next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
eliminationMatrices :: bezoutianMatrix

bezoutianMatrix -- returns a matrix associated to generalized resultants

Synopsis

Description

Let R be a polynomial ring in two groups of variables X1,...,Xn-1 and a1,...,as. The variables a1,...,as are seen as parameters and the variables X1,...,Xn-1 are to be eliminated. Being given a row matrix f1,...,fn where each fi is a polynomial in X1,...,Xn-1 and a1,...,as, this function returns an elimination matrix that only depends on the parameters a1,...,as and whose maximal nonzero minor yields a multiple of the generalized resultant associated to f1,...,fn

i1 : R=QQ[a..i,x,y]

o1 = R

o1 : PolynomialRing
i2 : f1 = a*x+b*y+c

o2 = a*x + b*y + c

o2 : R
i3 : f2 = d*x+e*y+f

o3 = d*x + e*y + f

o3 : R
i4 : f3 = g*x+h*y+i

o4 = g*x + h*y + i

o4 : R
i5 : M = matrix{{f1,f2,f3}}

o5 = | ax+by+c dx+ey+f gx+hy+i |

             1       3
o5 : Matrix R  <--- R
i6 : l = {x,y}

o6 = {x, y}

o6 : List
i7 : MR = bezoutianMatrix (l,M)

o7 = | -ceg+bfg+cdh-afh-bdi+aei |

             1       1
o7 : Matrix R  <--- R

See also

Ways to use bezoutianMatrix :