The list 'nu' needs to be a 'good degree' for the first parameter '{f0,...,fn}' that can be verified by doing isGoodDegree(polinomialList,nu)
implicitEq({f0,...,fn},nu) computes the determinant of the maximal minors of representationMatrix({f0,...,fn},nu). Equivalently, it computes the determinant of the Z-complex in degree 'nu'. This is:
implicitEq({f0,...,fn}, nu)=det((Z(f0,...,fn))_nu)
We also have that: degree(implicitEq({f0,...,fn}, nu))=degreeImplicitEq({f0,...,fn}, nu)
i1 : A=QQ[s,u,t,v,Degrees=>{{1,1,0},{1,1,0},{1,0,1},{1,0,1}}]; |
i2 : f0=s*t*u*v+t*u^2*v; f1=s*u*v^2; f2=u*t^2*s+u^2*t^2; f3=s^2*t*v+s*t*u*v; |
i6 : implicitEq({f0,f1,f2,f3},{2,1,1}) o6 = | X_0 0 X_0 0 X_1 | | -X_2 0 0 X_0 0 | | 0 X_0 -X_3 0 X_1 | | 0 -X_2 0 -X_3 -X_3 | 4 5 o6 : Matrix (QQ[X , X , X , X ]) <--- (QQ[X , X , X , X ]) 0 1 2 3 0 1 2 3 |