NOTE: the first imput need to be a list or a matrix of homogenous polynomials. It is usually composed with 'teToricRationalMap'
The integer 'nu' needs to be a 'good degree' for the first parameter '{f0,f1,f2,f3}' that can be verified by doing isGoodDegree(polinomialList,nu)
representationMatrix(teToricRationalMap{f0,f1,f2,f3},nu) computes the right-most map of the Z-complex in degree nu. Its determinant vanishes on the implicit equation of the image of the map given by (f0:...:fn) in P^n. The output matrix in 'X_0,X_1,X_2,X_3' whose rank drops when X_i = fi
i1 : S = QQ[s,t];
|
i2 : f0 = s^2+s^3*t;
|
i3 : f1 = s^3*t^6+1;
|
i4 : f2 = s*t^2+2*s^3*t^5;
|
i5 : f3 = s^2+s^3*t^6;
|
i6 : l = {f0,f1,f2,f3};
|
i7 : representationMatrix (teToricRationalMap(l),2)
o7 = | X_0 0 0 0 0 0 0 0 0 0 0 0 0 0
| 0 X_0 0 0 0 0 0 0 0 0 0 0 0 0
| 0 0 X_0 0 0 0 0 0 0 0 0 0 0 0
| 0 0 0 X_0 0 0 0 0 0 0 0 0 0 0
| -X_1 0 0 0 X_0 0 0 0 0 0 0 0 0 0
| 0 0 0 0 0 X_0 0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 X_0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 X_0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 X_0 0 0 0 0 0
| -X_1 0 -X_1 0 0 0 0 0 0 X_0 0 0 0 0
| 0 0 0 -X_1 0 0 0 0 0 0 X_0 0 0 0
| 0 0 0 0 0 0 0 0 0 0 0 X_0 0 0
| 0 0 0 0 0 0 0 0 0 0 0 0 X_0 0
| 0 0 0 0 0 0 0 0 0 0 0 0 0 X_0
| X_0 0 0 0 0 0 0 0 0 0 0 0 0 0
| 0 -X_1 0 0 0 0 0 0 0 0 0 0 0 0
| 0 -X_1 0 0 0 -X_1 0 0 0 0 0 0 0 0
| 0 0 -X_1 0 0 0 -X_1 0 0 0 0 0 0 0
| 0 0 0 -X_1 0 0 0 -X_1 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 -X_1 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0
| 0 X_0 0 0 0 0 0 0 0 0 0 0 0 0
| 0 0 X_0 0 0 0 0 0 0 0 0 0 0 0
| 0 0 0 X_0 0 0 0 0 0 0 0 0 0 0
| 0 0 0 0 -X_1 0 0 0 0 0 0 0 0 0
| 0 0 0 0 -X_1 0 0 0 0 -X_1 0 0 0 0
| 0 0 0 0 0 -X_1 0 0 0 0 -X_1 0 0 0
| 0 0 0 0 0 0 -X_1 0 0 0 0 -X_1 0 0
| 0 0 0 0 0 0 0 -X_1 0 0 0 0 -X_1 0
| 0 0 0 0 0 0 0 0 -X_1 0 0 0 0 -X_1
| 0 0 0 0 X_0 0 0 0 0 0 0 0 0 0
| 0 0 0 0 0 X_0 0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 X_0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 X_0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 X_0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 -X_1 0 0 0 0
| 0 0 0 0 0 0 0 0 0 0 -X_1 0 0 0
| 0 0 0 0 0 0 0 0 0 0 0 -X_1 0 0
| 0 0 0 0 0 0 0 0 0 0 0 0 -X_1 0
| 0 0 0 0 0 0 0 0 0 0 0 0 0 -X_1
| 0 0 0 0 0 0 0 0 0 X_0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 0 X_0 0 0 0
| 0 0 0 0 0 0 0 0 0 0 0 X_0 0 0
| 0 0 0 0 0 0 0 0 0 0 0 0 X_0 0
| 0 0 0 0 0 0 0 0 0 0 0 0 0 X_0
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0
------------------------------------------------------------------------
0 X_2 0 0 0 0 0 0 0 0 0 0
0 0 X_2 0 0 0 0 0 0 0 0 0
0 0 0 X_2 0 0 0 0 0 0 0 0
0 -X_1 0 0 X_2 0 0 0 0 0 0 0
0 0 0 0 0 X_2 0 0 0 0 0 0
0 0 0 0 0 0 X_2 0 0 0 0 0
0 0 -X_1 0 0 0 0 X_2 0 0 0 0
0 0 0 -X_1 0 0 0 0 X_2 0 0 0
0 0 0 0 -X_1 0 0 0 0 X_2 0 0
0 0 0 0 0 0 0 0 0 0 X_2 0
0 0 0 0 0 -X_1 0 0 0 0 0 X_2
0 0 0 0 0 0 -X_1 0 0 0 0 0
0 0 0 0 0 0 0 -X_1 0 0 0 0
0 -2X_1 0 0 0 0 0 0 -X_1 0 0 0
X_0 X_2 0 0 0 0 0 0 0 -X_1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -X_1 0
0 0 0 0 0 0 0 0 0 0 0 -X_1
0 0 -2X_1 0 0 0 0 0 0 0 0 0
0 0 X_2 -2X_1 0 0 0 0 0 0 0 0
0 0 0 X_2 -2X_1 0 0 0 0 0 0 0
0 0 0 0 X_2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -2X_1 0 0 0 0 0 0
-X_1 0 0 0 0 X_2 -2X_1 0 0 0 0 0
0 0 0 0 0 0 X_2 -2X_1 0 0 0 0
0 0 0 0 0 0 0 X_2 -2X_1 0 0 0
0 0 0 0 0 0 0 0 X_2 -2X_1 0 0
0 0 0 0 0 0 0 0 0 X_2 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -2X_1 0
-X_1 0 0 0 0 0 0 0 0 0 X_2 -2X_1
0 0 0 0 0 0 0 0 0 0 0 X_2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
X_0 0 0 0 0 0 0 0 0 0 0 0
------------------------------------------------------------------------
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
X_2 0 0 0 0 0 0 0
0 X_2 0 0 0 0 0 0
0 0 X_2 0 0 0 0 0
0 0 0 X_2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 2X_0 0 0
0 0 0 0 0 0 2X_0 0
0 0 0 0 0 0 0 2X_0
-X_1 0 0 0 0 0 0 0
0 -X_1 0 0 0 0 0 0
0 0 -X_1 0 0 0 0 0
0 0 0 -X_1 X_2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 -2X_3 0 0
0 0 0 0 0 X_2 -2X_3 0
0 0 0 0 0 -X_0 X_2 -2X_3
0 0 0 0 0 0 -X_0 X_2
0 0 0 0 0 0 0 -X_0
0 0 0 0 0 0 0 0
0 0 0 0 -4X_0+4X_3 0 0 0
0 0 0 0 -X_1-2X_2+X_3 0 0 0
0 0 0 0 0 -2X_1 0 0
0 0 0 0 0 X_2 -2X_1 0
0 0 0 0 0 0 X_2 -2X_1
0 0 0 0 0 0 0 X_2
0 0 0 0 0 -X_1+X_3 0 0
0 0 0 0 0 0 -X_1+X_3 0
-2X_1 0 0 0 -X_2 0 0 -X_1+X_3
X_2 -2X_1 0 0 0 0 0 0
0 X_2 -2X_1 0 4X_3 0 0 0
0 0 X_2 -2X_1 -2X_2 0 0 0
0 0 0 X_2 2X_0+2X_1-2X_3 0 0 0
------------------------------------------------------------------------
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 X_2 0 0
0 0 0 0 X_2 0
0 0 0 0 0 X_2
2X_0 0 0 0 0 0
0 2X_0 0 0 0 0
0 0 2X_0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 -4X_0+4X_3 0 0
0 0 0 -X_1-2X_2+X_3 -4X_0+4X_3 0
0 0 0 0 -X_1-2X_2+X_3 -4X_0+4X_3
-2X_3 0 0 0 0 -X_1-2X_2+X_3
X_2 -2X_3 0 0 0 0
-X_0 X_2 -2X_3 0 0 0
0 -X_0 X_2 0 0 0
0 0 -X_0 0 0 0
0 0 0 -X_2 0 0
0 0 0 0 -X_2 0
0 0 0 4X_3 0 -X_2
-2X_1 0 0 -2X_2 4X_3 0
X_2 -2X_1 0 2X_0+2X_1-2X_3 -2X_2 4X_3
0 X_2 -2X_1 0 2X_0+2X_1-2X_3 -2X_2
0 0 X_2 0 0 2X_0+2X_1-2X_3
-X_1+X_3 0 0 0 0 0
0 -X_1+X_3 0 0 0 0
0 0 -X_1+X_3 0 0 0
0 0 0 0 0 0
------------------------------------------------------------------------
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
X_2 0 0 0
0 X_2 0 0
0 0 X_2 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
-4X_0+4X_3 0 0 0
-X_1-2X_2+X_3 -4X_0+4X_3 0 6X_2
0 -X_1-2X_2+X_3 -4X_0+4X_3 -6X_0+6X_3
0 0 -X_1-2X_2+X_3 -3X_2+4X_3
0 0 0 -5X_0-2X_2
0 0 0 0
0 0 0 0
0 0 0 0
-X_2 0 0 0
0 -X_2 0 0
4X_3 0 -X_2 -4X_2
-2X_2 4X_3 0 5X_2
2X_0+2X_1-2X_3 -2X_2 4X_3 -6X_1+6X_3
0 2X_0+2X_1-2X_3 -2X_2 0
0 0 2X_0+2X_1-2X_3 8X_0+3X_1-3X_3
0 0 0 -10X_0+2X_1-2X_3
------------------------------------------------------------------------
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 -6X_0+6X_3 0 0
0 -3X_2 0 0
0 3X_0-8X_3 0 0
0 -2X_0+4X_2 0 0
0 0 0 0
0 0 0 0
0 0 0 0
6X_0 0 0 0
0 6X_2 0 0
0 5X_2 6X_2 0
0 -6X_1+2X_2+6X_3 -6X_0+6X_3 6X_2
0 0 -3X_2 -6X_0+6X_3
0 3X_1-3X_3 3X_0-8X_3 -3X_2
0 -10X_0 -2X_0+4X_2 3X_0-8X_3
0 -4X_0-4X_1+4X_3 0 -2X_0+4X_2
-6X_0+6X_3 0 0 0
-3X_2 0 0 0
3X_0-8X_3 0 0 0
-2X_0+4X_2 0 0 0
0 0 5X_2 0
0 0 -6X_1+2X_2+6X_3 5X_2
0 0 0 -6X_1+2X_2+6X_3
0 0 3X_1-3X_3 0
0 0 -10X_0 3X_1-3X_3
-X_2 0 -4X_0-4X_1+4X_3 -10X_0
-6X_1+2X_2+6X_3 0 0 -4X_0-4X_1+4X_3
0 0 0 0
3X_1-3X_3 0 0 0
2X_0 0 0 0
-4X_0-4X_1+4X_3 0 0 0
------------------------------------------------------------------------
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
6X_2 0 0 0
-6X_0+6X_3 6X_2 0 0
-3X_2 -6X_0+6X_3 6X_2 0
3X_0-8X_3 -3X_2 -6X_0+6X_3 6X_2
-2X_0+4X_2 3X_0-8X_3 -3X_2 -6X_0+6X_3
0 -2X_0+4X_2 3X_0-8X_3 -3X_2
0 0 -2X_0+4X_2 3X_0-8X_3
0 0 0 -2X_0+4X_2
0 0 0 0
0 0 0 0
5X_2 0 0 0
-6X_1+2X_2+6X_3 5X_2 0 0
0 -6X_1+2X_2+6X_3 5X_2 0
3X_1-3X_3 0 -6X_1+2X_2+6X_3 5X_2
-10X_0 3X_1-3X_3 0 -6X_1+2X_2+6X_3
-4X_0-4X_1+4X_3 -10X_0 3X_1-3X_3 0
0 -4X_0-4X_1+4X_3 -10X_0 3X_1-3X_3
0 0 -4X_0-4X_1+4X_3 -10X_0
0 0 0 -4X_0-4X_1+4X_3
------------------------------------------------------------------------
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
2X_2 0 0 0
-8X_0+8X_3 2X_2 0 0
-2X_1-4X_2 0 2X_2 0
4X_0+X_2-4X_3 0 0 2X_2
-X_0+2X_2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
X_2+8X_3 -8X_0+8X_3 0 0
-4X_2 -2X_1-4X_2 -8X_0+8X_3 0
4X_1-4X_3 4X_0+X_2-4X_3 -2X_1-4X_2 -8X_0+8X_3
-X_1+X_3 -X_0+2X_2 4X_0+X_2-4X_3 -2X_1-4X_2
-2X_0-2X_1+2X_3 0 -X_0+2X_2 4X_0+X_2-4X_3
0 0 0 -X_0+2X_2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 X_2+8X_3 0 0
0 -4X_2 X_2+8X_3 0
0 4X_1-4X_3 -4X_2 X_2+8X_3
0 -X_1+X_3 4X_1-4X_3 -4X_2
0 -2X_0-2X_1+2X_3 -X_1+X_3 4X_1-4X_3
0 0 -2X_0-2X_1+2X_3 -X_1+X_3
0 0 0 -2X_0-2X_1+2X_3
0 0 0 0
0 0 0 0
0 0 0 0
------------------------------------------------------------------------
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
2X_2 0 0 0 0
0 2X_2 0 0 0
0 0 2X_2 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 -X_0+X_3 0
0 0 0 X_3 -X_0+X_3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
-8X_0+8X_3 0 0 0 0
-2X_1-4X_2 -8X_0+8X_3 0 -X_0 0
4X_0+X_2-4X_3 -2X_1-4X_2 -8X_0+8X_3 0 0
-X_0+2X_2 4X_0+X_2-4X_3 -2X_1-4X_2 0 0
0 -X_0+2X_2 4X_0+X_2-4X_3 0 0
0 0 -X_0+2X_2 0 0
0 0 0 0 X_3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
X_2+8X_3 0 0 0 0
-4X_2 X_2+8X_3 0 0 -X_0
4X_1-4X_3 -4X_2 X_2+8X_3 0 0
-X_1+X_3 4X_1-4X_3 -4X_2 0 0
-2X_0-2X_1+2X_3 -X_1+X_3 4X_1-4X_3 0 0
0 -2X_0-2X_1+2X_3 -X_1+X_3 0 0
0 0 -2X_0-2X_1+2X_3 0 0
------------------------------------------------------------------------
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 6X_3
0 0 0 0 0 0
0 0 0 0 0 0
-X_0+X_3 0 0 0 0 0
0 -X_0+X_3 0 0 0 0
0 0 -X_0+X_3 0 0 0
0 0 0 -X_0+X_3 0 0
0 0 0 0 -X_0+X_3 0
0 0 0 0 0 -6X_0+6X_3
0 0 0 0 0 -3X_2
0 0 0 0 0 3X_0-8X_3
0 0 0 0 0 -2X_0+4X_2
0 0 0 0 0 0
X_3 0 0 0 0 0
0 X_3 0 0 0 0
0 0 X_3 0 0 0
0 0 0 X_3 0 0
0 0 0 0 X_3 5X_2
-X_0 0 0 0 0 -6X_1+2X_2+6X_3
0 -X_0 0 0 0 0
0 0 -X_0 0 0 3X_1-3X_3
0 0 0 -X_0 0 -10X_0+12X_3
0 0 0 0 -X_0 -4X_0-4X_1-6X_2+4X_3
------------------------------------------------------------------------
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 -2X_0+2X_3 0 0 0
0 2X_3 -2X_0+2X_3 0 0
0 -4X_0-X_2+4X_3 0 -2X_0+2X_3 0
0 X_0-2X_2 0 0 -2X_0+2X_3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
X_3 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 -X_2 0 0 0
0 0 2X_3 0 0
0 4X_3 -4X_0-X_2+4X_3 2X_3 0
0 X_1-2X_2-X_3 X_0-2X_2 -4X_0-X_2+4X_3 2X_3
0 2X_0+2X_1-2X_3 0 X_0-2X_2 -4X_0-X_2+4X_3
0 0 0 0 X_0-2X_2
0 0 0 0 0
0 0 0 0 0
-2X_0+2X_3 0 0 0 0
-X_2 0 0 0 0
0 0 -X_2 0 0
0 0 0 -X_2 0
0 0 4X_3 0 -X_2
0 0 X_1-2X_2-X_3 4X_3 0
0 0 2X_0+2X_1-2X_3 X_1-2X_2-X_3 4X_3
-X_1 0 0 2X_0+2X_1-2X_3 X_1-2X_2-X_3
0 0 0 0 2X_0+2X_1-2X_3
0 0 0 0 0
2X_3 0 0 0 0
-X_2 0 0 0 0
X_0+X_1-X_3 0 0 0 0
------------------------------------------------------------------------
0 0 0 X_3 0 0
0 0 0 0 X_3 0
0 0 0 0 0 X_3
0 0 0 0 0 0
0 0 0 -X_1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 -X_1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 -X_1+X_3 0 0
0 0 0 0 -X_1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
-2X_0+2X_3 0 0 0 0 0
0 -2X_0+2X_3 0 0 0 0
0 0 -2X_0+2X_3 0 -X_1+X_3 0
0 0 0 0 0 -X_1+X_3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2X_3 0 0 0 0 0
-4X_0-X_2+4X_3 2X_3 0 0 0 0
X_0-2X_2 -4X_0-X_2+4X_3 2X_3 0 0 0
0 X_0-2X_2 -4X_0-X_2+4X_3 0 0 0
0 0 X_0-2X_2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
-X_2 0 0 0 0 0
0 -X_2 0 0 0 0
4X_3 0 -X_2 0 0 0
X_1-2X_2-X_3 4X_3 0 0 0 0
2X_0+2X_1-2X_3 X_1-2X_2-X_3 4X_3 0 0 0
0 2X_0+2X_1-2X_3 X_1-2X_2-X_3 0 0 0
0 0 2X_0+2X_1-2X_3 0 0 0
0 0 0 0 0 0
------------------------------------------------------------------------
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
X_3 0 0 0 0 0 0 0
0 X_3 0 0 0 0 0 0
0 0 X_3 0 0 0 0 0
0 0 0 X_3 0 0 0 0
0 0 0 0 X_3 0 0 0
0 0 0 0 0 X_3 0 0
0 0 0 0 0 0 X_3 0
-X_1 0 0 0 0 0 0 X_3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 -X_1 0 0 0 0 0
0 0 0 -X_1 0 0 0 0
0 0 0 0 -X_1 0 0 0
0 0 0 0 0 -X_1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
-X_1+X_3 0 0 0 0 0 0 0
0 -X_1 0 0 0 0 0 0
0 0 0 0 0 0 -X_1 0
0 0 0 0 0 0 0 -X_1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 -X_1+X_3 0 0 0 0 0 0
0 0 -X_1+X_3 0 0 0 0 0
0 0 0 -X_1+X_3 0 0 0 0
0 0 0 0 -X_1+X_3 0 0 0
0 0 0 0 0 -X_1+X_3 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 -X_1+X_3 0
0 0 0 0 0 0 0 -X_1+X_3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
------------------------------------------------------------------------
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
X_3 0 0 0 |
0 X_3 0 0 |
0 0 X_3 0 |
0 0 0 X_3 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
-X_1 0 0 0 |
0 -X_1 0 0 |
0 0 -X_1 0 |
0 0 0 -X_1 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
0 0 0 0 |
-X_1+X_3 0 0 0 |
0 -X_1+X_3 0 0 |
0 0 -X_1+X_3 0 |
0 0 0 -X_1+X_3 |
46 90
o7 : Matrix (QQ[X , X , X , X ]) <--- (QQ[X , X , X , X ])
0 1 2 3 0 1 2 3
|