Minicurso sobre Estructura y dinamica de redes de reacciones quimicas, Prof. G. Craciun
Consultas: alidick at dm.uba.ar
Notas 1 del curso en pdf ------- Notas 2 del curso en pdf
Del 19 al 31 de
mayo visitara el departamento de matematica (FCEN, UBA), Gheorghe
Craciun, que es assistant Professor en el Department of
Mathematics y en el Department of Biomolecular Chemistry, University
of Wisconsin-Madison, USA. Su area de trabajo es sobre metodos
matematicos y computacionales en biologia y medicina.
Craciun
dara un minicurso de 3 clases de dos horas en la semana del 19 al 23
de mayo, en el marco del subproyecto de Matematica y Biologia del
PAV 120/03.
Horarios y aulas (pueden correrse una hora):
Lunes 19 de mayo: 14 a 16 hs, Aula E 24, Pab. I
Martes 20 de mayo: 14 a 16 hs, Aula 11 o Aula de seminario de matematica, Pab. I
Jueves 22 de mayo:
14 a 16 hs, Aula E 24, Pab. I.
Titulo:
Estructura y dinamica de redes de reacciones
quimicas
General
Description:
Chemical reaction network models
give rise to polynomial dynamical systems that are usually high
dimensional, nonlinear, and have many unknown parameters. Due
to the presence of these unknown parameters (such as reaction
rate constants) direct numerical simulation of the chemical dynamics
is practically impossible. On the other hand, we will show that
important properties of these systems are determined only by
the network structure, and do not depend on the unknown
parameters. Also, we will show how some of these results can
be generalized to systems of polynomial equations that are not
necessarily derived from chemical kinetics. In particular, we
will point out connections with classical problems in
algebraic geometry, such as the real Jacobian
conjecture.
Program:
1.
Introduction to the deficiency theory of Feinberg, Horn, and
Jackson.
2. The Species-Reaction graph and multiple equilibria
for chemical reaction network dynamics.
3. Weakly
reversible reaction networks and the global
attractor conjecture.
References:
[1]
Feinberg, M. Lectures on chemical reaction networks. Notes
of
lectures given at the Mathematics Research Center of the
University
of Wisconsin in 1979, available
at
http://www.che.eng.ohio-state.edu/~FEINBERG/LecturesOnReactionNetworks
[2]
Gunawardena, J. Chemical reaction network theory for
in-silico
biologists. Technical Report, 2003, available
at
http://vcp.med.harvard.edu/papers/crnt.pdf
[3]
Craciun G, Tang Y, and Feinberg, M. Understanding bistability
in
complex enzyme-driven reaction networks, Proc. Natl.
Acad. Sci., 103:23,
8697-8702, 2006.
[4]
Craciun G, and Feinberg, M. Multiple Equilibria in Complex
Chemical
Reaction Networks: II. The Species-Reactions Graph,
SIAM Journal on
Applied Mathematics 66:4, 1321-1338,
2006.
[5] Craciun G, and Feinberg, M. Multiple
Equilibria in Complex Chemical
Reaction Networks: I. The
Injectivity Property, SIAM Journal on Applied
Mathematics
65:5, 1526-1546, 2005.
[6] Craciun G, Dickenstein A,
Shiu A, Sturmfels B. Toric dynamical
systems, 2007,
available at
http://arxiv.org/abs/0708.3431
______________________________________________