- Usage:
`N = polynomialsToPolytope(polynomialList)`

- Inputs:
`polynomialList`, a list, with polynomials {f0,f1,f2,f3}

- Outputs:
`N`, a convex polyhedron

Given a list l={f_0..f_n} of polynomials in two variables this method computes the convexHull of the union of the Newton polytope of all the polynomial in the list. This is, if N_i= newtonPolytope(f_i), then polynomialsToPolytope(l)= convexHull(N_0,...,N_n).

i1 : S = QQ[s,t]; |

i2 : f0 = s^2+s^3*t; |

i3 : f1 = s^3*t^6+1; |

i4 : f2 = s*t^2+2*s^3*t^5; |

i5 : f3 = s^2+s^3*t^6; |

i6 : l = {f0,f1,f2,f3}; |

i7 : N = polynomialsToPolytope(l); |

- teToricRing -- Returns the coordinate ring of the toric variety
- teToricRationalMap -- Computes the rational map G defined by {f0,f1,f2,f3} over the toric coordinate ring associated to a polytope P
- representationMatrix -- computes the right-most map of the Z-complex in degree nu)

- polynomialsToPolytope(List)