Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

3 Classical stuff
 3.1 Elements above and below
 3.2 Grading and height

3 Classical stuff

3.1 Elements above and below

3.1-1 ElementsAbove
‣ ElementsAbove( X, x )( operation )

The subposet F_x=\{y\,:\, y \geq x\}.

gap> P:=PosetByCoveringRelations([1,2,3], [[3,1],[3,2]]);
<finite poset of size 3>
gap> ElementsAbove(P,1);
<finite poset of size 2>
gap> Set(last);
[ 1, 3 ]

3.1-2 ElementsStrictlyAbove
‣ ElementsStrictlyAbove( X, x )( operation )

The subposet \hat{F}_x=\{y\,:\, y > x\}.

gap> P:=PosetByCoveringRelations([1,2,3], [[3,1],[3,2]]);
<finite poset of size 3>
gap> Set(ElementsStrictlyAbove(P,1));
[ 3 ]

3.1-3 ElementsBelow
‣ ElementsBelow( X, x )( operation )

The subposet U_x=\{y\,:\, y \leq x\}.

gap> P:=PosetByCoveringRelations([1,2,3], [[3,1],[3,2]]);
<finite poset of size 3>
gap> Set(ElementsBelow(P,3));
[ 1, 2, 3 ]

3.1-4 ElementsStrictlyBelow
‣ ElementsStrictlyBelow( X, x )( operation )

The subposet \hat{U}_x=\{y\,:\, y < x\}.

gap> P:=PosetByCoveringRelations([1,2,3], [[3,1],[3,2]]);
<finite poset of size 3>
gap> ElementsStrictlyBelow(P,3);
<finite poset of size 2>
gap> Set(last);
[ 1, 2 ]

3.1-5 ElementsComparable
‣ ElementsComparable( X, x )( operation )

The subposet given by the elements which are comparable with x.

gap> P:=PosetByCoveringRelations([1,2,3], [[3,1],[3,2]]);
<finite poset of size 3>
gap> ElementsComparable(P,2);
<finite poset of size 2>
gap> Set(last);
[ 2, 3 ]

3.1-6 ElementsStrictlyComparable
‣ ElementsStrictlyComparable( X, x )( operation )

The subposet given by the elements which are comparable with x and different from x.

gap> P:=PosetByCoveringRelations([1,2,3], [[3,1],[3,2]]);
<finite poset of size 3>
gap> ElementsStrictlyComparable(P,3);
<finite poset of size 2>
gap> Set(last);
[ 1, 2 ]

3.1-7 RemovePoint
‣ RemovePoint( X, x )( operation )

The subposet X\setminus x.

gap> P:=PosetByCoveringRelations([1,2,3], [[3,1],[3,2]]);
<finite poset of size 3>
gap> Q:=RemovePoint(P,3);
<finite poset of size 2>
gap> Set(Q);
[ 1, 2 ]

3.1-8 RemoveCoveringRelation
‣ RemoveCoveringRelation( X, e )( operation )

The subposet obtained by removing the covering relation e from the Hasse diagram of X.

gap> P:=PosetByCoveringRelations([1,2,3], [[3,1],[3,2]]);
<finite poset of size 3>
gap> Q:=RemoveCoveringRelation(P,[3,1]);
<finite poset of size 3>
gap> CoveringRelations(Q);
[ [ 3, 2 ] ]

3.2 Grading and height

3.2-1 Grading
‣ Grading( X )( attribute )

Returns a grading if the poset X is graded and fail otherwise. The grading is chosen so that the minimum grade is 0.

gap> S1:=MinimalFiniteModelSphere(1);
<finite poset of size 4>
gap> g:=Grading(S1);
function( x ) ... end
gap> Min:=MinimalElements(S1);;
gap> a:=Min[1];;
gap> g(a);
0
gap> b:=Set(S1)[3];;
gap> g(b);
1

3.2-2 Height
‣ Height( X, x )( operation )

The Height of a point in a poset.

gap> P:=PosetByCoveringRelations([1..5],[[5,4],[5,3],[4,2],[3,1],[2,1]]);
<finite poset of size 5>
gap> Grading(P);
fail
gap> Height(P,5);
3

3.2-3 Height
‣ Height( X )( attribute )

The height of a poset.

gap> Height(MinimalFiniteModelSphere(4));
4
gap> Height(MinimalFiniteModelSphere(5));
5
gap> Height(TheWallet());
2

3.2-4 ChainsPoset
‣ ChainsPoset( X )( operation )

The set of chains of X. Each chain is represented as a list of points, ordered according to the order on X, the first element being the maximum of the chain.

gap> P:=PosetByCoveringRelations([1..5],[[5,4],[5,3],[4,2],[3,1],[2,1]]);
<finite poset of size 5>
gap> ChainsPoset(P);
[ [ 1 ], [ 2 ], [ 2, 1 ], [ 3 ], [ 3, 1 ], [ 4 ], [ 4, 1 ], [ 4, 2 ], 
  [ 4, 2, 1 ], [ 5 ], [ 5, 1 ], [ 5, 2 ], [ 5, 2, 1 ], [ 5, 3 ], [ 5, 3, 1 ], 
  [ 5, 4 ], [ 5, 4, 1 ], [ 5, 4, 2 ], [ 5, 4, 2, 1 ] ]

3.2-5 MobiusMatrix
‣ MobiusMatrix( arg )( attribute )

3.2-6 MobiusFunction
‣ MobiusFunction( X )( attribute )

The Mobius function \mu of X.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 Bib Ind

generated by GAPDoc2HTML