The list 'nu' needs to be a 'good degree' for the first parameter '{f0,...,fn}' that can be verified by doing isGoodDegree(polinomialList,nu)
representationMatrix({f0,...,fn},nu) computes the right-most map of the Z-complex in degree nu. Its determinant vanishes on the implicit equation of the image of the map given by (f0:...:fn) in P^n
i1 : A=QQ[s,u,t,v,Degrees=>{{1,1,0},{1,1,0},{1,0,1},{1,0,1}}]; |
i2 : f0=s*t*u*v+t*u^2*v; f1=s*u*v^2; f2=u*t^2*s+u^2*t^2; f3=s^2*t*v+s*t*u*v; |
i6 : degreeImplicitEq ({f0,f1,f2,f3},{2,1,1}) o6 = 3 |