If the strategy 's' is 'Sylvester':
Refer to
sylvesterMatrix
If the strategy 's' is 'Macaulay':
Let
f1,..,fn be a polynomials two groups of variables
X1,...,Xn and
a1,...,as and such that
f1,...,fn are homogeneous polynomials with respect to the variables
X1,...,Xn. This function returns a matrix which is generically (in terms of the parameters
a1,...,as) surjective such that the gcd of its maximal minors is the Macaulay resultant of
f1,...,fn.
i1 : R=QQ[a_0..a_8,x,y,z]
o1 = R
o1 : PolynomialRing
|
i2 : f1 = a_0*x+a_1*y+a_2*z
o2 = a x + a y + a z
0 1 2
o2 : R
|
i3 : f2 = a_3*x+a_4*y+a_5*z
o3 = a x + a y + a z
3 4 5
o3 : R
|
i4 : f3 = a_6*x+a_7*y+a_8*z
o4 = a x + a y + a z
6 7 8
o4 : R
|
i5 : M = matrix{{f1,f2,f3}}
o5 = | a_0x+a_1y+a_2z a_3x+a_4y+a_5z a_6x+a_7y+a_8z |
1 3
o5 : Matrix R <--- R
|
i6 : l = {x,y,z}
o6 = {x, y, z}
o6 : List
|
i7 : MR = eliminationMatrix (l,M, Strategy => Macaulay)
o7 = {1} | a_0 a_3 a_6 |
{1} | a_1 a_4 a_7 |
{1} | a_2 a_5 a_8 |
3 3
o7 : Matrix R <--- R
|
If the strategy 's' is 'determinantal':
Compute the determinantal resultant of an (n,m)-matrix (n<m) of homogeneous polynomials over the projective space of dimension (m-r)(n-r), i.e. a condition on the parameters of these polynomials to have rank(M)<r+1.
i8 : R=QQ[a_0..a_5,b_0..b_5,x,y]
o8 = R
o8 : PolynomialRing
|
i9 : M:=matrix{{a_0*x+a_1*y,a_2*x+a_3*y,a_4*x+a_5*y},{b_0*x+b_1*y,b_2*x+b_3*y,b_4*x+b_5*y}}
o9 = | a_0x+a_1y a_2x+a_3y a_4x+a_5y |
| b_0x+b_1y b_2x+b_3y b_4x+b_5y |
2 3
o9 : Matrix R <--- R
|
i10 : eliminationMatrix(1,{x,y},M, Strategy => determinantal)
o10 = {2} | -a_2b_0+a_0b_2 -a_4b_0+a_0b_4
{2} | -a_3b_0-a_2b_1+a_1b_2+a_0b_3 -a_5b_0-a_4b_1+a_1b_4+a_0b_5
{2} | -a_3b_1+a_1b_3 -a_5b_1+a_1b_5
-----------------------------------------------------------------------
-a_4b_2+a_2b_4 |
-a_5b_2-a_4b_3+a_3b_4+a_2b_5 |
-a_5b_3+a_3b_5 |
3 3
o10 : Matrix R <--- R
|
If the strategy 's' is 'CM2Residual':
Suppose given a homogeneous ideal locally complete intersection Cohen-Macaulay of codimension 2,
J=(g1,..,gn), such that
I=(f1,..,fm) is included in J and (I:J) is a residual intersection. Let H be the matrix that I=J.H. Let R be the matrix of the first syzygies of J. This function computes an elimination matrix corresponding to the residual resultant over V(I) over V(J).
i11 : R = QQ[X,Y,Z,x,y,z]
o11 = R
o11 : PolynomialRing
|
i12 : F = matrix{{x*y^2,y^3,x*z^2,y^3+z^3}}
o12 = | xy2 y3 xz2 y3+z3 |
1 4
o12 : Matrix R <--- R
|
i13 : G = matrix{{y^2,z^2}}
o13 = | y2 z2 |
1 2
o13 : Matrix R <--- R
|
i14 : M = matrix{{1,0,0},{0,1,0},{0,0,1},{-X,-Y,-Z}}
o14 = | 1 0 0 |
| 0 1 0 |
| 0 0 1 |
| -X -Y -Z |
4 3
o14 : Matrix R <--- R
|
i15 : H = (F//G)*M
o15 = {2} | -Xy+x -Yy+y -Zy |
{2} | -Xz -Yz -Zz+x |
2 3
o15 : Matrix R <--- R
|
i16 : l = {x,y,z}
o16 = {x, y, z}
o16 : List
|
i17 : L=eliminationMatrix (l,G,H, Strategy => CM2Residual)
o17 = {3} | 0 0 0 0 0 0 1 0 0 0 0 0 |
{3} | 0 0 0 0 0 0 -X 1 0 -Y+1 0 0 |
{3} | 0 0 -Y 0 0 0 -Z 0 1 0 0 0 |
{3} | -1 0 0 0 0 0 0 -X 0 0 -Y+1 0 |
{3} | 0 0 X -Y 0 0 0 -Z -X -Z 0 -Y+1 |
{3} | 0 0 0 0 -Y -1 0 0 -Z 0 0 0 |
{3} | X Y-1 0 0 0 Z 0 0 0 0 0 0 |
{3} | 0 0 0 X 0 0 0 0 0 0 -Z 0 |
{3} | 0 0 0 0 X 0 0 0 0 0 0 -Z |
{3} | X Y 0 0 0 Z 0 0 0 0 0 0 |
10 12
o17 : Matrix R <--- R
|
i18 : maxCol L
o18 = {{3} | 0 0 0 0 0 0 1 0 0 0 |, {0, 1, 2, 3, 4, 5, 6, 7, 8,
{3} | 0 0 0 0 0 0 -X 1 0 -Y+1 |
{3} | 0 0 -Y 0 0 0 -Z 0 1 0 |
{3} | -1 0 0 0 0 0 0 -X 0 0 |
{3} | 0 0 X -Y 0 0 0 -Z -X -Z |
{3} | 0 0 0 0 -Y -1 0 0 -Z 0 |
{3} | X Y-1 0 0 0 Z 0 0 0 0 |
{3} | 0 0 0 X 0 0 0 0 0 0 |
{3} | 0 0 0 0 X 0 0 0 0 0 |
{3} | X Y 0 0 0 Z 0 0 0 0 |
-----------------------------------------------------------------------
9}}
o18 : List
|
If the strategy 's' is 'ciResidual':
This function basically computes the matrix of the first application in the resolution of (I:J) given in the article of Bruns, Kustin and Miller: 'The resolution of the generic residual intersection of a complete intersection', Journal of Algebra 128.
The first argument is a list of homogeneous polynomials
J=(g1,..,gm) forming a complete intersection with respect to the variables 'varList'. Given a system of homogeneous
I=(f1,..,fn) such that I is included in J and (I:J) is a residual intersection, one wants to to compute a sort of resultant of (I:J). The second argument is the matrix M such that I=J.M. The output is a generically (with respect to the other variables than 'varList') surjective matrix such that the determinant of a maximal minor is a multiple of the resultant of I on the closure of the complementary of V(J) in V(I). Such a minor can be obtain with
maxMinor.
i19 : R=QQ[a_0,a_1,a_2,a_3,a_4,b_0,b_1,b_2,b_3,b_4,c_0,c_1,c_2,c_3,c_4,x,y,z]
o19 = R
o19 : PolynomialRing
|
i20 : G=matrix{{z,x^2+y^2}}
o20 = | z x2+y2 |
1 2
o20 : Matrix R <--- R
|
i21 : H=matrix{{a_0*z+a_1*x+a_2*y,b_0*z+b_1*x+b_2*y,c_0*z+c_1*x+c_2*y},{a_3,b_3,c_3}}
o21 = | a_1x+a_2y+a_0z b_1x+b_2y+b_0z c_1x+c_2y+c_0z |
| a_3 b_3 c_3 |
2 3
o21 : Matrix R <--- R
|
i22 : L=eliminationMatrix ({x,y,z},G,H, Strategy => ciResidual)
o22 = {2} | a_3 b_3 c_3 -a_3b_1+a_1b_3 0 0
{2} | 0 0 0 -a_3b_2+a_2b_3 -a_3b_1+a_1b_3 0
{2} | a_1 b_1 c_1 -a_3b_0+a_0b_3 0 -a_3b_1+a_1b_3
{2} | a_3 b_3 c_3 0 -a_3b_2+a_2b_3 0
{2} | a_2 b_2 c_2 0 -a_3b_0+a_0b_3 -a_3b_2+a_2b_3
{2} | a_0 b_0 c_0 0 0 -a_3b_0+a_0b_3
-----------------------------------------------------------------------
-a_3c_1+a_1c_3 0 0 -b_3c_1+b_1c_3
-a_3c_2+a_2c_3 -a_3c_1+a_1c_3 0 -b_3c_2+b_2c_3
-a_3c_0+a_0c_3 0 -a_3c_1+a_1c_3 -b_3c_0+b_0c_3
0 -a_3c_2+a_2c_3 0 0
0 -a_3c_0+a_0c_3 -a_3c_2+a_2c_3 0
0 0 -a_3c_0+a_0c_3 0
-----------------------------------------------------------------------
0 0 |
-b_3c_1+b_1c_3 0 |
0 -b_3c_1+b_1c_3 |
-b_3c_2+b_2c_3 0 |
-b_3c_0+b_0c_3 -b_3c_2+b_2c_3 |
0 -b_3c_0+b_0c_3 |
6 12
o22 : Matrix R <--- R
|
If the strategy is 'byResolution':
This function computes the matrix of the first application in the resolution of (I:J) given by
resolutionin degree
regularityi23 : R=QQ[a_0,a_1,a_2,a_3,a_4,b_0,b_1,b_2,b_3,b_4,c_0,c_1,c_2,c_3,c_4,x,y,z]
o23 = R
o23 : PolynomialRing
|
i24 : G=matrix{{z,x^2+y^2}}
o24 = | z x2+y2 |
1 2
o24 : Matrix R <--- R
|
i25 : H=matrix{{a_0*z+a_1*x+a_2*y,b_0*z+b_1*x+b_2*y,c_0*z+c_1*x+c_2*y},{a_3,b_3,c_3}}
o25 = | a_1x+a_2y+a_0z b_1x+b_2y+b_0z c_1x+c_2y+c_0z |
| a_3 b_3 c_3 |
2 3
o25 : Matrix R <--- R
|
i26 : L=eliminationMatrix ({x,y,z},G,H, Strategy => byResolution)
o26 = {2} | a_3b_1-a_1b_3 0 0 a_3c_1-a_1c_3
{2} | a_3b_2-a_2b_3 a_3b_1-a_1b_3 0 a_3c_2-a_2c_3
{2} | a_3b_0-a_0b_3 0 a_3b_1-a_1b_3 a_3c_0-a_0c_3
{2} | 0 a_3b_2-a_2b_3 0 0
{2} | 0 a_3b_0-a_0b_3 a_3b_2-a_2b_3 0
{2} | 0 0 a_3b_0-a_0b_3 0
-----------------------------------------------------------------------
0 0 b_3c_1-b_1c_3 0 0
a_3c_1-a_1c_3 0 b_3c_2-b_2c_3 b_3c_1-b_1c_3 0
0 a_3c_1-a_1c_3 b_3c_0-b_0c_3 0 b_3c_1-b_1c_3
a_3c_2-a_2c_3 0 0 b_3c_2-b_2c_3 0
a_3c_0-a_0c_3 a_3c_2-a_2c_3 0 b_3c_0-b_0c_3 b_3c_2-b_2c_3
0 a_3c_0-a_0c_3 0 0 b_3c_0-b_0c_3
-----------------------------------------------------------------------
a_3 b_3 c_3 |
0 0 0 |
a_1 b_1 c_1 |
a_3 b_3 c_3 |
a_2 b_2 c_2 |
a_0 b_0 c_0 |
6 12
o26 : Matrix R <--- R
|