next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
BigradedImplicit :: implicitEq

implicitEq -- computes the gcd of the right-most map of the Z-complex in degree nu)

Synopsis

Description

The list 'nu' needs to be a 'good degree' for the first parameter '{f0,...,fn}' that can be verified by doing isGoodDegree(polinomialList,nu)

implicitEq({f0,...,fn},nu) computes the determinant of the maximal minors of representationMatrix({f0,...,fn},nu). Equivalently, it computes the determinant of the Z-complex in degree 'nu'. This is:

implicitEq({f0,...,fn}, nu)=det((Z(f0,...,fn))_nu)

We also have that: degree(implicitEq({f0,...,fn}, nu))=degreeImplicitEq({f0,...,fn}, nu)

i1 : A=QQ[s,u,t,v,Degrees=>{{1,1,0},{1,1,0},{1,0,1},{1,0,1}}];
i2 : f0=s*t*u*v+t*u^2*v; f1=s*u*v^2; f2=u*t^2*s+u^2*t^2; f3=s^2*t*v+s*t*u*v;
i6 : implicitEq({f0,f1,f2,f3},{2,1,1})

o6 = | X_0  0    X_0  0    X_1  |
     | -X_2 0    0    X_0  0    |
     | 0    X_0  -X_3 0    X_1  |
     | 0    -X_2 0    -X_3 -X_3 |

                                4                          5
o6 : Matrix (QQ[X , X , X , X ])  <--- (QQ[X , X , X , X ])
                 0   1   2   3              0   1   2   3

See also

Ways to use implicitEq :