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Abstract. We find a bound for the modulus of continuity of the
blow-up time for the problem ut = λ∆u + up, with initial datum
u(x, 0) = φ(x) + hf(x) respect to the parameters λ, p and h. We
also find an estimate for the rate of convergence of the blow-up
times for a semi-discrete numerical scheme.

INTRODUCTION

We study the behavior of the blow-up time for the following semi-
linear parabolic problem,

(1.1)
ut = λ∆u + up, in Ω× (0, T ),
u = 0, on ∂Ω× (0, T ),
u(x, 0) = u0(x) = φ(x) + hf(x), for all x ∈ Ω,

where p > 1, λ > 0 and h ∈ R are parameters, Ω is a bounded
smooth domain in Rn and u0 is regular in order to guarantee existence,
uniqueness and regularity of the solution. We also assume that p is
subcritical, that is p < (n + 2)/(n− 2).

A remarkable fact is that the solution of (1.1) may develop singular-
ities in finite time, no matter how smooth u0 is. For many differential
equations or systems the solutions can become unbounded in finite time
(a phenomena that is known as blow-up). Typical examples where this
happens are problems involving reaction terms in the equation like
(1.1), see [SGKM, P] and the references therein.
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In our problem one has a reaction term in the equation of power type
and if p > 1 this blow-up phenomenon occurs in the sense that there
exists a finite time T , that we will call the blow-up time, such that
limt→T ‖u(·, t)‖L∞(Ω) = +∞ for initial data large enough, see [SGKM].
The study of the blow-up problem for (1.1) has attracted a considerable
attention in recent years, see for example, [B, BC, GK1, GK2, GV,
HV1, HV2, M, Z].

We are interested in the study of the dependence of the blow-up
time, T , on the parameters that appears in the equation, p, λ and h.

It is known that the blow-up time is continuous with respect to the
initial data u0, see [BC, GV, M, Q].

In this paper we want to improve these results showing that there
exists a modulus of continuity for T not only with respect to the initial
condition but also with respect to the diffusion coefficient λ and the
reaction power p. In fact, we will find bounds of the form

(1.2) |T − Th| ≤ C|h|γ.
Our main idea for the proof rely on estimates on the first time where
two different solutions spread. These estimates are based on the rate
at which solutions blow up.

The blow-up rate for solutions of (1.1) with subcritical nonlinearity,
1 < p < (n + 2)/(n − 2), is given by ‖u(·, t)‖∞ ∼ (T − t)−1/(p−1), see
[GK1], [HV1], [HV2]. In particular in [FKZ, MS] it is proved that for
p, u0 and λ near p0, φ and λ0 there exists a uniform constant C such
that

(1.3) u(x, t) ≤ C(T − t)−
1

p−1 .

The fact that the constant C is uniform is crucial for our arguments.
We want to remark that the restriction 1 < p < (N + 2)/(N − 2)

is not technical, since if this is not the case the blow-up time is not
continuous as a function of the initial data, see [GV].

The ideas developed to prove estimates like (1.2) can be applied when
one deals with numerical methods to approximate solutions of (1.1).
In fact we find an estimate for the rate of convergence of the numerical
blow-up time in a semi-discrete approximation of problem (1.1).

We split the paper in two parts: in the first part we find an estimate
for the modulus of continuity of the blow-up time in problem (1.1)
respect to a parameter. In the second part we find the estimate for the
rate of convergence of the blow-up time in a numerical semidiscrete
approximation of the problem.
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Along the rest of the paper we will denote by C a constant that do
not depends on the relevant parameters involved but may change from
one line to another.

PART I: DEPENDENCE OF THE BLOW-UP TIME WITH
RESPECT TO PARAMETERS

In this part we will prove the continuity of the blow-up time respect
to parameters and to the initial datum in problem (1.1). To begin with
we show that the set of parameters {h, p, λ} that produce blow-up is
open. This can be seen introducing the following energy functional

Φ(u)(t) ≡ λ

2

∫

Ω

|∇u(s, t)|2 ds−
∫

Ω

(u(s, t))p+1

p + 1
ds.

This functional it is useful to characterize the solutions that blow up.
In [GK2, CPE] the authors prove that the fact that u blows up in finite
time is equivalent to the existence of a time t0 such that Φ(u)(t0) < 0.
Now let u be a blowing up solution of (1.1). Hence there exists a time
t0 < T with Φ(u)(t0) < 0. As u in Ω× [0, t0] is continuous with respect

to the parameters, we get that Φ(ũ)(t0) < 0 for every (h̃, p̃, λ̃) near
(h, p, λ). This shows that the set {(h, p, λ) : u blows up} is open.

To clarify the exposition we will deal with perturbations of h, p, λ
separately, however the main lines of the arguments are similar.

1. Perturbations in the nonlinear source.

Let us consider the problem

(1.4)
ut = ∆u + uα, (x, t) ∈ Ω× (0, Tα),
u(x, t) = 0, (x, t) ∈ ∂Ω× (0, Tα),
u(x, 0) = u0(x), x ∈ Ω.

.

Our first result shows a modulus of continuity of Tα respect to α.

Theorem 1.1. Let u and uh be solutions of problem (1.4) with p > 1,
α = p+h (h small), respectively, and let T and Th their blow-up times.
Then there exist positive constants C and γ independent of h such that
for every h small enough,

|T − Th| ≤ C|h|γ.
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Proof: We observe that we can assume h > 0. Let us introduce the
error function e(x, t) = uh(x, t)− u(x, t), we have

et = ∆e + up+h
h − up = ∆e +

up
h − up

uh − u
e + up+h

h − up
h =

∆e + pξ(x, t)p−1e + up
h(u

h
h − 1) ≤ ∆e + pξp−1e + up

hhuh+1
h .

Now fix a > 0 and let t0 such that e(t) ≤ a in [0, t0], in that interval
we have ξ ≤ u + a and as there exist a constant C such that u(x, t) ≤
C(T − t)−1/(p−1), for t ∈ [0, t0] we have

uh(x, t) ≤ u(x, t) + a ≤ C(T − t)−1/(p−1).

Therefore, we have

et ≤ ∆e +
C

T − t
e +

Ch

(T − t)
p+h+1

p−1

.

Let e be the solution of

e′ =
C

T − t
e +

Ch

(T − t)
p+h+1

p−1

, e(0) = 0.

Integrating we obtain

e(t) = Ch(T − t)−C + C2h(T − t)−
2+h
p−1 ,

and by a comparison argument we have

e(t) ≤ e(t) ≤ Ch(T − t)−C .

This is an important point in the proof, since we obtain a bound on
the asymptotic behavior of e(t). In the following perturbations we will
see that once we obtain this kind of bounds, the rest of the proof is as
follows: we choose t1 = t1(h) ≤ t0 the first time such that

Ch(T − t1)
−C = a,

so we have

T − t1 =

(
Ch

a

)1/C

.

This time t1 also verifies

|Th − t1| ≤
(

C

‖uh(t1, ·)‖L∞(Ω)

)p+h−1

≤
(

C

‖u(t1, ·)‖L∞(Ω) − a

)p+h−1

≤

C
(
C(T − t1)

− 1
p−1 − a

)−(p+h−1)

≤ C(T − t1)
p+h−1

p−1 ≤ C(T − t1)
1
2 .

Hence we obtain

|T − Th| ≤ |T − t1|+ |Th − t1| ≤
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|T − t1|+ C|T − t1| 12 ≤ Ch
1

2C = Chγ.

This completes the proof. ¤

Remark: Let us observe that the exponent γ and the constant C that
appears in Theorem 1.1 are not uniform, they depend on the solution
u that we are considering. This can not be improved even for the ODE
u′ = up where solutions are explicit.

2. Perturbations in the initial datum.

Now we turn our attention to the dependence of the blow-up time
with respect to the initial data. We consider the problem

(1.5)
(uh)t = ∆uh + up

h, (x, t) ∈ Ω× (0, Th),
uh(x, t) = 0, (x, t) ∈ ∂Ω× (0, Th),
uh(x, 0) = u0(x) + hf(x), x ∈ Ω.

.

We denote by u the solution for h = 0 and T its blow-up time.

Theorem 1.2. Let uh, u solutions of problem (1.5) with h > 0 and
h = 0 respectively, and let Th and T their blow-up times. Then there
exist positive constants C and γ such that for every h small enough,

|T − Th| ≤ C|h|γ.
Proof: As in Theorem 1.1 we call e(x, t) = uh(x, t) − u(x, t). Then e
verifies,

et = ∆e +
up

h − up

uh − u
e

= ∆e + pξ(x, t)p−1e ≤ ∆e + pξp−1e.

Let again t0 be such that e(t) ≤ a in [0, t0] for fixed a. Using that

u(x, t) ≤ C(T − t)−
1

p−1 , in that interval [0, t0], we have

et ≤ ∆e +
C

T − t
e.

Consider e, the solution of

e′ =
C

T − t
e, e(0) = |h|‖f‖L∞ ,

that is
e(t) = C|h|(T − t)−C .

Arguing by comparison we obtain

e(t) ≤ e(t) ≤ C|h|(T − t)−C .



6 P. GROISMAN AND J.D. ROSSI

Now we proceed as in Theorem 1.1 to complete the proof. First, we
choose t1 = t1(h) ≤ t0 with the property that is the first time such that

C|h|(T − t1)
−C = a,

that is

T − t1 =

(
C|h|

a

)1/C

.

This time verifies

|Th − t1| ≤
(

C

‖uh(t1, ·)‖L∞(Ω)

)p−1

≤
(

C

‖u(t1, ·)‖L∞(Ω) − a

)p−1

≤

C
(
C(T − t1)

− 1
p−1 − a

)−(p−1)

≤ C(T − t1).

Hence

|T − Th| ≤ |T − t1|+ |Th − t1| ≤
C|T − t1| ≤ C|h| 1

C = C|h|γ,
as we wanted to prove. ¤

3. Perturbations in the diffusion coefficient.

Next we obtain a similar result for perturbations in the diffusion
parameter, λ. We consider the problem

(1.6)
(uλ)t = λ∆uλ + up

λ, (x, t) ∈ Ω× (0, Tλ),
uλ(x, t) = 0, (x, t) ∈ ∂Ω× (0, Tλ),
uλ(x, 0) = u0(x), x ∈ Ω,

.

Theorem 1.3. Let u and uλ be solutions of problem (1.6) with λ0 > 0
and λ > 0 (close to λ0), respectively, and let T and Tλ their blow-up
times. Then there exist positive constants C and γ such that for every
λ close enough from λ0,

|T − Tλ| ≤ C|λ− λ0|γ

Proof: Once again we call e(x, t) = uλ(x, t)− u(x, t), then

(1.7)

et = λ0∆e +
up

λ − up

uλ − u
e + (λ− λ0)∆uλ

= λ0∆e + pξ(x, t)p−1e + (λ− λ0)∆uλ

≤ λ0∆e + pξp−1e + (λ− λ0)∆uλ.
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Let again t0 such that e(t) ≤ a in [0, t0] for fixed a, in that interval we
have

(1.8) et ≤ λ0∆e +
C

T − t
e + |λ− λ0| C

(T − t)α
.

Now, let e be the solution of

e′ =
C

T − t
e + |λ− λ0| C

(T − t)α
, e(0) = 0.

Integrating we obtain

e(t) ≤ C|λ− λ0|(T − t)−C ,

and by a comparison argument we have

e(t) ≤ e(t) ≤ C|λ− λ0|(T − t)−C .

Now we proceed as in the proof of the previous Theorems, Theorem
1.1 and Theorem 1.2, to conclude. ¤

PART II: RATE OF CONVERGENCE OF THE BLOW-UP
TIME FOR A NUMERICAL SCHEME

In this section we study the behavior of the blow-up time for numer-
ical approximations of problem (1.1), that is,

(2.1)
ut = ∆u + up, (x, t) ∈ Ω× (0, T ),
u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
u(x, 0) = u0(x), x ∈ Ω,

.

Since the solutions of this problem may develop singularities one
can asks about the behavior of the numerical approximations: do the
approximations reproduce the blow-up phenomena? and the blow-
up rate? which is the behavior of the blow-up times? and many
other questions. For previous works on numerical approximations of
this kind of problems and answers to the above questions we refer to
[ALM1, ALM2, BB2, BK, BHR, C, GR, GQR, LR] the survey [BB]
and references therein.

Here we will focus just in the behavior of the numerical blow-up
time as the mesh parameter goes to zero. In [GR] it is proved that the
numerical blow-up time converges to the continuous one as the mesh
parameter goes to zero. Using the same ideas of Part I, we will improve
this convergence showing that there exists a bound of the form

|T − Th| ≤ Chγ.
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We will consider a general semidiscrete scheme (we keep t as a con-
tinuous variable) with adequate assumptions on the coefficients. More
precisely, we assume that there exists a set of nodes {x1, . . . , xN}
and that the approximate solution uh(x, t) is a linear interpolant of
U(t) = (u1(t), . . . , uN(t)) (that is uh(xk, t) = uk(t)) where U is the
solution of the following system of ODEs,

(2.2)
MU ′(t) = −AU(t) + MUp(t),

U(0) = U0.
.

Here U0 is the initial datum for the problem (2.2) and M and A are
N ×N matrices.

The precise assumptions on the matrices involved in the method are:

(H1) M is a diagonal matrix with positive entries mk.

(H2) A is a nonnegative symmetric matrix, with non-positive coeffi-
cients off the diagonal (that is aij ≤ 0 if i 6= j) and aii > 0.

(H3)
∑N

j=1 aij = 0.

The last hypothesis guarantees the maximum principle for the nu-
merical scheme.

Writing this equation explicitly we obtain the following ODE system,

(2.3)
mku

′
k(t) = −∑N

j=1 akjuj(t) + mku
p
k(t), 1 ≤ k ≤ N,

uk(0) = u0,k, 1 ≤ k ≤ N.
.

As an example, we can consider a linear finite element approximation
of problem (2.4) on a regular acute triangulation of Ω (see [Ci]). In
this case, if Vh is the subspace of piecewise linear functions in H1

0 (Ω).
We impose that uh : [0, Th) → Vh, verifies∫

Ω

((uh)tv)I = −
∫

Ω

∇uh∇v +

∫

Ω

((uh)
pv)I

for every v ∈ Vh. Here (·)I stands for the linear Lagrange interpolation
at the nodes of the mesh.

We denote with U(t) = (u1(t), ...., uN(t)) the values of the numerical
approximation at the nodes xk at time t. Then U(t) verifies a system
of the form (2.2) and all of the assumptions on the matrix M hold as
we are using mass lumping and our assumptions on A are satisfied as
we are considering an acute regular mesh. In this case M is the lumped
mass matrix and A is the stiffness matrix. As initial datum, we take
U0 = uI

0.
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As another example if Ω is a cube, Ω = (0, 1)n, we can use a semidis-
crete finite differences method to approximate the solution u(x, t) ob-
taining an ODE system of the form (2.3).

We require to the general scheme that we introduce here to be con-
sistent. A precise definition of consistency is given below

Definition 2.1. We say that the scheme (2.3) is consistent if for any
solution u of (2.1) holds

(2.4) mkut(xk, t) = −
N∑

j=1

akju(xj, t) + mku
p(xk, t) + ρk(h, t),

and there exists a function ρ : R+ → R+ depending only on h and a
universal constant θ such that

max
k

∣∣∣∣
ρk,h(t)

mk

∣∣∣∣ ≤
ρ(h)

(T − t)θ
, for every t ∈ (0, Th),

with ρ(h) → 0 if h → 0.

We want to remark that this consistency hypothesis is valid in the
two examples cited above with ρ(h) = Ch2. The power C(T − t)−θ is
a bound for the spatial derivatives of u.

Using ideas from [GR] and [GQR] it can be proved that the method
converges uniformly in sets of the form Ω× [0, T − τ ]. Moreover, using
the energy functional

Φh(U(t0)) ≡ 1

2
〈A1/2U(t0); A

1/2U(t0)〉 −
N+1∑
i=1

mii
((U(t0))i)

p+1

p + 1
,

one can check that, given any initial data u0 such that the continuous
solution u blows up, then the numerical approximation uh also blows
up in finite time, Th, for every h small enough. Since our interest here
is to analyze the convergence rate of |T − Th| we refer to those papers
([GR] and [GQR]) for the details.

Before involving us in the main result of this part we will prove some
lemmas. We will need the following definition,

Definition 2.2. We say that U is a supersolution of (2.2) if

MU
′ ≥ −AU + MU

p
.

We say that U is a subsolution of (2.2) if

MU ′ ≤ −AU + MUp.
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The inequalities are understood coordinate by coordinate.

Lemma 2.1. (Comparison Lemma) Let U and U be a super and a
subsolution of (2.2) respectively, such that the initial data verify

U(0) ≥ U(0).

Then

U(t) ≥ U(t).

Proof: Let W = U − U . We can assume, by an approximation
argument, that we have strict inequalities in Definition 2.2 and that
W (0) > δ > 0. We observe that W verifies

MW ′ > −AW + M
(
U

p − Up
)

= −AW + M

(
U

p − Up

U − U

)
W.

Now, suppose that the conclusion of the Lemma is false. Thus, let t0
be the first time such that min W (t) = δ

2
. At that time, there must be

a node j such that wj(t0) = δ
2
. As wj has a minimum there we must

have w′
j(t0) ≤ 0, but, on the other hand, by our hypotheses on A,

mjw
′
j > −

N∑
i=1

aijwi + mj

up
j − up

j

uj − uj

wj

≥ −
N∑

i=1

aij
δ

2
+ mjpu

p−1
j wj ≥ 0,

a contradiction that completes the proof. ¤

Next we prove a lemma that ensures that the blow-up rate of the
numerical solutions has the same upper bound than the continuous
ones. And that this bound does not depend on h, the mesh size. We
need to assume a technical hypothesis on the initial data.

Lemma 2.2. Assume ∆u0 + up
0 > 0 in Ω, then there exists a constant

C, independent of h such that

uh(x, t) ≤ C

(Th − t)
1

p−1
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Proof: First we observe that the hypothesis ∆u0 +up
0 > 0 implies that

there exist δ > 0, independent of h, such that u′k(0) ≥ δup
k(0), 1 ≤ k ≤

N . Next we show that this inequality holds for every 0 ≤ t < Th.
Let wk(t) = u′k(t) − δup

k(t). We want to use the minimum principle
to show that wk(t) is positive. To this end, we observe that wk verifies

mkw
′
k +

N∑
j=1

akjwj = mk(u
′′
k − δpup−1

k u′k) +
N∑

j=1

akj(u
′
j − δup

j)

= −δmkpu
p−1
k u′k + mkpu

p−1
k u′k − δ

N∑
j=1

akju
p
j

= −δpup−1
k

(
N∑

j=1

akjuj + mku
p
k

)
+ mkpu

p−1
k u′k − δ

N∑
j=1

akju
p
j

= mkpu
p−1
k wk − δ

(∑

j 6=k

akj(u
p
j − pup−1

k uj) + akk(1− p)up
k

)

= mkpu
p−1
k wk − δ

(∑

j 6=k

akj(u
p
j − pup−1

k (uj − uk)− up
k)

+
N∑

j=1

akj(1− p)up
k

)
.

As f(u) = up is convex (p > 1) and from our hypotheses on the matrix
A it follows that W = (w1, . . . , wN) verifies

MW ′ ≥ −AW + MpUp−1W.

Since W (0) > 0 and the minimum principle holds for this equation, we
obtain that every node verify

u′k(t) ≤ δuk(t)
p.

If xk is a node that blows up we can integrate the above inequality
between t and Th to get

∫ Th

t

u′k
up

k

(s) ds ≥ δ(Th − t),

so that

uk(t) ≤ C(Th − t)−
1

p−1 ,

where C depends only on p and δ (but not on h). This proves the
result. ¤
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We are ready to prove the main result related to the numerical ap-
proximations, the rate of convergence for the numerical blow-up time.

Theorem 2.4. Let u be a solution of problem (2.1) that verifies the
hypothesis of the above lemma and blows up at time T , let uh the numer-
ical solution given by (2.3). Assume also that the scheme is consistent
(according to Definition 2.1) with ρ(h) ≤ Chα, for some α > 0. Then
there exist positive constants C and γ such that for h small enough,

|T − Th| ≤ Chγ.

Proof: Let us start by defining the error functions

ek(t) = u(xk, t)− uk(t).

By the consistency assumption (2.4), these functions verify

mke
′
k = −

N∑
j=1

akjei + mk(u
p(xk, t)− up

k) + ρk(h).

Let t0 = max{t : t < T − τ, maxk |ek(t)| ≤ a}, in [0, t0] we have

mke
′
k ≤ −

N∑
j=1

akjei + mkpξk(t)
p−1ek(t) + ρk(h),

As ξk(t), uk(t) ≤ u(xk, t) + a ≤ C

(T−t)
1

p−1
, in [0, t0], E = (e1, ..., eN)

satisfies

(2.5) ME ′ ≤ −AE +
C

T − t
ME +

ρ(h)

(T − t)θ
M(1, ..., 1)t.

Let E(t) be the solution of

E
′
=

C

T − t
E +

ρ(h)

(T − t)θ
, E(0) = E(0) = 0.

Integrating, we obtain

E(t) = C1ρ(h)(T − t)−θ+1 + C2ρ(h)(T − t)−C .

As E(t) is a supersolution for (2.5) and the comparison Lemma 2.1
holds we get

E(t) ≤ E(t) ≤ Cρ(h)(T − t)−C .

Now we proceed as in the Theorems of the previous sections, let t1 ≤ t0
be the first time such that

Cρ(h)(T − t1)
−C = a,
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that is

T − t1 =

(
Cρ(h)

a

)1/C

,

this time t1 also verifies (by the previous Lemma)

|Th − t1| ≤
(

C

uk(t1)

)p−1

≤
(

C

‖u(·, t1)‖L∞(Ω) − a

)p−1

C
(
C(T − t1)

− 1
p−1 − a

)−(p−1)

≤ C(T − t1),

and so we obtain

|T − Th| ≤ |T − t1|+ |Th − t1| ≤

|T − t1|+ C|T − t1| ≤ (1 + C)

(
Cρ(h)

a

)1/C

= Chγ.

This completes the proof. ¤

We observe that this proof shows, in particular, the convergence of
the numerical scheme in sets of the form Ω× [0, T − τ ]. However, using
a different approach it can be obtained a better estimate for the rate of
convergence of the solutions of the numerical scheme in sets of the form
Ω × [0, T − τ ] for a fixed τ . In fact this rate of convergence coincides
with the modulus of consistency (see [GQR]).
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