Given a system of polynomials f0,...,fn of degree d0,...,dn that are contained in a complete intersection g1,...,gm of degree k1,...,km, this function returns the regularity index used to form the matrix associated to the residual resultant over a complete intersection and then all the partial degree of this resultant with respect to the coefficients of f0,f1,..,fn.
i1 : R=ZZ[d_0..d_3,k_1,k_2]
o1 = R
o1 : PolynomialRing
|
i2 : L=ciResDeg({d_0,d_1,d_2,d_3},{k_1,k_2})
2
o2 = {d + d + d + d - 3k - 3, {d d d - d k k - d k k - d k k + k k
0 1 2 3 2 1 2 3 1 1 2 2 1 2 3 1 2 1 2
------------------------------------------------------------------------
2 2 2
+ k k , d d d - d k k - d k k - d k k + k k + k k , d d d - d k k
1 2 0 2 3 0 1 2 2 1 2 3 1 2 1 2 1 2 0 1 3 0 1 2
------------------------------------------------------------------------
2 2
- d k k - d k k + k k + k k , d d d - d k k - d k k - d k k +
1 1 2 3 1 2 1 2 1 2 0 1 2 0 1 2 1 1 2 2 1 2
------------------------------------------------------------------------
2 2
k k + k k }}
1 2 1 2
o2 : List
|