next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
MatrixRepToric :: implicitEq

implicitEq -- computes the gcd of the right-most map of the Z-complex in degree nu)

Synopsis

Description

The integer 'nu' needs to be a 'good degree' for the first parameter '{f0,f1,f2,f3}' that can be verified by doing isGoodDegree(polinomialList,nu,P)

implicitEq({f0,f1,f2,f3},nu,P) computes the determinant of the maximal minors of representationMatrix({f0,f1,f2,f3},nu,P). Equivalently, it computes the determinant of the Z-complex in degree 'nu'. This is:

implicitEq({f0,f1,f2,f3}, nu,P)=det((Z(f0,f1,f2,f3))_nu)

We also have that: degree(implicitEq({f0,f1,f2,f3}, nu))=degreeImplicitEq({f0,f1,f2,f3}, nu,P)

i1 : needsPackage "Polyhedra"

o1 = Polyhedra

o1 : Package
i2 : S = QQ[s,t]; 
i3 : f0 = s^2+s^3*t; 
i4 : f1 = s^3*t^6+1; 
i5 : f2 = s*t^2+2*s^3*t^5; 
i6 : f3 = s^2+s^3*t^6; 
i7 : l = {f0,f1,f2,f3};
i8 : P = convexHull(matrix{{0,0,1},{0,1,0}});
i9 : implicitEq ({f0,f1,f2,f3},2,P)
WARNING: representation matrix is not of full rank (rank target M != rank M).

o9 = 1

o9 : QQ[X , X , X , X ]
         0   1   2   3

For the programmer: it computes the determinant of a maximal minor of 'representationMatrix (teToricRationalMap({f0,f1,f2,f3},P),2)' using the function 'maxMinor'

See also

Ways to use implicitEq :