(h− hi)(2h− hi)

zj+1 − zj

τj
=

2
(
(uj

N)m(hi)− (zj)mh+ (uj
N+1)

m(h− hi)
)

(h− hi)hhi

uj+1
N+1 − uj

N+1

τj
=

2
(
(zj)m − (uj

N+1)
m
)

h2
i

+
2(uj

N+1)
p

hi

,

and the initial data u0
i = u0(xi).

The moving point method uses the ideas developed for the adding
points method to move the point when R(j, hN) ≤ c1. When the con-
stant c1 is reached the node w is moved towards xN+1 = 1 choosing the
new length hi = 1−w in the same way as in the adding points method.
This new value makes R(j, hN,1) > c1 and the method continues until
the constant c1 is reached again.

Let us remark that the criteria that we use to modify the mesh is the
same in the adding points method and in the moving point method.
This allows us to make a unified approach in the course of the proofs
contained in the following section.

3. Proof of the main results

We may now proceed with the proof of Theorem 1.1. We will do it
with full details for the adding points scheme with an explicit Euler
method for the time variable and briefly point out the main differences
with the other schemes described in Section 2. We state first some
preliminary results.
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Lemma 3.1. If U0 is increasing, then the numerical solution U j is
increasing for every j. Hence it satisfies max

i
uj

i = uj
N+1, for every j.

Proof. As U0 is increasing then u0
i+1 > u0

i , let us see that this holds
for every j > 0. Assume not, then there exists a first positive j0 and
an index i such that uj0

i+1 ≤ uj0
i . From the equations satisfied by uj

i+1

and uj
i we have that at j0 it holds uj0+1

i+1 − uj0
i+1 − (uj0+1

i − uj0
i ) > 0, a

contradiction that proves the result. 2

From now on we will assume that the discrete initial data U0 is
increasing, u0

i ≤ u0
i+1 for all 1 ≤ i ≤ N + 1.

Definition 3.2. We will say that Zj is a supersolution (resp. a sub-
solution) of (2.10) if verifies

{
MZj+1 ≥MZj − τjA(Zj)m + τjB(Zj)p, (resp. ≤)
Z0 ≥ zI

0 , (resp. ≤).

Lemma 3.3. Let U
j
be a supersolution of (2.10) and U j a subsolution,

such that U0 < U
0
. If the time step verifies

(3.1) τj <
Ch2

i

‖U j‖m
∞

,

then U j < U
j
.

Proof. Let us define Zj = U
j − U j. By an approximation argument

we can assume that we have strict inequalities in (2.10). Then Zj is a
solution of the following system


MZj+1 −MZj

τj
> −A((U

j
)m − (U j)m) +B((U

j
)p − (U j)p),

Z0 > 0.
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If the Lemma is false, then there exist a first time tj+1 and a node
xi, such that zj+1

i ≤ 0 and zj
i > 0. Then we have,

zj+1
i > zj

i −
τj
mi

(
N+1∑
k=1

aki((u
j
i )

m − (uj
i )

m) + bi((u
j
i )

p − (uj
i )

p)

)
= zj

i

(
1− Cτj

mi

aii

(
(uj

i )
m − (uj

i )
m
))

+
τj
mi

(∑
k 6=i

aki

(
(uj

i )
m − (uj

i )
m
)
zj

k + bi((u
j
i )

p − (uj
i )

p)

)
> zj

i

(
1− Cτj

mi

aii‖U
j‖m
∞

)
≥ zj

i

(
1− Cτj

h2
i

‖U j‖m
∞

)
≥ 0,

a contradiction. 2

Corollary 3.4. If U
j

is a supersolution of (2.10), such that

‖U j‖∞ ≤ Cuj
N+1,

then Lemma 3.3 holds for all j, if p > m. If p ≤ m, the lemma holds
as long as (3.1) is valid.

3.1. Convergence of the numerical schemes.
We are now ready to establish an uniform convergence result: for

any τ > 0 we want that uh,λ → u (when h, λ → 0) uniformly in
[0, 1]×[0, T−τ ]. This is a natural requirement since on such an interval
the continuous solution is regular.

Lemma 3.5. Let u(x, t) ∈ C4,2([0, 1]× [0, T − τ ]) be a positive solution
of (1.1) and let uh,λ its discrete approximation obtained by any of the
adaptive schemes described in Section 2. Then there exists a constant
C depending on τ such that,

‖u− uh,λ‖L∞([0,1]×[0,T−τ ]) ≤ C(h2 + λ).

Proof. In the course of the proof we will consider an uniform mesh. We
are able to do this since in the time interval [0, T − τ ] both, the numer-
ical and the continuous solution, are bounded if h is small enough.

If we rewrite the system (2.10) in terms of Z = (U j)m, we obtain

(zj+1
1 )1/m − (zj

1)
1/m

τj
=

2(zj
2 − zj

1)

h2
,

(zj+1
i )1/m − (zj

i )
1/m

τj
=

(zj
i−1 − 2zj

i + zj
i+1)

h2
, 2 ≤ i ≤ N,

(zj+1
N+1)

1/m − (zj
N+1)

1/m

τj
=

2(zj
N − zj

N+1)

h2
+

2(zj
N+1)

p/m

h
,
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and the initial datum z0
i = (u0(xi))

m. Let vj
i = um(xi, t

j), with u the
solution of the continuous problem (1.1). The error function

ej
i = zj

i − vj
i

satisfies, for 2 ≤ i ≤ N ,

1

m
ξ(1−m)/m e

j+1
i − ej

i

τj

=
(ej

i−1 − 2ej
i + ej

i+1)

h2
− 1−m

m2
ζ(2−m)/mv

j+1
i − vj

i

τj
|ξ − η|

+C1(h
2 + λ)

≤
(ej

i−1 − 2ej
i + ej

i+1)

h2
− 1−m

m2
ζ(2−m)/mv

j+1
i − vj

i

τj
(vj+1

i − vj
i )|e

j+1
i |

+C1(h
2 + λ),

where ξ is an intermediate value between zj+1
i and zj

i , η is between vj+1
i

and vj
i and ζ is an intermediate value between ξ and η. Taking into

account that there exist constants, c and C, such that c ≤ zj
i ≤ C for

every j ∈ [0, j0] we have,

(3.2)
ej+1

i − ej
i

τj
≤
C1(e

j
i−1 − 2ej

i + ej
i+1)

h2
+ C2|ej+1

i |+ C3(h
2 + λ).

Making analogous calculations for the first and the last nodes, we get

(3.3)
ej+1
1 − ej

1

τj
≤ C1(e

j
2 − ej

1)

h2
+ C2|ej+1

1 |+ C3(h
2 + λ),

and

(3.4)

ej+1
N+1 − ej

N+1

τj
≤
C1(e

j
N − ej

N+1)

h2
+ C2|ej+1

N+1|

+
C3

h
κ(p−m)/m|ej

N+1|+ C4(h
2 + λ),

where κ is an intermediate value between zj
N+1 and vj

N+1, and hence κ
is also bounded.
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Now we use a comparison argument. The error ej
i is a subsolution

of a discretization of the problem

(3.5)


et = exx + e+ C(h2 + λ) (x, t) ∈ (0, 1)× [0, T − τ),

ex(0, t) = 0 t ∈ [0, T − τ),

ex(1, t) = Ce(1, t) t ∈ [0, T − τ),

e(x, 0) = C(h2 + λ) x ∈ (0, 1).

Since solutions of problem (3.5) are bounded by

|e(x, t)| ≤ C exp{CT}(h2 + λ),

we can construct a supersolution ej
i of (3.2)–(3.4), the system verified

by ej
i , by taking ej

i = e(xi, t
j). Therefore we obtain a similar bound for

the error function ej
i . Arguing similarly with −ej

i we obtain

|ej
i | ≤ C exp{CT}(h2 + λ), tj ∈ (0, T − τ ],

and this proves the convergence of the method. 2

3.2. Numerical blow-up.
We prove now that solutions of the numerical problem (2.10) blow

up in the same range of exponents as the solutions of the continuous
problem do.

Let us recall, for notational purposes

tj =

j∑
k=0

τk.

Observe that since, for each j, the maximum of the numerical solution
is attained at the last node, in order to have a numerical solution that
blows up in finite time Th,λ, we have to see that the series converge and

that uj
N+1 →∞ as j increases.

Lemma 3.6. The numerical solution uh,λ blows up if and only if p > 1,
when m > 1 and p > (m+ 1)/2, when m ≤ 1.

Proof. Since U0 is increasing, by Lemma 3.1 we have that U j reaches
its maximum at i = N + 1.

On the other hand, from (2.7) we obtain uj
N+1 ∼ λj, and hence

(3.6) uj
N+1 →∞, as j →∞.
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We still have to show conditions which imply that the time Th,λ at
which (3.6) occurs is finite. Indeed, for p > m, we get

Th,λ =
∞∑

k=1

τk =
∞∑

k=1

(uj
N+1)

−(2p−m)λ ∼ C
∞∑

k=1

(λj)−(2p−m)λ.

Observe that this series converges or diverges according to 2p−m > 1
or 2p−m ≤ 1.

Analogously, for p ≤ m, we get

Th,λ =
∞∑

k=1

τk =
∞∑

k=1

(uj
N+1)

−pλ ∼ C
∞∑

k=1

(λj)−pλ.

2

3.3. Blow-up rate.
This section deals with the blow-up rate of the numerical solutions.

We show that they coincide with the one for the continuous problem.

Lemma 3.7. If p > m (for m > 1) or p > (m + 1)/2 (for m ≤ 1),
then every positive solution that blows up at time Th,λ verifies

‖U j‖∞ = uj
N+1 ∼ (Th,λ − tj)

−1
2p−m−1 .

Proof. From Lemma 3.6 we know that uh,λ blows up in finite time
Th,λ =

∑∞
k=1 τk. In order to prove the blow-up rate we observe that for

any k > j, we have

uk
N+1 ≥ uj

N+1 + c1λ(k − j).

Therefore,

(Th,λ − tj)

=
∞∑

k=j+1

τk =
∞∑

k=j+1

λ

(uk
N+1)

2p−m
≤

∞∑
k=j+1

λ

(uj
N+1 + c1λ(k − j))2p−m

=
∞∑
l=1

λ

(uj
N+1 + c1λl)2p−m

≤
∫ ∞

0

λ

(uj
N+1 + c1λs)2p−m

ds

= C

∫ ∞

uj
N+1

1

z2p−m
dz =

C

(uj
N+1)

2p−m−1
.

Thus,

uj
N+1 ≤ C(Th,λ − tj)

−1
2p−m−1 .
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On the other hand, since uk
N+1 ≤ uj

N+1 + c2λ(k − j), using the same
ideas as before, we get

uj
N+1 ≥ C(Th,λ − tj)

−1
2p−m−1 ,

and we conclude
uj

N+1 ∼ (Th,λ − tj)
−1

2p−m−1 ,

as expected from the description of the method. Moreover, if we take
into account that c1 and c2 were chosen as

c1 = Γ
−(2p−m−1)
1 (2p−m− 1)−1, c2(t

j) ∼ c1,

we have
lim
j→∞

uj
N+1(Th,λ − tj)

1
2p−m−1 → c1.

2

Observe that from the blow-up rate we have

hi ∼ (uj
N+1)

−p+m ∼ C(Th,λ − tj)
p−m

2p−m−1 = C(Th,λ − tj)β,

and, as mentioned before, the selfsimilar behavior is reproduced.

Lemma 3.8. If p ≤ m, then every positive solution that blows up at
time Th,λ verifies

‖U j‖∞ = uj
N+1 ∼ (Th,λ − tj)−

1
p−1 .

Proof. It is similar to the previous one, using τj(u
j
N+1)

p = λ. 2

3.4. Convergence of the numerical blow-up times.
We gather now the proof of convergence of the numerical blow-up

times, Th,λ, to the continuous one, T as (h, λ) → (0, 0). When m = 1
we state a stronger result, that gives a bound for |Th,λ−T | in terms of
h and λ.

Lemma 3.9. If the numerical solution uh,λ converges uniformly to the
continuous one, u, in sets of the form [0, 1] × [0, T − τ ] and verifies
the blow-up rates described in lemmas 3.7 and 3.8, then the numerical
blow-up times converge to the continuous one:

lim
(h,λ)→(0,0)

Th,λ = T.

Observe that the schemes we are considering verify the assumptions
of this lemma. In fact, in Lemma 3.5 we proved the uniform conver-
gence and from Lemmas 3.7 and 3.8 we get the blow-up rate. Recall
that in the proof of convergence we used a comparison result that needs
a stability restriction on λ when the method is explicit.
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Proof. From the blow-up rate we have that,

Th,λ − tj ≤ C

(uj
N+1)

γ ,

where γ = 2p − m − 1 or γ = p − 1 according to p > m or p ≤ m.
Given ε > 0, we can choose K large enough in order to have

C

Kγ
<
ε

2
.

Let τ < ε/4 such that the continuous solution verifies u(1, T−2τ) > K.
On the other hand, from the uniform convergence in [0, 1]×[0, T−τ ], for
every h, λ small enough, there exists j0 such that T − 2τ < tj0 < T − τ
and uj0

N+1 > K. Hence,

|Th,λ − T | ≤ |Th,λ − tj0|+ |tj0 − T | ≤ C

(uj0
N+1)

γ
+ 2τ

≤ C

Kγ
+ 2τ ≤ ε.

This ends the proof. 2

Lemma 3.10. If m = 1, then there exist α > 0 and C > 0 such that

|Th,λ − T | ≤ C(h2 + λ)α.

Proof. The idea of the proof is as follows: first we get bounds for the
first j0, such that the error verifies

(3.7)
‖uh,λ(·, tj)− u(·, tj)‖L∞([0,1]) < 1, for all j ∈ [0, j0],

‖uh,λ(·, tj0+1)− u(·, tj0+1)‖L∞([0,1]) ≥ 1,

then we use this bound to prove the convergence result.

To get a bound for j0 let us look at our scheme (2.10). From the
description of the numerical scheme we have

(3.8)
uj+1

N+1 − uj
N+1

τj
=

2(uj
N − uj

N+1)

h2
+

2(uj
N+1)

p

h
.

If we call vj
i = u(xi, t

j) we get that v satisfies

(3.9)
vj+1

N+1 − vj
N+1

τj
=

2(vj
N − vj

N+1)

h2
+

2(vj
N+1)

p

h
+ C(h2 + λ)(T − t)θ,

where θ depends only on p. Let us remark that C(T − t)θ is a bound
for the fourth spatial derivatives of u(x, t), a regular solution of (1.1).
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Subtracting (3.8) from (3.9) we have for ej
N+1 = uj

N+1 − vj
N+1,

(3.10)

ej+1
N+1 − ej

N+1

τj

≤
C1(e

j
N − ej

N+1)

h2
+
C2

h
ξp−1|ej

N+1|+ C3(h
2 + λ)(T − t)θ,

where ξ is an intermediate value between zj
N+1 and vj

N+1. Using that
j ∈ [0, j0), the bound (3.7) and the blow-up rate, we get

ξp−1 ≤ C(T − t)−
1
2 .

Hence (3.10) gives

ej+1
N+1 − ej

N+1

τj
≤
C1(e

j
N − ej

N+1)

h2
+ C2

|ej
N+1|

h(T − t)
1
2

+ C3(h
2 + λ)(T − t)θ.

This inequality is a discretization of the problem

(3.11)


et = exx + C(T − t)θ(h2 + λ) (x, t) ∈ (0, 1)× [0, T ),

ex(0, t) ≤ 0 t ∈ [0, T ),

ex(1, t) ≤ C(T − t)−
1
2 e(1, t) t ∈ [0, T ),

e(x, 0) ≤ C(h2 + λ) x ∈ (0, 1).

Below, we will construct a supersolution for problem (3.11), such that

(3.12) e(x, t) ≤ C(h2 + λ)(T − t)−η,

and with the fourth spatial derivatives positives in [0, 1] and the first
two time derivatives positives in [0, T ).

We take ej
i = e(xi, t

j), which is a supersolution. Applying a compar-

ison argument we obtain ej
i ≤ C(T − tj)−η(h2 +λ). Similarly, applying

the same ideas to ẽj
i = vj

i − uj
i , we get ej

i ≥ −C(T − tj)−η(h2 + λ).
Therefore

|ej
i | ≤ C(T − tj)−η(h2 + λ).

We get a bound for j0 as follows: since

1 ≤ |ej0+1
i | ≤ C(T − tj0+1)−η(h2 + λ),

we get

(T − tj0+1) ≤ C(h2 + λ)
1
η .

With this bound for (T − tj0+1) we obtain the desired result. Indeed,

|Th,λ − T | ≤ |Th,λ − tj0+1|+ |T − tj0+1| ≤ |Th,λ − tj0+1|+ C(h2 + λ)
1
η .
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On the other hand

|Th,λ − tj0+1| ≤ |Th,λ − tj0|+ |tj0 − tj0+1| ≤ C(uj0
N+1)

−2(p−1) + λ

≤ C(vj0
N+1 + 1)−2(p−1) + λ ≤ C(T − tj0) + λ

≤ C(h2 + λ)
1
η + λ ≤ C(h2 + λ)

1
η .

It remains to be more concrete in the construction of the supersolu-
tion to (3.11). This kind of construction was previously done in [14].
We include it here for the sake of completeness.

Let us consider the following problem,
Et = Exx + C(T − t)θ(h2 + λ) (x, t) ∈ (0, 1)× [0, T ),
Ex(0, t) = 0 t ∈ [0, T ),
Ex(1, t) = C(T − t)−1/2E(1, t) t ∈ [0, T ),
E(x, 0) = C(h2 + λ) x ∈ (0, 1).

In order to build a supersolution, E, to this problem such that

E(x, t) ≤ C(h2 + λ)(T − t)−η

and with the first four spatial derivatives positives in [0, 1], we look for
a supersolution of the form

E(x, t) = C(h2 + λ)(T − t)θa(x, t),

with a(x, t) a solution of

(3.13)


at = axx (x, t) ∈ (0, 1)× [0, T ),
ax(0, t) = 0 t ∈ [0, T ),
ax(1, t) = C(T − t)−1/2a(1, t) t ∈ [0, T ),
a(x, 0) = a0(x) x ∈ (0, 1).

As we want E to have their first four spatial derivatives positives, we
impose that a0(x) is a smooth compatible initial datum with the first
four spatial derivatives positives. The positivity of the derivatives is
preserved for every t ∈ [0, T ). Now let us see that there exists r such
that

(3.14) a(x, t) ≤ C

(T − t)r
.

To this end we want to construct a supersolution, v(x, t), to (3.13) such
that (3.14) holds. This can be easily done by the following procedure:
take v(x, t) a solution of (1.1) with the boundary condition given by
vx(1, t) = vq(1, t), with q small, and initial datum v0 such that v(x, t)
blows up exactly at time T , see [24] for a proof of the fact that for every
time T there exist an initial datum such that v(x, t) blows up at time
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T . From the known blow-up rate for solutions of (1.1), see [15, 19], we
get that v(x, t) verifies

v(1, t) ∼ L

(T − t)
1

2(q−1)

,

with Lq−1 → +∞ as q ↘ 1, see [15] for an explicit formula for L(q).
Let us fix q such that Lq−1(q) > C. This choice leads to a supersolution
of (3.13), since

vx(1, t) = vq(1, t) = vq−1v(1, t) ≥ Lq−1

(T − t)
1
2

v(1, t).

This ends the proof. 2

3.5. The blow-up set.
Now we turn our interest to the blow-up set of the numerical solution.

We want to look at the set of points, x, such that uh,λ(x, t) → +∞ as
tj ↗ Th,λ. Throughout this section we assume that the parameters h
and λ are fixed.

We begin our analysis with the case p > m. In [2] and [13] it is
proved that for a fixed mesh the numerical blow-up set is given by
B(U) = [1− Lh, 1], where L depends only on p and m. Notice that as
L does not depend on h, the blow-up set converges to the continuous
blow-up set B(u) = {1}, as h→ 0.

We remark that the adding points method, adds at least L points
near x = 1 when the solution blows up, therefore the parameter hi

goes to zero and formally the blow-up set for the method must be
B(uh,λ) = {1}. In order to prove this, we first study the propagation
of blow-up.

Lemma 3.11. Assume p > m. If uj
k+1 ≤ jαk+1, 0 < αk+1 ≤ 1, then

uj
k ≤ jαk , αk = 1− (2p−m−mαk+1).

Proof. Recall that from Lemma 3.1 and Lemma 3.7 we have that

max
i
uj

i = uj
N+1 ∼ C(Th,λ − t)−

1
2p−m−1 ∼ j.

Therefore,

uj+1
k − uj

k =
τj
h2

((uj
k−1)

m − 2(uj
k)

m + (uj
k+1)

m)

≤ Cτj
h2

(uj
k+1)

m ≤ Cλ

(uj
N+1)

2p−m
jm(αk+1)

≤ Cλ

j2p−m
jmαk+1 =

Cλ

j2p−m−mαk+1
.
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This bound implies that

uj+1
k − u0

k =

j∑
l=0

(
ul+1

k − ul
k

)
≤

j∑
l=0

Cλ

l2p−m−mαk+1
,

which means that

uj+1
k ≤ u0

k + Cj−(2p−m−mαk+1)+1

. 2

In view of this, uj
k is bounded if αk = 1 − (2p − m − mαk+1) ≤ 0.

Now, given a blow-up node xk at most uj
k−1, . . . , u

j
k−L blow up and (at

least) uj
1, . . . , u

j
k−L−1 are bounded. Indeed, since uj

k ≤ cj we can apply
the previous lemma with αk ≤ 1, hence

αk ≤ 1
αk−1 ≤ 1− (2p− 2m)
αk−2 ≤ 1− (2p− 2m)−m(2p− 2m)

...

αk−l ≤ 1− (2p− 2m)
l∑

i=0

mi.

Let L be the first integer such that (2p−2m)
∑L+1

i=0 m
i ≥ 1, then uj

k−L−1

is bounded.

Lemma 3.12. Assume that uh,λ is given by the adding points method.
If p > m then B(uh,λ) = {1}.

Proof. Let x̄ < 1, we claim that the numerical solution is bounded
in [0, x̄], i.e there exists C = C(x̄) > 0 such that uh,λ(x, t) ≤ C, for
all x ∈ [0, x̄], t ∈ [0, Th,λ). Since we adapt near x = 1 collapsing (at
least) L points in {1} as the solution gets large, we can consider a node
xk+1 > x̄ such that, as j → ∞, there exits L + 1 nodes between x̄
and xk+1. Hence, from the previous computations, for tj close to Th,λ,

we get that for all nodes xi < x̄, uj
i is bounded. This implies that

B(uh,λ) = {1}. 2

For the moving point method the result is different:

Lemma 3.13. Assume that uh,λ is given by the moving point method.
If p > m then B(uh,λ) ⊆ [1− Lh, 1], where L is given as above.
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Proof. Let w be the moving node and z the numerical solution at this
node. Since zj ≤ uj

N+1 ≤ Cj, we have

uj+1
N − uj

N =
2τj
(
(uj

N−1)
m(h− hi)− (uj

N)m(2h− hi) + (zj)mh
)

(h− hi)h(2h− hi)

≤ 2Cjm−2p(zj)mh

(h− hi)h(2h− hi)
≤ Cj2m−2p.

Hence, we get that

uj+1
N ≤ uj

N + Cj2m−2p+1.

This means that the node uj
N is bounded if 2m−2p+1 ≤ 0. Otherwise,

we apply Lemma 3.11 and get that at most the nodes w, xN , . . . , xN−L+1

blow up. Therefore, we obtain B(uh,λ) ⊆ [1− Lh, 1]. 2

We still have to prove that when p ≤ m the blow-up set is given by
[0, 1], i.e. there is global blow-up. Recall that in this range of parame-
ters, the methods adapt just the time variable, letting the spacial mesh
fixed.

Inspired in the self-similar variables introduced in [17] we define (Y j)
as

(3.15) yj
i = uj

i j
−1, 1 ≤ i ≤ N + 1.

In the sequel of the proof we will use ∆yj+1
i to denote

yj+1
i − yj

i

τj/j−(p−1)
,

This can be thought as τj/j
−(p−1) to be the time step in the new vari-

ables. With this notation Y j verifies

(3.16)



∆yj+1
1 = −

2jm−(p−1)
(
(yj

2)
m − (yj

1)
m
)

(j + 1)h2
− j−(p−1)uj

i

τjj(j + 1)
,

∆yj+1
i = −

jm−(p−1)
(
(yj

i−1)
m − 2(yj

i )
m + (yj

i+1)
m
)

(j + 1)h2

− j−(p−1)uj
i

τjj(j + 1)
, 2 ≤ i ≤ N,

∆yj+1
N+1 = −

2jm−(p−1)
(
(yj

N)m − (yj
N+1)

m
)

(j + 1)h2

+
2jp−(p−1)(yj

N+1)
p

(j + 1)h
− j−(p−1)uj

i

τjj(j + 1)
,
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and the initial datum becomes

y0
i = j−1u0(xi), 1 ≤ i ≤ N + 1.

From the blow-up rate proved in Lemma 3.8, we have that the vector
Y j is bounded, i.e

Y j ≤ C, for all j.

Moreover, there exist positive constants, c and C such that the last
node verifies

c ≤ yj
N+1 ≤ C, for all j.

Lemma 3.14. If 1 < p < m then

uj
k ∼

C

(Th,λ − t)
1

p−1

∼ Cj, 1 ≤ k ≤ N,

therefore B(uh,λ) = [0, 1]. This phenomena is known as uniform global
blow-up.

Proof. From the equation for the last node in (3.16), the expression for
τj and the asymptotic behavior we get

(3.17) yj+1
N+1 − yj

N+1 ≥
aj

j1+p−m
− c

j
,

where aj = (yj
N+1)

m − (yj
N)m and c is a positive constant. If we write

yj+1
N+1 as

yj+1
N+1 =

j∑
l=0

(
yl+1

N+1 − yl
N+1

)
+ y0

N+1,

from (3.17), we get

yj+1
N+1 ≥

j∑
l=0

( al

l1+p−m
− c

l

)
+ y0

N+1.

On the other hand, since yj
N+1 is bounded, we have(
aj

j1+p−m
− c

j

)
j → 0,

which implies that
aj

jp−m
→ c.

Hence, since p < m, we get

0 ≤ (yj
N+1)

m − (yj
N)m = aj → 0, as j →∞.
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This means that yj
N ≥ c. Applying the same argument with yj

k we

obtain that yj
k−1 ≥ c for all 2 ≤ k ≤ N , which in terms of the original

variables leads to

uj
k ≥ c(Th,λ − tj)−

1
p−1 for 1 ≤ k ≤ N.

The reverse inequality is obtained trivially from the fact that uj
k ≤

uj
N+1 ≤ c(Th,λ− tj)−1/(p−1). We obtain uniform global blow-up. 2

Lemma 3.15. If p = m then

uj
k ∼

C

(Th,λ − t)
1

p−1

∼ Cj, 1 ≤ k ≤ N,

therefore B(uh,λ) = [0, 1].

Proof. As we have already seen uj
N+1 ≥ cj. Let us prove that from this

estimate we get that all nodes behave as the last one, i.e. uj
k ≥ cj, for

all 1 ≤ k ≤ N , and hence the blow-up is global.

First of all observe that U j is a supersolution of

M(U j+1 − U j) ≥ −τjA(U j)m + τjBcj
m.

Let us look for a subsolution of this problem of the form V j = jZ,
where Z = (z1, . . . , zN+1), and does not depend on j. Then Z must
verify

CMZ ≤ −AZm +Bc,

which can be written explicitly as

(3.18)



Cz1 ≤ 2(zm
2 − zm

1 )

h2
,

Czi ≤
zm

i−1 − 2zm
i + zm

i+1

h2
, 2 ≤ i ≤ N

CzN+1 ≤
2(zm

N − zm
N+1)

h2
+ c.

In order to find Z > 0 verifying the above system, we proceed as
follows: we fix z1 > 0 which will be determined later and compute
z2, . . . , zN+1 in terms of z1. We choose z2 in such a way that the first
inequality in (3.18) is verified with an equality. Iterating this procedure
we obtain z3, . . . , zN+1 using the first N equations. It remains to check
that the last inequality holds. Observe that zN+1 is a continuous posi-
tive function of z1 and that zN+1 = 0 when z1 = 0. Therefore the last
inequality is verified, if z1 is small enough. Hence, as the spatial mesh
is fixed, we may use a standard comparison argument, which is proved
in a similar way as Lemma 3.3, and get vj

i = zij ≤ uj
i , 1 ≤ i ≤ N .
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Remark that, as in the case p < m, the upper bound uj
i ≤ cj fol-

lows easily from the behaviour of the last node. Therefore, we obtain
uniform complete blow-up. 2
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