next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Resultants :: degMap

degMap -- This function returns the matrix of coefficients of the morphism of free modules 'm' in the variables 'var'

Synopsis

Description

This functions must be thought in the context of Elimination Theory as an intermediate step in processing the morphisms of a chain complex. Given a morphism of a chain complex of free modules f: R^n->R^m (R a polynomial ring), one may be interested in computing the strand of the complex of a certain degree 'd' in a subset ('var') of the variables of R. The new expression of the morphism has two parts: a set of monomials in the variables 'var' and a set of coefficients. This function returns the matrix of coefficients of the morphism in the variables 'var'. (See 'degHomPolMap')

i1 : R=QQ[a,b,c,x,y] 

o1 = R

o1 : PolynomialRing
i2 : f1 = a*x^2+b*x*y+c*y^2 

        2              2
o2 = a*x  + b*x*y + c*y

o2 : R
i3 : f2 = 2*a*x+b*y 

o3 = 2a*x + b*y

o3 : R
i4 : M = matrix{{f1,f2}} 

o4 = | ax2+bxy+cy2 2ax+by |

             1       2
o4 : Matrix R  <--- R
i5 : l = {x,y} 

o5 = {x, y}

o5 : List
i6 : dHPM = degMap (M,{2,1},l,2)

o6 = 0

             1
o6 : Matrix R  <--- 0
i7 : dHPM = degMap (M,{2,1},l,3)

o7 = {1} | 2a |
     {1} | b  |

             2       1
o7 : Matrix R  <--- R
i8 : R=QQ[a,b,c,d,e,f,g,h,i,x,y,z] 

o8 = R

o8 : PolynomialRing
i9 : f1 = a*x+b*y+c*z 

o9 = a*x + b*y + c*z

o9 : R
i10 : f2 = d*x+e*y+f*z 

o10 = d*x + e*y + f*z

o10 : R
i11 : f3 = g*x+h*y+i*z 

o11 = g*x + h*y + i*z

o11 : R
i12 : M = matrix{{f1,f2,f3}} 

o12 = | ax+by+cz dx+ey+fz gx+hy+iz |

              1       3
o12 : Matrix R  <--- R
i13 : l = {x,y,z} 

o13 = {x, y, z}

o13 : List
i14 : dHPM = degMap (M,{1,1,1},l,1)

o14 = 0

              1
o14 : Matrix R  <--- 0
i15 : dHPM = degMap (M,{1,1,1},l,2)

o15 = {1} | a d g |
      {1} | b e h |
      {1} | c f i |

              3       3
o15 : Matrix R  <--- R

See also

Ways to use degMap :