Global Attractors in Biochemical Dynamics

Gheorghe Craciun
Department of Mathematics and
Department of Biomolecular Chemistry
University of Wisconsin-Madison
Example

\[
\begin{aligned}
A & \iff 2B \\
A + C & \iff D \\
& \iff B + E
\end{aligned}
\]

\[
\begin{align*}
dc_A/\text{dt} &= -(\kappa_{A\rightarrow 2B})c_A + (\kappa_{2B\rightarrow A})c_B^2 - (\kappa_{A+C\rightarrow D})c_Ac_C + (\kappa_{D\rightarrow A+C})c_D + (\kappa_{B+E\rightarrow A+C})c_{BCE} \\
dc_B/\text{dt} &= 2(\kappa_{A\rightarrow 2B})c_A - 2(\kappa_{2B\rightarrow A})c_B^2 + (\kappa_{D\rightarrow B+E})c_D - (\kappa_{B+E\rightarrow A+C})c_{BCE} \\
dc_C/\text{dt} &= -(\kappa_{A+C\rightarrow D})c_Ac_C + (\kappa_{D\rightarrow A+C})c_D + (\kappa_{B+E\rightarrow A+C})c_{BCE} \\
dc_D/\text{dt} &= (\kappa_{A+C\rightarrow D})c_Ac_C - (\kappa_{D\rightarrow A+C})c_D - (\kappa_{D\rightarrow B+E})c_D \\
dc_E/\text{dt} &= (\kappa_{D\rightarrow B+E})c_D - (\kappa_{B+E\rightarrow A+C})c_{BCE}.
\end{align*}
\]
The Lorenz equations

\[
\begin{align*}
\frac{dx}{dt} &= ay - ax \\
\frac{dy}{dt} &= cx - y - xz \\
\frac{dz}{dt} &= xy - bz
\end{align*}
\]
Example

\[
\begin{align*}
dc_A/\text{dt} &= -(\kappa_{A\rightarrow 2B})c_A + (\kappa_{2B\rightarrow A})c_B^2 - (\kappa_{A+C\rightarrow D})c_A c_C + (\kappa_{D\rightarrow A+C})c_D + (\kappa_{B+E\rightarrow A+C})c_B c_E \\
dc_B/\text{dt} &= 2(\kappa_{A\rightarrow 2B})c_A - 2(\kappa_{2B\rightarrow A})c_B^2 + (\kappa_{D\rightarrow B+E})c_D - (\kappa_{B+E\rightarrow A+C})c_B c_E \\
dc_C/\text{dt} &= -(\kappa_{A+C\rightarrow D})c_A c_C + (\kappa_{D\rightarrow A+C})c_D + (\kappa_{B+E\rightarrow A+C})c_B c_E \\
dc_D/\text{dt} &= (\kappa_{A+C\rightarrow D})c_A c_C - (\kappa_{D\rightarrow A+C})c_D - (\kappa_{D\rightarrow B+E})c_D \\
dc_E/\text{dt} &= (\kappa_{D\rightarrow B+E})c_D - (\kappa_{B+E\rightarrow A+C})c_B c_E.
\end{align*}
\]
Example

\[
A \rightleftharpoons 2B \\
A + C \rightleftharpoons D \\
B + E
\]

\[
dc_A/\text{dt} = -(\kappa_{A\to 2B})c_A + (\kappa_{2B\to A})c_B^2 - (\kappa_{A+C\to D})c_A c_C + (\kappa_{D\to A+C})c_D + (\kappa_{B+E\to A+C})c_B c_E \\
dc_B/\text{dt} = 2(\kappa_{A\to 2B})c_A - 2(\kappa_{2B\to A})c_B^2 + (\kappa_{D\to B+E})c_D - (\kappa_{B+E\to A+C})c_B c_E \\
dc_C/\text{dt} = -(\kappa_{A+C\to D})c_A c_C + (\kappa_{D\to A+C})c_D + (\kappa_{B+E\to A+C})c_B c_E \\
dc_D/\text{dt} = (\kappa_{A+C\to D})c_A c_C - (\kappa_{D\to A+C})c_D - (\kappa_{D\to B+E})c_D \\
dc_E/\text{dt} = (\kappa_{D\to B+E})c_D - (\kappa_{B+E\to A+C})c_B c_E.
\]

Definition 2.1 A chemical reaction network is a quadruple \(\{S, C, R, \kappa\}\) where \(S\) is a finite set of species; \(C\) is a finite set of multisets of species, called complexes; \(R\) is a relation on \(C\), denoted \(y \rightarrow y'\) for \(y, y' \in C\), which represents a reaction converting \(y\) to \(y'\); and \(\kappa : R \rightarrow \mathbb{P}\) associates a positive rate constant to each reaction.
Example

\[A \leftrightarrow 2B \]
\[A + C \leftrightarrow D \]
\[B + E \]

\[
\begin{align*}
\frac{dc_A}{dt} &= -\left(\kappa_{A \to 2B}\right)c_A + \left(\kappa_{2B \to A}\right)c_B^2 - \left(\kappa_{A+C \to D}\right)c_{AC}c_C + \left(\kappa_{D \to A+C}\right)c_D + \left(\kappa_{B+E \to A+C}\right)c_{BC}c_E \\
\frac{dc_B}{dt} &= 2\left(\kappa_{A \to 2B}\right)c_A - 2\left(\kappa_{2B \to A}\right)c_B^2 + \left(\kappa_{D \to B+E}\right)c_D - \left(\kappa_{B+E \to A+C}\right)c_{BC}c_E \\
\frac{dc_C}{dt} &= -\left(\kappa_{A+C \to D}\right)c_{AC}c_C + \left(\kappa_{D \to A+C}\right)c_D + \left(\kappa_{B+E \to A+C}\right)c_{BC}c_E \\
\frac{dc_D}{dt} &= \left(\kappa_{A+C \to D}\right)c_{AC}c_C - \left(\kappa_{D \to A+C}\right)c_D - \left(\kappa_{D \to B+E}\right)c_D \\
\frac{dc_E}{dt} &= \left(\kappa_{D \to B+E}\right)c_D - \left(\kappa_{B+E \to A+C}\right)c_{BC}c_E .
\end{align*}
\]

Definition 2.1 A chemical reaction network is a quadruple \(\{S, C, \mathcal{R}, \kappa\} \) where \(S \) is a finite set of species; \(C \) is a finite set of multisets of species, called complexes; \(\mathcal{R} \) is a relation on \(C \), denoted \(y \rightarrow y' \) for \(y, y' \in C \), which represents a reaction converting \(y \) to \(y' \); and \(\kappa : \mathcal{R} \to \mathbb{P} \) associates a positive rate constant to each reaction.

Notation: \[c^y = \prod_{s \in S} (c_s)^{y_s} \]
Vector equations for mass action kinetics

Definition 2.1 A chemical reaction network is a quadruple \(\{S, \mathcal{C}, \mathcal{R}, \kappa\} \) where \(S \) is a finite set of species; \(\mathcal{C} \) is a finite set of multisets of species, called complexes; \(\mathcal{R} \) is a relation on \(\mathcal{C} \), denoted \(y \rightarrow y' \) for \(y, y' \in \mathcal{C} \), which represents a reaction converting \(y \) to \(y' \); and \(\kappa : \mathcal{R} \rightarrow \mathbb{P} \) associates a positive rate constant to each reaction.

Notation:
\[
c^y = \prod_{s \in S} (c_s)^{y_s}
\]

\(\mathcal{R} = \{ A \rightarrow 2B, 2B \rightarrow A, A + C \rightarrow D, D \rightarrow A + C, D \rightarrow B + E, B + E \rightarrow A + C \} \)
Vector equations for mass action kinetics

Definition 2.1 A chemical reaction network is a quadruple \(\{S, \mathcal{C}, \mathcal{R}, \kappa\} \) where \(S \) is a finite set of species; \(\mathcal{C} \) is a finite set of multisets of species, called complexes; \(\mathcal{R} \) is a relation on \(\mathcal{C} \), denoted \(y \to y' \) for \(y, y' \in \mathcal{C} \), which represents a reaction converting \(y \) to \(y' \); and \(\kappa : \mathcal{R} \to \mathbb{R} \) associates a positive rate constant to each reaction.

Notation: \[c^y = \prod_{s \in S} (c_s)^{y_s} \]

\[\mathcal{R} = \{A \to 2B, 2B \to A, A + C \to D, D \to A + C, D \to B + E, B + E \to A + C'\} \]

Vector representation of differential equations:

\[\frac{dc}{dt} = \sum_{y \to y' \in \mathcal{R}} (\kappa_{y \to y'}) c^y (y' - y) \]
Vector equations for mass action kinetics

A ⇄ 2B
A + C ⇄ D
B + E

Definition 2.1 A chemical reaction network is a quadruple \(\{S, C, R, \kappa\} \) where \(S \) is a finite set of species; \(C \) is a finite set of multisets of species, called complexes; \(R \) is a relation on \(C \), denoted \(y \rightarrow y' \) for \(y, y' \in C \), which represents a reaction converting \(y \) to \(y' \); and \(\kappa : R \rightarrow \mathbb{P} \) associates a positive rate constant to each reaction.

Notation: \[
c^y = \prod_{s \in S} (c_s)^{y_s}
\]

\(R = \{A \rightarrow 2B, 2B \rightarrow A, A + C \rightarrow D, D \rightarrow A + C, D \rightarrow B + E, B + E \rightarrow A + C\} \)

Vector representation of differential equations:
\[
\frac{dc}{dt} = \sum_{y \rightarrow y' \in R} (\kappa_{y \rightarrow y'}) c^y (y' - y)
\]

\[
\begin{align*}
dc_A/\text{dt} &= -(\kappa_{A \rightarrow 2B})c_A + (\kappa_{2B \rightarrow A})c_B^2 - (\kappa_{A+C \rightarrow D})c_A c_C + (\kappa_{D \rightarrow A+C})c_D + (\kappa_{B+E \rightarrow A+C})c_B c_E \\
dc_B/\text{dt} &= 2(\kappa_{A \rightarrow 2B})c_A - 2(\kappa_{2B \rightarrow A})c_B^2 + (\kappa_{D \rightarrow B+E})c_D - (\kappa_{B+E \rightarrow A+C})c_B c_E \\
dc_C/\text{dt} &= -(\kappa_{A+C \rightarrow D})c_A c_C + (\kappa_{D \rightarrow A+C})c_D + (\kappa_{B+E \rightarrow A+C})c_B c_E \\
dc_D/\text{dt} &= (\kappa_{A+C \rightarrow D})c_A c_C - (\kappa_{D \rightarrow A+C})c_D - (\kappa_{D \rightarrow B+E})c_D \\
dc_E/\text{dt} &= (\kappa_{D \rightarrow B+E})c_D - (\kappa_{B+E \rightarrow A+C})c_B c_E.
\end{align*}
\]
Stoichiometric Subspace

Definition 2.2 The stoichiometric subspace, S, of a chemical reaction network is the vector subspace of \mathbb{R}^S defined by $S = \text{span}\{y' - y \mid y \to y' \in \mathcal{R}\}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$A + C \leftrightarrow D$</td>
<td>Since $B + E - A - C = (B + E - D) - (A + C - D)$, this simplifies further to give $S = \text{span}{2B - A, A + C - D, B + E - D}$.</td>
</tr>
<tr>
<td>\downarrow</td>
<td></td>
</tr>
<tr>
<td>$B + E$</td>
<td></td>
</tr>
</tbody>
</table>
Decomposition of the reaction rate function

\[\frac{dc}{dt} = \sum_{y \rightarrow y' \in \mathcal{R}} (\kappa_{y \rightarrow y'}) c^y (y' - y) \]

\[dc/dt = f(c) \quad f : \mathbb{R}^S \rightarrow \mathbb{R}^S \]
Decomposition of the reaction rate function

\[
\frac{dc}{dt} = \sum_{y \to y' \in \mathcal{R}} (\kappa_{y \to y'}) c^y (y' - y)
\]

\[
dc/dt = f(c) \quad f : \mathbb{R}^S \to \mathbb{R}^S
\]

\[
\omega_U(y) = \begin{cases}
1 & \text{if } y \in U \\
0 & \text{otherwise}
\end{cases} \quad Y : \mathbb{R}^C \to \mathbb{R}^S \quad Y(\omega_y) = y
\]
Decomposition of the reaction rate function

\[\frac{dc}{dt} = \sum_{y \rightarrow y' \in \mathcal{R}} (\kappa_{y \rightarrow y'}) c^y(y' - y) \]

\[dc/dt = f(c) \quad f : \mathbb{R}^S \rightarrow \mathbb{R}^S \]

\[\omega_U(y) = \begin{cases} 1 & \text{if } y \in U \\ 0 & \text{otherwise} \end{cases} \]

\[Y : \mathbb{R}^C \rightarrow \mathbb{R}^S \quad Y(\omega_y) = y \]

For a given kinetics, \(\kappa : \mathcal{R} \rightarrow \mathbb{P} \), define the map \(A_\kappa : \mathbb{R}^C \rightarrow \mathbb{R}^C \) by

\[A_\kappa(x) = \sum_{y \rightarrow y' \in \mathcal{R}} (\kappa_{y \rightarrow y'}) x_y (\omega_{y'} - \omega_y) . \]

\[\Psi(c) = \sum_{y \in \mathcal{C}} c^y \omega_y \]
Decomposition of the reaction rate function

\[
\frac{dc}{dt} = \sum_{y \rightarrow y' \in \mathcal{R}} (\kappa_{y \rightarrow y'}) c^y (y' - y)
\]

\[
dc/dt = f(c) \quad f : \mathbb{R}^S \rightarrow \mathbb{R}^S
\]

\[
\omega_U(y) = \begin{cases}
1 & \text{if } y \in U \\
0 & \text{otherwise}
\end{cases}
\]

For a given kinetics, \(\kappa : \mathcal{R} \rightarrow \mathbb{P} \), define the map \(A_\kappa \)

\[
A_\kappa(x) = \sum_{y \rightarrow y' \in \mathcal{R}} (\kappa_{y \rightarrow y'}) x_y (\omega_{y'} - \omega_y)
\]

\[
\Psi(c) = \sum_{y \in \mathcal{C}} c^y \omega_y
\]
Deficiency of a reaction network

\[\frac{dc}{dt} = f(c) \]

Definition 3.1 A **fixed point** of a chemical reaction network is a state \(c \in \mathbb{P}^S \) for which \(\frac{dc}{dt} = 0 \).

Definition 3.2 The **deficiency** of a chemical reaction network is \(\dim(\ker Y \cap \text{Im} A) \)

A simple estimate for the deficiency, \(\delta \), of a network can be obtained as follows. Let \(T = \text{span}\{\omega_{y'} - \omega_y \mid y \rightarrow y'\} \). The map \(Y \) is evidently a surjection from \(T \) to the stoichiometric subspace, \(S \). From the definition of \(A \) in (10) we see that \(\text{Im} A \subseteq T \). It follows that

\[\ker Y \cap \text{Im} A \subseteq \ker Y|_T \quad (13) \]

and so \(\delta \leq \dim \ker Y|_T \). Let \(s = \dim S \). Since \(\dim T = \dim \ker Y|_T + \dim \text{Im} Y|_T \) we see that \(\delta \leq \dim T - s \).
Definition If \(y, y' \in \mathcal{C} \) then \(y \) is said to be linked to \(y' \), denoted \(y \sim y' \), if either \(y = y' \) or there are \(y_1, \ldots, y_m \in \mathcal{C} \) such that \(y = y_1 \leftrightarrow y_2 \leftrightarrow \cdots \leftrightarrow y_m = y' \).

The equivalence classes of complexes under \(\sim \) are termed linkage classes.

Let \(L_1, \ldots, L_l \subseteq \mathcal{C} \) be the linkage classes.

Lemma The following statements hold for any chemical reaction network:

\[
\text{span}\{\omega_{y'} - \omega_y \mid y \to y'\} = \text{span}\{\omega_{y'} - \omega_y \mid y \sim y'\},
\]

\[
\text{span}\{\omega_{y'} - \omega_y \mid y \to y'\}^\perp = \text{span}\{\omega_{L_1}, \ldots, \omega_{L_l}\},
\]

\[
\dim \text{span}\{\omega_{y'} - \omega_y \mid y \to y'\} = n - l.
\]

Proposition The deficiency, \(\delta \), of any chemical reaction network satisfies \(0 \leq \delta \leq n - l - s \), where \(n \) is the number of complexes, \(l \) is the number of linkage classes and \(s \) is the dimension of the stoichiometric subspace.

\[
\begin{align*}
A & \iff 2B \\
A + C & \iff D \\
B + E & \iff \\
\end{align*}
\]

Example (1) has \(n = 5 \), \(l = 2 \) and \(s = 3 \) so that \(\delta = 0 \).
Remark: If $x \in \ker A_\kappa$ then $|x| \in \ker A_\kappa$.

Remark: If $x \in \ker A_\kappa$ and $x_j = 0$ then $x_i = 0$ whenever $i \to j$.
Theorem (The Perron-Frobenius theorem) Let M be any irreducible nonnegative $m \times m$ matrix. Any two eigenvectors in \mathbb{P}^m have the same eigenvalue, which is the spectral radius of M, and are the same up to a positive scalar multiple. In particular, the eigenspace for the spectral radius is 1 dimensional and can always be represented as $\text{span}(u)$, with $u \in \mathbb{P}^m$.

Proposition Suppose that $x \in \ker A_k$. If L_i is not terminal then $x(i) = 0$, while if L_i is terminal then $x(i) = \lambda_i u_i$, for some $\lambda_i \in \mathbb{R}$.

Theorem (description of the kernel of A_k) Let t be the number of terminal strong linkage classes in a chemical reaction network and suppose that these classes are $T_1, \cdots, T_t \subseteq \mathcal{C}$, in any order. The following statements hold.

1. There exist $\chi_i \in \overline{\mathbb{P}^C}$ such that $\text{supp}(\chi_i) = T_i$ for $1 \leq i \leq t$.
2. $\ker A_\kappa = \text{span}\{\chi_1, \cdots, \chi_t\}$ and these are linearly independent.
3. $\dim \ker A_\kappa = t$.

Proposition If each linkage class has precisely one terminal strong linkage class then the deficiency, δ, of the network is given by $\delta = n - l - s$.
Weakly reversible networks

Definition A chemical reaction network is said to be weakly reversible if it satisfies any of the conclusions of the following Lemma.

Lemma For any chemical reaction network, the following statements are equivalent, where $i, j \in C$.

1. Each complex lies in a terminal strong linkage class.
2. Every strong linkage class is terminal.
3. The terminal strong linkage classes coincide with the linkage classes.
4. If $[i] \preceq [j]$ then $[i] = [j]$.
5. If $i \Rightarrow j$ then $j \Rightarrow i$.
Proposition 6.1 In any chemical reaction network, if $A_\kappa \Psi(c) = 0$ then the network is weakly reversible.

Proposition 6.2 ([11, Proposition 5.3 (ii) and (iii)]) In any chemical reaction network let $Z = \{ c \in \mathbb{P}^\Sigma | A_\kappa \Psi(c) = 0 \}$. Suppose that $Z \neq \emptyset$. For any $c^* \in Z$, $Z = \{ c \in \mathbb{P}^\Sigma | \ln c - \ln c^* \in S^\perp \}$.

Definition 6.2 A (positive) stoichiometric compatibility class of the network (8) is a nonempty set of the form $\mathbb{P}^\Sigma \cap (S + c)$ for some $c \in \mathbb{P}^\Sigma$.

Proposition 6.4 In any chemical reaction network let $Z = \{ c \in \mathbb{P}^\Sigma | A_\kappa \Psi(c) = 0 \}$. Then, either $Z = \emptyset$ or $\ln Z$ is a coset of S^\perp and Z meets each stoichiometric compatibility class in one and only one point.

Proposition 6.5 If a chemical reaction network has a fixed point $c^* \in \mathbb{P}^\Sigma$ for which $A_\kappa \Psi(c^*) = 0$ then, for any $c \in \mathbb{P}^\Sigma$, $\langle f(c), \ln c - \ln c^* \rangle \leq 0$, with equality if, and only if, $\ln c - \ln c^* \in S^\perp$.

Theorem 6.2 ([11, Proposition 5.3 (iii) and (iv)]) In any chemical reaction network, if there exists some fixed point $c^* \in \mathbb{P}^\Sigma$ for which $A_\kappa \Psi(c^*) = 0$ then any fixed point, $c \in \mathbb{P}^\Sigma$ with $f(c) = 0$, must satisfy the same condition $A_\kappa \Psi(c) = 0$.

Definition 6.3 A function \(h : \mathbb{R}^m \to \mathbb{R} \) is a Lyapunov function for the fixed point \(c^* \) if

1. \(h(c) \geq 0 \), for all \(c \in \mathbb{R}^m \), with equality if, and only if, \(c = c^* \)

2. \(dh(c(t))/dt \leq 0 \) along any trajectory, \(t \to c(t) \).

If, furthermore, \(dh(c(t))/dt = 0 \) if, and only if, \(c(t) = c^* \), then the Lyapunov function is strict.

Theorem 6.3 (Lyapunov’s Theorem, [20, Chapter 9, §3, Theorem 1]) If \(h \) is a Lyapunov function then \(c^* \) is stable. That is, given any neighbourhood \(U \ni c^* \), there exists some neighbourhood \(U_1 \ni c^* \) in \(U \) such that any trajectory \(c(t) \) with \(c(0) \in U_1 \) satisfies \(c(t) \in U \) for all \(t \geq 0 \). If, furthermore, the Lyapunov function is strict then \(c^* \) is asymptotically stable. That is, \(U_1 \) can always be chosen so that \(u(t) \to c^* \) as \(t \to \infty \).

Theorem 6.4 In any chemical reaction network, suppose there exists a fixed point \(c^* \in \mathcal{P}^S \) for which \(A_K \Psi(c^*) = 0 \). The following statements hold.

1. The network is weakly reversible.

2. Every fixed point, \(c \in \mathcal{P}^S \) with \(f(c) = 0 \), satisfies \(A_K \Psi(c) = 0 \).

3. If \(Z \) is the set of all fixed points, \(Z = \{c \in \mathcal{P}^S | f(c) = 0\} \), then \(\ln Z \) is a coset of \(S^\perp \).

4. There is one, and only one, fixed point in each stoichiometric compatibility class.

5. Each fixed point has a strict Lyapunov function defined on its stoichiometric compatibility class and is asymptotically stable relative to that class.
Existence of positive fixed points

Lemma 7.1 \(\ln(\ker A_\kappa)^+ \) is a coset of \(\text{span}\{\omega_{T_1}, \cdots, \omega_{T_t}\} \). Furthermore, either \(\ln(\ker A_\kappa)^+ \cap U = \emptyset \) or \(\ln(\ker A_\kappa)^+ \subseteq U \). The latter case holds if, and only if, there exists \(c \in \mathbb{P}^C \) such that \(A_\kappa \Psi(c) = 0 \).

Theorem 7.1 If a chemical reaction network has deficiency 0 then it has a fixed point \(c \in \mathbb{P}^S \) for which \(A_\kappa \Psi(c) = 0 \) if, and only if, it is weakly reversible.