next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
eliminationMatrices :: listDetComplex

listDetComplex -- This function calculates the list with the determinants of some minors of the maps of a graded ChainComplex with respect to a subset of the variables of the polynomial ring in a fixed degree.

Synopsis

Description

This function calculates the list with the determinants of some minors of the maps of a graded ChainComplex with respect to a subset of the variables of the polynomial ring in a fixed degree. Precisely, this list corresponds to the list with the determinant polynomials of the maps computed by minorsComplex.

The input ChainComplex needs to be an exact complex of free modules over a polynomial ring. The polynomial ring must contain the list v as variables.

It is recommended not to defines rings as R=QQ[x,y][a,b,c] when the variables to eliminate are '{x,y}'. In this case, see flattenRing for passing from R=QQ[x,y][a,b,c] to QQ[x,y,a,b,c].

i1 : R=QQ[a,b,c,x,y] 

o1 = R

o1 : PolynomialRing
i2 : f1 = a*x^2+b*x*y+c*y^2 

        2              2
o2 = a*x  + b*x*y + c*y

o2 : R
i3 : f2 = 2*a*x+b*y 

o3 = 2a*x + b*y

o3 : R
i4 : M = matrix{{f1,f2}} 

o4 = | ax2+bxy+cy2 2ax+by |

             1       2
o4 : Matrix R  <--- R
i5 : l = {x,y} 

o5 = {x, y}

o5 : List
i6 : dHPM = listDetComplex (2,l,koszul M)

           2     2
o6 = {- a*b  + 4a c, 1}

o6 : List
i7 : dHPM = listDetComplex (3,l,koszul M)

           2      2 2
o7 = {- a*b c + 4a c , c}

o7 : List
i8 : R=QQ[a,b,c,d,e,f,g,h,i,x,y,z] 

o8 = R

o8 : PolynomialRing
i9 : f1 = a*x+b*y+c*z 

o9 = a*x + b*y + c*z

o9 : R
i10 : f2 = d*x+e*y+f*z 

o10 = d*x + e*y + f*z

o10 : R
i11 : f3 = g*x+h*y+i*z 

o11 = g*x + h*y + i*z

o11 : R
i12 : M = matrix{{f1,f2,f3}} 

o12 = | ax+by+cz dx+ey+fz gx+hy+iz |

              1       3
o12 : Matrix R  <--- R
i13 : l = {x,y,z} 

o13 = {x, y, z}

o13 : List
i14 : dHPM = listDetComplex (1,l,koszul M, Strategy => Exact)

o14 = {- c*e*g + b*f*g + c*d*h - a*f*h - b*d*i + a*e*i, 1, 1}

o14 : List
i15 : dHPM = listDetComplex (2,l,koszul M, Strategy => Numeric)

        3 2        2         2   2     3           2           2       
o15 = {c e g - 2b*c e*f*g + b c*f g - c d*e*h + b*c d*f*h + a*c e*f*h -
      -----------------------------------------------------------------------
             2       2           2 2     2                          2
      a*b*c*f h + b*c d*e*i - a*c e i - b c*d*f*i + a*b*c*e*f*i, - c e +
      -----------------------------------------------------------------------
      b*c*f, 1}

o15 : List

See also

Ways to use listDetComplex :