Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

4 Construction of new posets
 4.1 Categorical constructions
 4.2 Natural maps

4 Construction of new posets

4.1 Categorical constructions

4.1-1 SubPoset
‣ SubPoset( X, A )( operation )

The subposet of X whose underlying set is the list A of elements of X.

gap> A:=PosetByCoveringRelations([1,2,3,4], [[3,1],[3,2], [4,1],[4,2]]);
<finite poset of size 4>
gap> SubPoset(A,[1,2]);
<finite poset of size 2>
gap> CoveringRelations(last);
[  ]

4.1-2 CoproductOp
‣ CoproductOp( X, A )( operation )

Given a list of posets, returns the coproduct of these posets in the given order. It also computes the natural inclusion maps.

4.1-3 Coproduct
‣ Coproduct( X_1, X_2, ... )( function )

The coproduct of posets. It also computes the natural inclusion maps.

gap> A:=PosetByCoveringRelations([1,2,3,4], [[3,1],[3,2], [4,1],[4,2]]);
<finite poset of size 4>
gap> B:=PosetByCoveringRelations([1,2],[]);
<finite poset of size 2>
gap> C:=TheWallet();
<finite poset of size 11>
gap> Coproduct(A,B,C);
<finite poset of size 17>

4.1-4 Join
‣ Join( X_1, X_2, ... )( function )

The join of posets. It also computes the natural inclusion maps.

gap> A:=PosetByCoveringRelations([1,2,3,4], [[3,1],[3,2], [4,1],[4,2]]);
<finite poset of size 4>
gap> B:=PosetByCoveringRelations([1,2],[]);
<finite poset of size 2>
gap> SubPoset(A,[1,2]);
<finite poset of size 2>
gap> CoveringRelations(last);
[  ]
gap> C:=TheWallet();
<finite poset of size 11>
gap> J:=Join(A,B,C);
<finite poset of size 17>
gap> a:=Set(J)[1];; b:=J[6];;
gap> Ordering(J)(b,a);
true

4.1-5 ConePoset
‣ ConePoset( X )( operation )

Returns the join of X with the singleton poset. Equivalently, it adds a maximum to X.

gap> W:=TheWallet();
<finite poset of size 11>
gap> MaximumPoset(W);
fail
gap> coneW:=ConePoset(W);
<finite poset of size 12>
gap> Size(MaximalElements(coneW));
1

4.1-6 SuspensionPoset
‣ SuspensionPoset( X )( operation )

The suspension of the poset X. It is the poset obtained by the join of X with the discrete poset on two elements.

gap> P:=EmptyPoset();
<finite poset of size 0>
gap> S1P:=SuspensionPoset(P);
<finite poset of size 2>
gap> IsomorphismPosets(S1P,MinimalFiniteModelSphere(0));
<order preserving map>
gap> S2P:=SuspensionPoset(S1P);
<finite poset of size 4>
gap> IsomorphismPosets(S2P,MinimalFiniteModelSphere(1));
<order preserving map>

4.1-7 OppositePoset
‣ OppositePoset( X )( operation )

The oppositve poset of X.

gap> P:=PosetByCoveringRelations([1,2,3], [[3,1], [3,2]]);
<finite poset of size 3>
gap> Popposite:=OppositePoset(P);
<finite poset of size 3>
gap> IsomorphismPosets(P,Popposite);
fail

4.1-8 MappingCylinderPosetHomomorphism
‣ MappingCylinderPosetHomomorphism( f )( operation )

The mapping cylinder of an order preserving map \(f:X\to Y\) is the poset \(Zf\) whose underlying set is the disjoint union of \(X\) and \(Y\). The order in \(Zf\) is given as following: it keeps the same order in \(X\) and in \(Y\), and if \(x\in X\) and \(y\in Y\), then \(x < y\) if \(f(x)\leq y\). This method also computes the following natural maps: the inclusions of \(X\) and \(Y\) in \(Zf\), and the retraction of \(Zf\) onto \(Y\).

gap> A:=PosetByCoveringRelations([1,2,3,4], [[3,1],[3,2], [4,1],[4,2]]);
<finite poset of size 4>
gap> B:=PosetByCoveringRelations([1,2,3,4], [[4,2], [4,3], [2,1], [3,1]]);
<finite poset of size 4>
gap> f:=PosetHomomorphismByImages(A,B, [1, 2, 4, 4]);
<order preserving map>
gap> MappingCylinderPosetHomomorphism(f);
<finite poset of size 8>
gap> Zf:=last;
<finite poset of size 8>

4.1-9 QuotientPoset
‣ QuotientPoset( X, A )( operation )

Returns the quotient set \(X/A\) with the induced order. The subset \(A\) must be convex: if \(x < z < y\) with \(x,y\in A\), then \(z\in A\). See [Bar11, Section 2.7] for further details.

gap> A:=PosetByCoveringRelations([1,2,3,4], [[4,3],[4,2],[3,1],[2,1]]);
<finite poset of size 4>
gap> B:=[1,4];
[ 1, 4 ]
gap> Q:=QuotientPoset(A,B);
The second parameter must be convex.
fail
gap> Q:=QuotientPoset(A,[4,5]);
The second parameter must be a list of elements of the first parameter.
fail
gap> Q:=QuotientPoset(A,[2,3]);
<finite poset of size 3>

4.1-10 WedgePosets
‣ WedgePosets( [X_1, x_1, ][X_2, x_2, ]... )( operation )

Given a list of pairs \([X_i,x_i]\) where \(X_i\) is a poset and \(x_i\in X_i\), it returns the wedge of these posets on the given points. The \(i\)-th natural map is the inclusion \(X_i\hookrightarrow \vee X_i\).

gap> A:=PosetByCoveringRelations([1,2,3,4], [[4,3],[4,2],[3,1],[2,1]]);
<finite poset of size 4>
gap> W:=WedgePosets([[A,4], [A,1]]);
<finite poset of size 7>
gap> IsContractible(W);
true

4.1-11 HomPosets
‣ HomPosets( X, Y )( operation )

The poset X^Y. Recall that this poset consists of the order preserving maps \(f:X\to Y\) with \(f\leq g\) if \(f(x)\leq g(x)\) for all \(x\in X\).

gap> S1:=MinimalFiniteModelSphere(1);
<finite poset of size 4>
gap> S2:=MinimalFiniteModelSphere(2);
<finite poset of size 6>
gap> P:=HomPosets(S2,S1);
<finite poset of size 44>
gap> Q:=HomPosets(S1,S2);
<finite poset of size 198>

4.1-12 Endomorphisms
‣ Endomorphisms( X )( attribute )

The endomorphism poset of the poset X. Equivalently, the poset X^{X}.

gap> S1:=MinimalFiniteModelSphere(1);
<finite poset of size 4>
gap> Endo:=Endomorphisms(S1);
<finite poset of size 36>
gap> Endo = HomPosets(S1,S1);
true
gap> C:=Core(Endo);
<finite poset of size 8>
gap> Height(C);
1
gap> PosetHomology(C);
[ [ 0, 0, 0, 0, 0 ], [ 0 ] ]

4.1-13 AutomorphismGroup
‣ AutomorphismGroup( X )( attribute )

The automorphism group \(\mathrm{Aut}(X)\) of \(X\).

gap> S1:=MinimalFiniteModelSphere(1);
<finite poset of size 4>
gap> AutomorphismGroup(S1);
C2 x C2

4.1-14 Automorphisms
‣ Automorphisms( X )( attribute )

The list of the poset automorphisms of \(X\). The first element is the identity map.

gap> S1:=MinimalFiniteModelSphere(1);
<finite poset of size 4>
gap> A:=Automorphisms(S1);
[ <order preserving map>, <order preserving map>, <order preserving map>, <order preserving map> ]
gap> id:=IdentityMap(S1);
<order preserving map>
gap> id = A[1];
true

4.2 Natural maps

4.2-1 NaturalMaps
‣ NaturalMaps( X )( attribute )

Returns the natural maps of the poset X. For example NaturalMaps of a quotient gives the natural projection.

gap> S1:=MinimalFiniteModelSphere(1);
<finite poset of size 4>
gap> A:=MinimalElements(S1);;
gap> Q:=QuotientPoset(S1,A);
<finite poset of size 3>
gap> NaturalMaps(Q);
[ <order preserving map> ]
gap> f:=last[1];
<order preserving map>
gap> SourceMap(f) = S1;
true
gap> TargetMap(f) = Q;
true
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 Bib Ind

generated by GAPDoc2HTML