next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Resultants :: cm2Res

cm2Res -- returns a matrix corresponding to the residual resultant over a Cohen-Macaulay codimension 2 base locus

Synopsis

Description

Suppose given a homogeneous ideal l.c.i. CM codim 2 J=(g1,..,gn), such that I=(f1,..,fm) is included in J and (I:J) is a residual intersection. Let H be the matrix that I=J.H. Let R be the matrixof the first syzygies of J. This function computes an elimination matrix corresponding to the residual resultant over V(I) over V(J).

i1 : R = QQ[X,Y,Z,x,y,z]

o1 = R

o1 : PolynomialRing
i2 : F = matrix{{x*y^2,y^3,x*z^2,y^3+z^3}}

o2 = | xy2 y3 xz2 y3+z3 |

             1       4
o2 : Matrix R  <--- R
i3 : G = matrix{{y^2,z^2}}

o3 = | y2 z2 |

             1       2
o3 : Matrix R  <--- R
i4 : M = matrix{{1,0,0},{0,1,0},{0,0,1},{-X,-Y,-Z}}

o4 = | 1  0  0  |
     | 0  1  0  |
     | 0  0  1  |
     | -X -Y -Z |

             4       3
o4 : Matrix R  <--- R
i5 : H = (F//G)*M

o5 = {2} | -Xy+x -Yy+y -Zy   |
     {2} | -Xz   -Yz   -Zz+x |

             2       3
o5 : Matrix R  <--- R
i6 : l = {x,y,z}

o6 = {x, y, z}

o6 : List
i7 : L=cm2Res (G,H,l)

o7 = {3} | 0  0   0  0  0  0  1  0  0  0    0    0    |
     {3} | 0  0   0  0  0  0  -X 1  0  -Y+1 0    0    |
     {3} | 0  0   -Y 0  0  0  -Z 0  1  0    0    0    |
     {3} | -1 0   0  0  0  0  0  -X 0  0    -Y+1 0    |
     {3} | 0  0   X  -Y 0  0  0  -Z -X -Z   0    -Y+1 |
     {3} | 0  0   0  0  -Y -1 0  0  -Z 0    0    0    |
     {3} | X  Y-1 0  0  0  Z  0  0  0  0    0    0    |
     {3} | 0  0   0  X  0  0  0  0  0  0    -Z   0    |
     {3} | 0  0   0  0  X  0  0  0  0  0    0    -Z   |
     {3} | X  Y   0  0  0  Z  0  0  0  0    0    0    |

             10       12
o7 : Matrix R   <--- R
i8 : maxCol L

o8 = {{3} | 0  0   0  0  0  0  1  0  0  0    |, {0, 1, 2, 3, 4, 5, 6, 7, 8,
      {3} | 0  0   0  0  0  0  -X 1  0  -Y+1 |
      {3} | 0  0   -Y 0  0  0  -Z 0  1  0    |
      {3} | -1 0   0  0  0  0  0  -X 0  0    |
      {3} | 0  0   X  -Y 0  0  0  -Z -X -Z   |
      {3} | 0  0   0  0  -Y -1 0  0  -Z 0    |
      {3} | X  Y-1 0  0  0  Z  0  0  0  0    |
      {3} | 0  0   0  X  0  0  0  0  0  0    |
      {3} | 0  0   0  0  X  0  0  0  0  0    |
      {3} | X  Y   0  0  0  Z  0  0  0  0    |
     ------------------------------------------------------------------------
     9}}

o8 : List

See also