next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
MatrixRepToric :: teToricRing

teToricRing -- Returns the coordinate ring of the toric variety



teToricRing constructs from aToricEmbedding the associated coordinate ring.

Given a polyhedron P we construc the coordinate ring of the toric variety associated to P. Precisely, assume P has p+1 lattice points, this islengthlatticePoints P = p+1, and denote with T_0 ... T_p the lattice points of P. Consider the ring QQ[T_0..T_p]. Let J be the toric ideal of P, then teToricRing gives coordinate ring QQ[T_0..T_p]/J.

i1 : S = QQ[s,t]; 
i2 : f0 = s^2+s^3*t; 
i3 : f1 = s^3*t^6+1; 
i4 : f2 = s*t^2+2*s^3*t^5; 
i5 : f3 = s^2+s^3*t^6; 
i6 : l = {f0,f1,f2,f3};
i7 : TE = newToricEmbedding(l);
i8 : V = teToricRing(TE);

See also

Ways to use teToricRing :