teToricRing constructs from a
ToricEmbedding the associated coordinate ring.
Given a polyhedron P we construc the coordinate ring of the toric variety associated to P. Precisely, assume P has p+1 lattice points, this is
lengthlatticePoints P = p+1, and denote with T_0 ... T_p the lattice points of P. Consider the ring QQ[T_0..T_p]. Let J be the toric ideal of P, then teToricRing gives coordinate ring QQ[T_0..T_p]/J.
i1 : S = QQ[s,t];
|
i2 : f0 = s^2+s^3*t;
|
i3 : f1 = s^3*t^6+1;
|
i4 : f2 = s*t^2+2*s^3*t^5;
|
i5 : f3 = s^2+s^3*t^6;
|
i6 : l = {f0,f1,f2,f3};
|
i7 : TE = newToricEmbedding(l);
|
i8 : V = teToricRing(TE);
|