Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

9 Posets of subgroups of a finite group
 9.1 Posets of subgroups
 9.2 Poset of subspaces of a vector space

9 Posets of subgroups of a finite group

9.1 Posets of subgroups

9.1-1 PosetOfSubgroups
‣ PosetOfSubgroups( G )( operation )

The poset of subgroups of G.

gap> PosetOfSubgroups(AlternatingGroup(5));
<finite poset of size 59>
gap> PosetOfSubgroups(CyclicGroup(16));
<finite poset of size 5>

9.1-2 PosetOfpSubgroups
‣ PosetOfpSubgroups( G, p )( operation )
‣ BrownPoset( G, p )( operation )

The poset \mathcal{S}_p(G) of nontrivial p-subgroups of G, also known as the Brown poset of G.

gap> SpG:=BrownPoset(AlternatingGroup(5),2);
<finite poset of size 20>
gap> Core(SpG);
<finite poset of size 5>

9.1-3 ElementaryAbelianpSubgroups
‣ ElementaryAbelianpSubgroups( G, p[, r] )( function )

The list of nontrivial elementary abelian p-subgroups of G. If the optional parameter r is given, then it returns the nontrivial elementary abelian p-subgroups of rank at most r.

gap> ElementaryAbelianpSubgroups(AlternatingGroup(5),2);
[ Group([ (1,3)(2,4) ]), Group([ (1,4)(2,3) ]), Group([ (1,2)(3,4) ]), Group([ (1,2)(3,5) ]), Group([ (1,5)(2,3) ]),
  Group([ (1,3)(2,5) ]), Group([ (2,5)(3,4) ]), Group([ (2,3)(4,5) ]), Group([ (2,4)(3,5) ]), Group([ (1,3)(4,5) ]),
  Group([ (1,5)(3,4) ]), Group([ (1,4)(3,5) ]), Group([ (1,4)(2,5) ]), Group([ (1,5)(2,4) ]), Group([ (1,2)(4,5) ]),
  Group([ (1,3)(2,4), (1,2)(3,4) ]), Group([ (1,5)(2,3), (1,2)(3,5) ]), Group([ (2,4)(3,5), (2,3)(4,5) ]),
  Group([ (1,5)(3,4), (1,3)(4,5) ]), Group([ (1,4)(2,5), (1,2)(4,5) ]) ]
gap> ElementaryAbelianpSubgroups(AlternatingGroup(5),2,1);
[ Group([ (1,3)(2,4) ]), Group([ (1,4)(2,3) ]), Group([ (1,2)(3,4) ]), Group([ (1,2)(3,5) ]), Group([ (1,5)(2,3) ]),
  Group([ (1,3)(2,5) ]), Group([ (2,5)(3,4) ]), Group([ (2,3)(4,5) ]), Group([ (2,4)(3,5) ]), Group([ (1,3)(4,5) ]),
  Group([ (1,5)(3,4) ]), Group([ (1,4)(3,5) ]), Group([ (1,4)(2,5) ]), Group([ (1,5)(2,4) ]), Group([ (1,2)(4,5) ]) ]

9.1-4 PosetOfElementaryAbelianpSubgroups
‣ PosetOfElementaryAbelianpSubgroups( G, p )( operation )
‣ QuillenPoset( G, p )( operation )

The poset \mathcal{A}_p(G) of nontrivial elementary abelian p-subgroups of G, also known as the Quillen poset of G.

gap> ApG:=QuillenPoset(AlternatingGroup(6),2);
<finite poset of size 75>

9.1-5 RadicalpSubgroups
‣ RadicalpSubgroups( G, p )( function )

The radical p-subgroups of G. Recall that a p-subgroup H of G is radical if H=O_p(N_G(H)).

gap> RadicalpSubgroups(AlternatingGroup(5),2);
[ Group([ (1,3)(2,4), (1,2)(3,4) ]), Group([ (1,5)(2,3), (1,2)(3,5) ]), Group([ (2,4)(3,5), (2,3)(4,5) ]),
  Group([ (1,5)(3,4), (1,3)(4,5) ]), Group([ (1,4)(2,5), (1,2)(4,5) ]) ]
gap> List(last,Size);
[ 4, 4, 4, 4, 4 ]

9.1-6 PosetOfRadicalpSubgroups
‣ PosetOfRadicalpSubgroups( G, p )( operation )
‣ BoucPoset( G, p )( operation )

The poset \mathcal{B}_p(G) of radical p-subgroups of a finite group G, also known as the Bouc poset.

gap> BpG:=BoucPoset(AlternatingGroup(6),2);
<finite poset of size 75>
gap> SpG:=BrownPoset(AlternatingGroup(6),2);
<finite poset of size 165>
gap> HomotopyEquivalence(SpG,BpG);
fail

9.1-7 RobinsonPoset
‣ RobinsonPoset( G, p )( operation )

The points of the Robinson poset \mathcal{R}_p(G) are the chains (H_1 > H_2 > \ldots > H_k) of p-subgroups such that for every i, H_i \triangleleft H_1. The ordering is given by inclusion.

gap> R:=RobinsonPoset(AlternatingGroup(6),2);
<finite poset of size 615>
gap> IsContractible(R);
false

9.1-8 OrbitSubdivisionBoucPoset
‣ OrbitSubdivisionBoucPoset( G, p )( operation )
gap> G:=SmallGroup(72,40);
<pc group of size 72 with 5 generators>
gap> B:=OrbitSubdivisionBoucPoset(G,2);
<finite poset of size 5>
gap> IsContractible(B);
true

9.1-9 OrbitSubdivisionQuillenPoset
‣ OrbitSubdivisionQuillenPoset( G, p )( operation )
gap> G:=SmallGroup(72,40);
<pc group of size 72 with 5 generators>
gap> A:=OrbitSubdivisionQuillenPoset(G,2);
<finite poset of size 9>
gap> IsContractible(A);
true

9.1-10 OrbitSubdivisionBrownPoset
‣ OrbitSubdivisionBrownPoset( G, p )( operation )
gap> G:=SmallGroup(72,40);
<pc group of size 72 with 5 generators>
gap> S:=OrbitSubdivisionBrownPoset(G,2);
<finite poset of size 23>
gap> IsContractible(S);
true
gap> S2:=OrbitSubdivisionBrownPoset(PSL(2,7),2);
<finite poset of size 19>
gap> IsContractible(S2);
false

9.1-11 EulerCharacteristicQuillenPoset
‣ EulerCharacteristicQuillenPoset( G, p )( operation )

Returns the Euler characteristic of \mathcal{A}_p(G) without computing the poset. This may be useful when the poset is too big.

9.2 Poset of subspaces of a vector space

9.2-1 PosetOfSubspaces
‣ PosetOfSubspaces( V )( operation )

The lattice of subspaces of the finite vector space V.

gap> V:=GF(2)^4;
( GF(2)^4 )
gap> P:=PosetOfSubspaces(V);
<finite poset of size 67>
gap> MaximumPoset(P);
<vector space of dimension 4 over GF(2)>
gap> MinimumPoset(P);
<vector space of dimension 0 over GF(2)>

9.2-2 PosetOfProperSubspaces
‣ PosetOfProperSubspaces( V )( operation )

The poset of nontrivial proper subspaces of the finite vector space V.

gap> V:=GF(2)^4;
( GF(2)^4 )
gap> Q:=PosetOfProperSubspaces(V);
<finite poset of size 65>
gap> PosetHomology(Q);
[ [ 0 ], [  ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ]
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 Bib Ind

generated by GAPDoc2HTML