This functions must be thought in the context of Elimination Theory as an intermediate step in processing the morphisms of a chain complex. Given a morphism of a chain complex of free modules f: R^n->R^m (R a polynomial ring), one may be interested in computing the strand of the complex of a certain degree 'd' in a subset ('var') of the variables of R. The new expression of the morphism has two parts: a set of monomials in the variables 'var' and a set of coefficients. This function returns the matrix of coefficients of the morphism in the variables 'var'. (See 'degHomPolMap')
i1 : R=QQ[a,b,c,x,y]
o1 = R
o1 : PolynomialRing
|
i2 : f1 = a*x^2+b*x*y+c*y^2
2 2
o2 = a*x + b*x*y + c*y
o2 : R
|
i3 : f2 = 2*a*x+b*y
o3 = 2a*x + b*y
o3 : R
|
i4 : M = matrix{{f1,f2}}
o4 = | ax2+bxy+cy2 2ax+by |
1 2
o4 : Matrix R <--- R
|
i5 : l = {x,y}
o5 = {x, y}
o5 : List
|
i6 : dHPM = degMap (M,{2,1},l,2)
o6 = 0
1
o6 : Matrix R <--- 0
|
i7 : dHPM = degMap (M,{2,1},l,3)
o7 = {1} | 2a |
{1} | b |
2 1
o7 : Matrix R <--- R
|
i8 : R=QQ[a,b,c,d,e,f,g,h,i,x,y,z]
o8 = R
o8 : PolynomialRing
|
i9 : f1 = a*x+b*y+c*z
o9 = a*x + b*y + c*z
o9 : R
|
i10 : f2 = d*x+e*y+f*z
o10 = d*x + e*y + f*z
o10 : R
|
i11 : f3 = g*x+h*y+i*z
o11 = g*x + h*y + i*z
o11 : R
|
i12 : M = matrix{{f1,f2,f3}}
o12 = | ax+by+cz dx+ey+fz gx+hy+iz |
1 3
o12 : Matrix R <--- R
|
i13 : l = {x,y,z}
o13 = {x, y, z}
o13 : List
|
i14 : dHPM = degMap (M,{1,1,1},l,1)
o14 = 0
1
o14 : Matrix R <--- 0
|
i15 : dHPM = degMap (M,{1,1,1},l,2)
o15 = {1} | a d g |
{1} | b e h |
{1} | c f i |
3 3
o15 : Matrix R <--- R
|