Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

5 Topology
 5.1 Face poset and order complex
 5.2 Topological invariants
 5.3 Fixed Point Property

5 Topology

A poset can be viewed as a finite \(T_0\)-topological space whose open sets are the downsets. The topological aspects of posets can be found in [Bar11, Section 1.1]

5.1 Face poset and order complex

Given a finite poset \(X\), its order complex \(\mathcal{K}(X)\) is the simplicial complex whose vertices are the elements of \(X\) and whose simplices are the nonempty totally ordered subsets of \(X\). If \(K\) is a finite simplicial complex, then its face poset \(\mathcal{X}(K)\) is the finite poset whose elements are the simplices of \(K\) and the order given by inclusion. Moreover, \(X\) (viewed as a finite topological space) and \(\mathcal{K}(X)\) are weak equivalent. Similarly, \(K\) and \(\mathcal{X}(K)\) are weak equivalent.

5.1-1 FacePoset
‣ FacePoset( K )( operation )

Returns the face poset of the simplicial complex K.

gap> P:=PosetByCoveringRelations([1,2,3,4], [[2,1], [3,1], [4,2], [4,3]]);
<finite poset of size 4>
gap> K:=OrderComplex(P);
Simplicial complex of dimension 2.

gap> PP:=FacePoset(K);
<finite poset of size 11>
gap> Set(PP);
[ [ 1 ], [ 1, 2 ], [ 1, 2, 4 ], [ 1, 3 ], [ 1, 3, 4 ], [ 1, 4 ], [ 2 ], [ 2, 4 ], [ 3 ], [ 3, 4 ], [ 4 ] ]

5.1-2 OrderComplex
‣ OrderComplex( X )( operation )

Returns the order complex of the finite poset X.

gap> P:=PosetByCoveringRelations([1,2,3,4], [[2,1], [3,1], [4,2], [4,3]]);
<finite poset of size 4>
gap> K:=OrderComplex(P);
Simplicial complex of dimension 2.

gap> K!.vertices;
[ 1, 2, 3, 4 ]
gap> g:=K!.simplices;
function( n, i ) ... end
gap> g(1,1);
[ 1, 2 ]
gap> g(1,2);
[ 1, 3 ]

5.1-3 FacePoset
‣ FacePoset( f )( operation )

The map \(\mathcal{X}(f)\) induced by the simplicial map f in the face posets.

gap> G:=SmallGroup(72,40);
<pc group of size 72 with 5 generators>
gap> SpG:=BrownPoset(G,2);
<finite poset of size 57>
gap> Q:=Core(SpG);
<finite poset of size 21>
gap> K:=OrderComplex(Q);
Simplicial complex of dimension 1.

gap> L:=OrderComplex(SpG);
Simplicial complex of dimension 2.

gap> inc:=NaturalMaps(Q)[1];
<order preserving map>
gap> Sdinc:=FacePoset(OrderComplex(inc));
<order preserving map>

5.1-4 OrderComplex
‣ OrderComplex( f )( operation )

The map \(\mathcal{K}(f)\) induced by the poset map f in the order complexes.

gap> G:=SmallGroup(72,40);
<pc group of size 72 with 5 generators>
gap> SpG:=BrownPoset(G,2);
<finite poset of size 57>
gap> Q:=Core(SpG);
<finite poset of size 21>
gap> K:=OrderComplex(Q);
Simplicial complex of dimension 1.

gap> L:=OrderComplex(SpG);
Simplicial complex of dimension 2.

gap> ret:=NaturalMaps(Q)[2];
<order preserving map>
gap> Kret:=OrderComplex(ret);
Simplicial Map

5.1-5 BarycentricSubdivision
‣ BarycentricSubdivision( X )( operation )

The barycentric subdvidision of the poset X, which is the poset \(\mathcal{X}(\mathcal{K}(X))\).

gap> W:=TheWallet();
<finite poset of size 11>
gap> SdW:=BarycentricSubdivision(W);
<finite poset of size 53>
gap> SdW = FacePoset(OrderComplex(W));
true

5.1-6 BarycentricSubdivision
‣ BarycentricSubdivision( K )( operation )

The barycentric subdvidision of the simplicial complex K, which is the simplicial complex \(\mathcal{K}(\mathcal{X}(K))\).

gap> W:=TheWallet();
<finite poset of size 11>
gap> K:=OrderComplex(W);
Simplicial complex of dimension 2.

gap> SdK:=BarycentricSubdivision(K);
Simplicial complex of dimension 2.

5.1-7 BarycentricSubdivision
‣ BarycentricSubdivision( f )( operation )

The induced map between the barycentric subdivisions of the simplicial complexes.

5.1-8 BarycentricSubdivision
‣ BarycentricSubdivision( f )( operation )

The induced map between the barycentric subdivisions of the posets.

gap> G:=SmallGroup(72,40);
<pc group of size 72 with 5 generators>
gap> SpG:=BrownPoset(G,2);
<finite poset of size 57>
gap> Q:=Core(SpG);
<finite poset of size 21>
gap> inc:=NaturalMaps(Q)[1];
<order preserving map>
gap> SdSpG:=BarycentricSubdivision(SpG);
<finite poset of size 255>
gap> Sdinc:=BarycentricSubdivision(inc);
<order preserving map>
gap> TargetMap(Sdinc) = SdSpG;
true

5.2 Topological invariants

5.2-1 PosetHomology
‣ PosetHomology( X )( operation )

Computes the homology \(H_*(X)\) of the poset X viewed as a topological space.

gap> W:=TheWallet();
<finite poset of size 11>
gap> PosetHomology(W);
[ [ 0 ], [  ], [  ] ]
gap> PosetHomology(MinimalFiniteModelSphere(2));
[ [ 0 ], [  ], [ 0 ] ]

5.2-2 PosetHomology
‣ PosetHomology( X, n )( operation )

Computes the homology group \(H_{n}(X)\) of the poset X viewed as a topological space.

gap> W:=TheWallet();
<finite poset of size 11>
gap> PosetHomology(W,1);
[  ]
gap> PosetHomology(W,0);
[ 0 ]
gap> PosetHomology(MinimalFiniteModelSphere(2),2);
[ 0 ]

5.2-3 PosetHomology
‣ PosetHomology( f, n )( operation )

The induced map \(H_{n}(f)\) between the homology groups of degree n by the poset map f.

gap> S2:=MinimalFiniteModelSphere(2);
<finite poset of size 6>
gap> id_S2:=IdentityMap(S2);
<order preserving map>
gap> PosetHomology(id_S2,2);
[ g1 ] -> [ g1 ]

5.2-4 EulerCharacteristic
‣ EulerCharacteristic( X )( attribute )

Computes the Euler Characteristic of the poset X viewed as a topological space.

gap> EulerCharacteristic(MinimalFiniteModelSphere(3));
0
gap> EulerCharacteristic(MinimalFiniteModelSphere(4));
2
gap> EulerCharacteristic(TheWallet());
1

5.2-5 FundamentalGroup
‣ FundamentalGroup( X )( operation )

Computes the fundamental group of the poset X as is the fundamental group of its order complex.

gap> FundamentalGroup(TheWallet());
<fp group on the generators [  ]>
gap> Order(last);
1
gap> F:=FundamentalGroup(MinimalFiniteModelSphere(1));
<fp group of size infinity on the generators [ f1 ]>
gap> RelatorsOfFpGroup(F);
[  ]
gap> GeneratorsOfGroup(F);
[ f1 ]

5.3 Fixed Point Property

5.3-1 FixedPointsPosetHomomorphism
‣ FixedPointsPosetHomomorphism( f )( attribute )

Returns the subposet of fixed points of f. We only check names of points, Source(f) is not neccesarily equal to Target(f).

gap> P:=PosetByCoveringRelations([1..5], [[5,3],[5,2],[4,3],[4,2],[3,1],[2,1]]);
<finite poset of size 5>
gap> A:=SubPoset(P,[1,2,3]);
<finite poset of size 3>
gap> N:=NaturalMaps(A);
[ <order preserving map> ]
gap> inc:=N[1];
<order preserving map>
gap> F:=FixedPointsPosetHomomorphism(inc);
<finite poset of size 3>
gap> Set(F);
[ 1, 2, 3 ]

5.3-2 HasFixedPointProperty
‣ HasFixedPointProperty( X )( property )

Returns: true or false

Returns true if every order preserving map \(f\colon X \to X\) has a fixed point, false otherwise.

gap> HasFixedPointProperty(MinimalFiniteModelSphere(1));
false
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 Bib Ind

generated by GAPDoc2HTML