This function calculates the list with the determinants of some minors of the maps of a graded ChainComplex with respect to a subset of the variables of the polynomial ring in a fixed degree. Precisely, this list corresponds to the list with the determinant polynomials of the maps computed by 'minorsComplex'.
The input ChainComplex needs to be an exact complex of free modules over a polynomial ring. The polynomial ring must contain the list 'varList' as variables.
It is recommended not to defines rings as R=QQ[x,y][a,b,c] when the variables to eliminate are '{x,y}'. In this case, see 'flattenRing' for passing from R=QQ[x,y][a,b,c] to QQ[x,y,a,b,c].
i1 : R=QQ[a,b,c,x,y]
o1 = R
o1 : PolynomialRing
|
i2 : f1 = a*x^2+b*x*y+c*y^2
2 2
o2 = a*x + b*x*y + c*y
o2 : R
|
i3 : f2 = 2*a*x+b*y
o3 = 2a*x + b*y
o3 : R
|
i4 : M = matrix{{f1,f2}}
o4 = | ax2+bxy+cy2 2ax+by |
1 2
o4 : Matrix R <--- R
|
i5 : l = {x,y}
o5 = {x, y}
o5 : List
|
i6 : dHPM = listDetComplex (koszul M,l,2)
2 2
o6 = {- a*b + 4a c, 1}
o6 : List
|
i7 : dHPM = listDetComplex (koszul M,l,3)
2 2 2
o7 = {- a*b c + 4a c , c}
o7 : List
|
i8 : R=QQ[a,b,c,d,e,f,g,h,i,x,y,z]
o8 = R
o8 : PolynomialRing
|
i9 : f1 = a*x+b*y+c*z
o9 = a*x + b*y + c*z
o9 : R
|
i10 : f2 = d*x+e*y+f*z
o10 = d*x + e*y + f*z
o10 : R
|
i11 : f3 = g*x+h*y+i*z
o11 = g*x + h*y + i*z
o11 : R
|
i12 : M = matrix{{f1,f2,f3}}
o12 = | ax+by+cz dx+ey+fz gx+hy+iz |
1 3
o12 : Matrix R <--- R
|
i13 : l = {x,y,z}
o13 = {x, y, z}
o13 : List
|
i14 : dHPM = detComplex (koszul M,l,1)
o14 = - c*e*g + b*f*g + c*d*h - a*f*h - b*d*i + a*e*i
o14 : frac(R)
|
i15 : dHPM = detComplex (koszul M,l,2)
o15 = - c*e*g + b*f*g + c*d*h - a*f*h - b*d*i + a*e*i
o15 : frac(R)
|