i1 : R=QQ[a_0,a_1,a_2,a_3,a_4,b_0,b_1,b_2,b_3,b_4,c_0,c_1,c_2,c_3,c_4,x,y,z]
o1 = R
o1 : PolynomialRing
|
i3 : H=matrix{{a_0*z+a_1*x+a_2*y,b_0*z+b_1*x+b_2*y,c_0*z+c_1*x+c_2*y},{a_3,b_3,c_3}}
o3 = | a_1x+a_2y+a_0z b_1x+b_2y+b_0z c_1x+c_2y+c_0z |
| a_3 b_3 c_3 |
2 3
o3 : Matrix R <--- R
|
i4 : L=ciRes(G,H,{x,y,z})
o4 = {2} | a_3 b_3 c_3 -a_3b_1+a_1b_3 0 0
{2} | 0 0 0 -a_3b_2+a_2b_3 -a_3b_1+a_1b_3 0
{2} | a_1 b_1 c_1 -a_3b_0+a_0b_3 0 -a_3b_1+a_1b_3
{2} | a_3 b_3 c_3 0 -a_3b_2+a_2b_3 0
{2} | a_2 b_2 c_2 0 -a_3b_0+a_0b_3 -a_3b_2+a_2b_3
{2} | a_0 b_0 c_0 0 0 -a_3b_0+a_0b_3
------------------------------------------------------------------------
-a_3c_1+a_1c_3 0 0 -b_3c_1+b_1c_3
-a_3c_2+a_2c_3 -a_3c_1+a_1c_3 0 -b_3c_2+b_2c_3
-a_3c_0+a_0c_3 0 -a_3c_1+a_1c_3 -b_3c_0+b_0c_3
0 -a_3c_2+a_2c_3 0 0
0 -a_3c_0+a_0c_3 -a_3c_2+a_2c_3 0
0 0 -a_3c_0+a_0c_3 0
------------------------------------------------------------------------
0 0 |
-b_3c_1+b_1c_3 0 |
0 -b_3c_1+b_1c_3 |
-b_3c_2+b_2c_3 0 |
-b_3c_0+b_0c_3 -b_3c_2+b_2c_3 |
0 -b_3c_0+b_0c_3 |
6 12
o4 : Matrix R <--- R
|
i5 : maxCol L
o5 = {{2} | a_3 b_3 c_3 -a_3b_1+a_1b_3 0 -a_3c_1+a_1c_3 |, {0,
{2} | 0 0 0 -a_3b_2+a_2b_3 -a_3b_1+a_1b_3 -a_3c_2+a_2c_3 |
{2} | a_1 b_1 c_1 -a_3b_0+a_0b_3 0 -a_3c_0+a_0c_3 |
{2} | a_3 b_3 c_3 0 -a_3b_2+a_2b_3 0 |
{2} | a_2 b_2 c_2 0 -a_3b_0+a_0b_3 0 |
{2} | a_0 b_0 c_0 0 0 0 |
------------------------------------------------------------------------
1, 2, 3, 4, 6}}
o5 : List
|