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Bistability and
Biochemical Switching

* J. Bailey, Complex biology with no
parameters, Nature, 2001:

.does a cell generally operate at one
steady state, or can a cell switch under
certain circumstances from one steady
state to another?



Bistability and hysteresis 1in the embrionic cell
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Given a reaction network, how
can we decide if it has the

capacity for bistability ?



Some Stmple Enzyme Networks and their Capacity for Bistability

Capacity for

Network Remark Bistability

Elementary enzyme catalysis
E+S2ES>E+P underlying Michaelis-Menten
kinetics.

S—>P

Elementary enzyme catalysis with
competitive mhibition

S—>P

E+S2ES-E+P
E+1 2 EI

E+S2ES->E+P Elementary enzyme catalysis with
ES+1 2 ESI uncompetitive mhibition

S—-P

E+S2ES-E+P
E+I2 EI
ES+12 ESI2EI+S

Elementary enzyme catalysis with
mixed inhibition

S—-P




Network

E + S1 2 ESI
S2 + ES1 2 ES1S2 - E +P

E + S1 2 ESI
E +S2 2 ES2
S2 + ES1 2 ES1S2 2 S1 + ES2
|
E +

Remark

Two-substrate enzyme
catalysis with ordered
substrate-binding

S1 +S2 - P

Two-substrate enzyme
catalysis with unordered
substrate-binding

S1+8S2—- P

Capacity for
Bistability
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Vocabulary:

A+Bz2C
A+D->E 2 2F



Vocabulary:

A+Bz2C
A+D->E 2 2F

Species: A,B,C,D,E, F
Reactionss A+B2C,A+D->E E 2 2F
Complexes: A+B, C, A+D, E, 2F



The Species-Reaction Graph
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Another Species-
Reaction Graph

E4+8 & ES+=E+1 D

E+9S
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Theorem: Consider a reaction network for
which the species-reaction graph has no
cycles. Then, regardless of parameter
values, the corresponding system of mass-
action differential equations does not
have the capacity for bistability.
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Important remark:
Enzyme catalysis generates cycles 1n the
species-reaction graph.

E+S 2 ES->-E+P
E+S 2 ES
}

S
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More vocabulary: classifying cycle

o-cycles, e-cycles, and s-cycles



-"airs in the Species-Reaction Graph
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o-Cycles and e-Cycles

An o-cycle 1s a cycle containing an odd

Aampeey olfe cipad reycle containing an even
number of c-pairs. F




Theorem: Consider a reaction network for
which each cycle in the species-reaction
graph 1s an o-cycle.

Then, regardless of parameter values, the
corresponding system of mass-action
differential equations does not have the
capacity for bistability.
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Ix (1/2) x 1x (1/1) x 2 x (1/1) x 1 x (1/1) =1




Ix (1/2) x 1x (1/1) x 2 x (1/1) x 1 x (1/1) =1

Remark: If every stoichiometric coefficient in a network
is “1”, then every cycle in the corresponding Species-Reaction Graph
is an s-cycle.




Two cycles split a c-pair if their combined

arcs contain the
c-palir and if at least one of the cycles
contains only one arc of the_c-pair.

F

Cycles 1 and 2 split the C+E2D

‘ed c-pair l C+E




Theorem: Consider a reaction network for
which the species-reaction graph has the
following properties:

(1) Each cycle 1is an o-cycle or an s-
cycle (or both).

(11) No c-pair is split by two e-cycles.

Then, regardless of parameter values, the
corresponding system of mass-action
differential equations does not have the
capacity for bistability.




Some Stmple Enzyme Networks and their Capacity for Bistability

Capacity for
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Elementary Enzyme Catalysis
with Competitive Inhibition

— EI EI




Elementary Enzyme Catalysis
with Competitive Inhibition

E "Ps-cycléES
ES /

Bistability impossible,
regardless of parameter value




Elementary Enzyme Catalysis
with Uncompetitive Inhibition

ES +1

—ESI




E+Ss 2 ES~=E+P

Elementary Enzyme Catalysis
with Uncompetitive Inhibition

ES+1 2 ESI

I
ES +1
E+P_ - —ESI
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Bistability impossible,
regardless of parameter value




Elementary Enzyme Catalysis
with Mixed Inhibition

El+3&




Theorem: Consider a reaction network for
which the species-reaction graph has the
following properties:

(1) Each cycle 1is an o-cycle or an s-
cycle (or both).

(11) No c-pair is split by two e-cycles.

-

Then, regardless of parameter values, the
corresponding system of mass-action
differential equations does not have the
capacity for bistability.
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Elementary Enzyme Catalysis
with Mixed Inhibition
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Network
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Remark
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substrate-binding
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Two-Substrate Enzyme Catalysis S1+E 2 ESI
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Two-Substrate Enzyme Catalysis S1+E 2 ESI

with Ordered Binding S2 +ES1 2ES1S2 > E+P
No bistability,
m
SZ S2 + ES1 2 ES1S2

ES1S82

S2 +ESI ES1S?2
S1
\ SI+E
B S| - E 2 ES|
f si+E Y,
¥ \ E+P




S1+E 2 ESI
82+E 2 ES2
- S2 + ES1 2 ES1S2 2 S1 +ES2
PHE oo % !
P+E

2 -
52 - s ES| sz\ﬁ
I ES) -
s2+est ES1S2
|
%\ S1+E
| : 51+ ES2 JfESlSZ
- SEEEEE S ES ,

S1+E /

- Two-substrate enzyme
catalysis with
unordered binding

s1

S1+ES2




Theorem: Consider a reaction network for
which the species-reaction graph has the
following properties:

(1) Each cycle 1is an o-cycle or an s-
cycle (or both).

(11) No c-pair is split by two e-cycles.

-

Then, regardless of parameter values, the
corresponding system of mass-action
differential equations does not have the
capacity for bistability.
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Mass-action kinetics
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Mass-action kinetics
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Mass-action kinetics
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Invariant subspaces
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Invariant subspaces

4 C5




Invariant subspaces




Invariant subspaces
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Deficiency theory (Feinberg, Horn,
and Jackson)

Definition. The deficiency of a reaction network is
n-I[-s, where
n = the number of complexes

[ = the number of linkage classes

s = the dimension of the stoichiometric subspace

dca /dt —(ka—2p)ca + (K2p—a)ch — (Karc—p)cacc + (kp—a+c)ep + (KB+E—A+C)CBCE
dep /dl 2(ka—2B)ca — 2(k2B—a)ch + (kD—B+E)CcD — (KB+E—A+C)CBCE

dee /dt (kFat+c—p)cace + (Ep—at+c)ep + (KB+E—A+C )CBCE

dep /dt - (Katc—p)cace — (Ep—arc)ep — (KD—B1E)CD

dcp/dt = (Kkp—B+E)cD — (KB4+E—A4+C)CBCE -

Example: S =span{2B—- A, A+C-D,B+E-D,B+E—-A-C}.
Since B+ E—-A-C=(B+F—-D)—(A+ C — D), this simplifies further to give

S =span{2B — A, A+ C — D, B+ E — D)




Deficiency zero theory (Feinberg, Horn,
and Jackson)

Theorem. If a reaction network has deficiency zero, then there exists a

unique positive equilibrium in each stoichiometric subspace, and this

equilibrium is complex balanced.
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Deficiency zero theory (Feinberg, Horn,
and Jackson)

Theorem. If a reaction network has deficiency zero, then there exists a
unique positive equilibrium in each stoichiometric subspace, and this

equilibrium is complex balanced.

Theorem. If a reaction network has complex balanced equilibrium, then,

for each stoichiometric subspace, there exists a strict Lyapunov function

with a minimum at that equilibrium.




Complex balanced reaction networks

Deficiency zero reaction networks



Lyapunov function and boundary
equilibria
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Lyapunov function and boundary
equilibria
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Global Attractor Conjecture

Conjecture. If a reaction network has a complex balanced equilibrium,

then any trajectory with positive initial condition converges to that

equilibrium.




Global Attractor Conjecture

Conjecture. If a reaction network has a complex balanced equilibrium,
then any trajectory with positive initial condition converges to that

equilibrium.

How do we prove this?

No boundary equilibria.
(Angeli, De Leenheer, Sontag)

Even if there exist boundary

equilibria, they are “repelling”.




Global Attractor Conjecture

Conjecture. If a reaction network has a complex balanced equilibrium,
then any trajectory with positive initial condition converges to that

equilibrium.

Theorem 1. If a reaction network has a

complex balanced equilibrium,
then no trajectory with positive
initial condition can converge

to a vertex of its stoichiometric

compatibility class.




Global Attractor Conjecture

Conjecture. If a reaction network has a complex balanced equilibrium,
then any trajectory with positive initial condition converges to that

equilibrium.

Theorem 2. If a reaction network has a

detailed balanced equilibrium,
then no trajectory with positive
initial condition can converge
to a bounded facet of its

stoichiometric compatibility class.




Complex balanced reaction networks

Detail balanced
reaction networks

Deficiency zero
reaction networks




Global Attractor Conjecture

Conjecture. If a reaction network has a complex balanced equilibrium,
then any trajectory with positive initial condition converges to that

equilibrium.

Theorem 3. If a reaction network has

stoichiometric subspace of
dimension two, then any trajectory
with positive initial condition

converges to that equilibrium.




Global Attractor Conjecture

Conjecture. If a reaction network has a complex balanced equilibrium,
then any trajectory with positive initial condition converges to that

equilibrium.

Theorem 4. If a reaction network has

zero-repelling subnetworks, then
no trajectory with positive initial
condition can converge

to a boundary point.




Complex balanced reag Reaction networks
that have zero-repelling
subnetworks

Detail balanced Deficiency zero

reaction networks reaction networks




Summary

Conjecture: the complex balancing
equilibrium is global attractor.

The complex balancing equilibrium
always exists if the deficiency is
zero.

Proof, under additional assumptions:
either the rate constants satisfy
additional conditions, or the reaction
network has special structure.



Collaborato

Afd?n Feinberg, Department of Chemical Engineering and Department of
Mathematics, Ohio State University.

David Anderson, Department of Mathematics, University of Wisconsin-Madison.
Fedor Nazarov, Department of Mathematics, University of Wisconsin-Madison.
Bernd Sturmfels, Department of Mathematics, UC Berkeley.

Anne Shiu, Department of Mathematics, Department of Mathematics, UC Berkeley.

Alicia Dickenstein, Department of Mathematics, University of Buenos Aires.

Support: NSF and DOE BACTER Institute.









Global Attractor Conjecture

Conjecture. If a reaction network has a complex balanced equilibrium,

then any trajectory with positive initial condition converges to that

equilibrium.
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Given a reaction network, does
i1t have multiple equilibria ?
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The Jacobian Criterion

Theorem. For a fully diffusive reaction network, the
associated polynomial function p(c,k) is injective for
all k if and only if the determinant of the Jacobian

det (212 (c k))

does not vanish for any k.
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Which polynomial dynamical
systems can arise from mass-
action kinetics?



Which polynomial dynamical
systems can arise from mass-

Theorem. Anr dim acioral pol memnial 4y :anical sVstem can arise

from mass-action kinetics if and only if it can be written as

dc/dt =P,(c, ...,c,)-c,Q,c, ...,c)
dc,/dt = P,(c,, ...,c,) - c,0,(c,, ... ,c,)

dc/dt =P [(c,...,c)-c0.(c, ...,cC)

for some polynomials P;and Q,with non-negative coefficients.




Not mass-action kinetics: the
Lorenz equa

de/dt = ay— ax

dy/dt = cx—1y— a2
dz/dt ry — bz

dc,/dt = P,c, ...,c,)-c,QO,c, ...
dc,/dt = Py(c,, ... ,c,) - c,0,(c,, ...



The positive quadrant 1s an

Lnvar. dc/dt = P,c, ... ,c,)-c,Q,c, ...
4 C; dc/dt = P,(c, ... ,c,)-c,0,(c, ...

1
>
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Entrapped species models

Theorem. Consider some reaction network which

contains some entrapped species. If the corresponding

fully diffusive network does not admit multiple

equilibria, then the reaction network does not admit

multiple equilibria.
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Inside the DHFR (No
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Mechanism of Human DHFR \/
| Appleman et al, J.Biol. Chem., 265, ——
2740-2748 (1990)]
E = Human DHFR NH =NAPDH N =NAPD H2F = H2Folate H4F = H4Folate
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